Predefined functions
As p and scale in pi (π), for all terms where p and q enter directly into formulas for x ,y, z (e.g not in periodic function of the variables), a factor 1/pi (1/π) appears. A factor cos(v*t) indicates that the associated term is animated. Reset redefines t = 0 and hence cos(vt) = 1.
Fixed numbers in the formulas are used to define a reasonable scaling at the start of the simulation for uniform default values of parameters a, b, c (= 0.5).
x_function = p/pi
y_function = q/pi
z_function = cos(v*t)*(a/pi-0.6)*p
Plane
x_function = p/pi
y_function = q/pi
z_function = cos(v*t)*p*q/pi^2
Saddle
x_function = cos(v*t)*a*cos(p)
y_function = b*sin(p)
z_function = c*q/(2*pi)
Cylinder
x_function = a*cos(p)*(1+q/(2*pi)*cos(p/2))
y_function = 2*b*sin(p)*(1+q/(2*pi)*cos(p/2))
z_function = c*q/(pi)*sin(p/2*t)
Möbius strip
x_function = cos(v*t)*a*cos(p)*abs(cos(q))
y_function = cos(v*t)*a*sin(p)*abs(cos(q))
z_function = cos(v*t)*a*sin(q)
Sphere
x_function = a*cos(p)*abs(cos(q))
y_function = cos(v*t)*b*sin(p)*abs(cos(q))
z_function = c*sin(q)
Ellipsoid
x_functio n= a/pi*q*cos(p)*cos(v*t)");
y_function = b/pi*q*sin(p)*cos(v*t)");
z_function = c*q/pi");
Double cone
x_function = (a+0.6*cos(v*t)*b*cos(q))*sin(p)
y_function = (c+0.6*cos(v*t)*b*cos(q))*cos(p)
z_function = 0.6*b*sin(q)
Torus
x_function = 2*(a+0.3*b*cos(q))*sin(p)*cos(p)
y_function = 2*((cos(v*t)^2)*c+0.3*b*cos(q))*cos(p)*cos(p)*cos(p)
z_function = 0.6*b*sin(q)
Torus-8
x_function = (cos(v*t)*c+0.3*b*cos(q))*cos(p)*cos(p)*cos(p)
y_function = (a+0.3*b*cos(q))*sin(p)
z_function = b*0.3*sin(q)
Mouth
x_function = (0.4*c+0.4*b*cos(q))*cos(p)*cos(p)*cos(p)
y_function = (2*a+0.4*b*cos(q))*sin(p)
z_function = cos(v*t)*0.4*b*cos(q)
Boat_1
x_function = (0.4*c+0.4*b*cos(q))*cos(p)*cos(p)*cos(p)
y_function = (2*a+0.4*b*cos(q))*sin(p)
z_function = cos(v*t)*0.4*b*cos(q)*cos(q)
Boat_2