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Abstract

The understanding of matter does not only require a precise analysis of individual charac-

teristics of the fundamental constituents, but also the study of their collective behavior.

Solid state physics, and in particular research in strongly correlated electron systems,

deals with such collective phenomena. The properties of the electrons, charge and spin

quantum numbers, do not on their own explain the rich world of states of matter, howe-

ver mutual interactions lead to various states or phases of matter. This work focuses on

phases in quantum spin systems. On the basis of the Heisenberg model one (1D) and two

dimensional (2D) spin lattices are investigated.

In a first part the bilayer Heisenberg Model and the 2D Kondo necklace model are studied.

Both models exhibit a quantum phase transition between an ordered and disordered phase.

For small interlayer couplings the models have antiferromagnetic long-range order, which

is destroyed by increasing the coupling. However, even in the disordered phase the models

show global features in terms of collective excitations called magnons. Coming from the

disordered phase the gapped magnons condense at a critical coupling and form the order

of the ordered phase. Here, another interesting question arises, namely that of the coupling

of a single doped hole to such critical fluctuations. A self-consistent Born approximation

predicts that the doped hole couples to the magnons such that the quasiparticle residue

vanishes at the quantum critical point. In this work the delicate question about the fate of

the quasiparticle residue across the quantum phase transition is also tackled by means of

large scale quantum Monte Carlo simulations. Furthermore the dynamics of a single hole

doped in the magnetic background is investigated.

In the second part an analysis of the spiral staircase Heisenberg ladder is presented. The

ladder consists of two ferromagnetic coupled spin-1/2 chains, where the coupling within the

second chain can be tuned by twisting the ladder. For large interleg coupling the spins on

a rung form triplets and the ladder can be understood as an effective spin-1 chain. Hence,

within this model the crossover between an ungapped spin-1/2 system and a gapped spin-1

system can be studied. In this work the emphasis is on the opening of the spin gap with

respect to the ferromagnetic rung coupling. It is shown that there are essential differences

in the scaling behavior of the spin gap depending on the twist of the model. The origin of

the different scaling behavior lies in a new energy scale which emerges in the low coupling
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region of strongly twisted ladders where the coupling along the second leg almost vanishes.

The new energy scale can be interpreted by an RKKY-like interaction which is mediated

via the spins on the first leg. This so-called Suhl-Nakamura interaction induces long-range

correlation which causes a different scaling behavior. Moreover, by means of the string

order parameter it is shown, that the system remains in the Haldane phase within the

whole parameter range although the spin gap scales differently.

The tools which are used for the analyses are mainly large scale quantum Monte Carlo

methods, but also exact diagonalization techniques as well as mean field approaches.
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Kurzfassung

Für das Verständnis von Materie reicht es allein nicht aus, sich auf die Untersuchung der

fundamentalen Einzelbausteine zu beschränken. Ebenso wichtig ist die Betrachtung des

kollektiven Verhaltens aller Elemente. Die Festkörperphysik und insbesondere die Analy-

se stark korrelierter Elektronensysteme beschäftigt sich mit diesen kollektiven Phänome-

nen. So erklären die Eigenschaften eines einzelnen Elektrons, wie Ladung und Spin, nicht

die verschiendenartigen Formen der Materie. Erst die gegenseitige Wechselwirkung der

Elektronen ermöglicht eine Vielfalt von Zuständen bzw. Phasen. Diese Arbeit richtet ihr

Augenmerk auf Phasen in Quantenspinsystemen. Auf der Basis des Heisenberg-Modells

werden ein- und zweidimensionale Spingitter untersucht.

Der erste Teil der Arbeit widmet sich der Untersuchung des Bilayer-Heisenberg-Modells

und des zweidimensionalen Kondo-Necklace-Modells. Beide Modelle weisen einen Quan-

tenphasenübergang zwischen einer geordneten und einer ungeordneten Phase auf. Ist die

Kopplung der Ebenen eines Modells schwach, so befindet sich das System in einer anti-

ferromagnetisch geordneten Phase. Diese langreichweitige Ordnung wird bei zunehmender

Kopplung zerstört. Aber auch in der magnetisch ungeordneten Phase weist das System

ein kollektives Verhalten in Form von Spinanregungen, auch Magnonen genannt, auf. Hier

sind die Anregungen durch eine Energielücke vom Grundzustand getrennt, welche sich

jedoch bei schwächer werdender Kopplung schließt. Dies führt dazu, dass die Magnonen

am quantenkritischen Punkt kondensieren und die Ordnung der geordneten Phase bilden.

In dieser Arbeit richtet sich das Interesse insbesondere auf die Kopplung der kritischen

Fluktuationen an ein in das System eingebundenes Loch. Mittels eines selbstkonsistenten

Born’schen Näherungsverfahrens wird gezeigt, dass das Loch mit den Magnonen derart

wechselwirkt, dass dessen Quasiteilchengewicht am quantenkritischen Punkt verschwindet.

Um diesen Aspekt weiter zu untersuchen, wird das Verhalten des Quasiteilchengewichts

im Bereich der kritischen Kopplung auch mit Quanten-Monte-Carlo-Methoden analysiert.

Desweiteren werden die dynamischen Eigenschaften des Loches im magnetischen Hinter-

grund untersucht.

Im zweiten Teil dieser Arbeit gilt das Interesse der Untersuchung des Spiral-Staircase-

Heisenberg-Modells. Dieses besteht aus zwei, zu einer Spinleiter ferromagnetisch ge-

kopplten Spin-1/2-Ketten, wobei die antiferromagnetische Kopplung innerhalb der zweiten
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Kette durch Windung der Leiter variiert werden kann. Bei starker Kopplung der Leiter-

beine formieren sich die Spins der Sprossen zu Tripletts, und die gesamte Leiter kann als

effektive Spin-1-Kette aufgefasst werden. Dieses Modell eignet sich somit, den Übergang

zwischen einer Spin-1/2-Kette ohne Spinlücke und einer Spin-1-Kette mit Spinlücke zu

studieren. Besondere Beachtung ist dem Öffnen der Spinlücke in Abhängigkeit der fer-

romagnetischen Kopplung zwischen den Leiterbeinen geboten. Es stellt sich heraus, dass

das System, abhängig von der Leiterwindung, wesentliche Unterschiede im Skalierungs-

verhalten der Spinlücke aufweist. Der Ursprung des unterschiedlichen Skalierungsverhal-

tens ist auf eine bei stark gewundener Leiter im Bereich schwacher Kopplung auftretende

neue Energieskala zurückzuführen. Diese kann durch einen der RKKY-Wechselwirkung

sehr ähnlichen indirekten Kopplungsmechanismus zwischen den Spins des zweiten Lei-

terbeines vermittelt durch die Polarisation der Spins des ersten Leiterbeines erklärt wer-

den. Diese sogenannte Suhl-Nakamura Wechselwirkung bewirkt langreichweitige Korrela-

tionen zwischen den Spins und ist ursächlich für das unterschiedliche Skalierungsverhal-

ten der Spinlücke. Desweiteren wird mittels der String-Order-Parameter gezeigt, dass das

Spiral-Staircase-Heisenberg-Modell trotz des unterschiedlichen Skalierungsverhaltens der

Spinlücke und unabhängig von der Wahl der Parameter sich stets in der Haldane-Phase

befindet.

Die Analyse der Modelle bedient sich hauptsächlich Quanten-Monte-Carlo-Methoden, aber

auch exakter Diagonalisierungstechniken, sowie auf Molekularfeldnäherungen gestützten

Rechnungen.
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Introduction 1
Strongly correlated electron systems are one of the most interesting and recent problems

in condensed matter physics. The study of correlation effects is essential for the under-

standing of many fascinating phenomena like high-temperature superconductivity [1] and

the physics of heavy fermion systems [2, 3], for example. Strong correlations emerge if the

electrostatic interaction energy between the electrons becomes of the order of their kinetic

energy. Therefore in an appropriate model both the kinetic energy, leading to Bloch ex-

tended states, and the Coulomb repulsion, favoring localization, have to be included. The

most fundamental model that takes the kinetic energy as well as the electrostatic repulsion

energy into account in a complex many electron system was presented in the early 1960s

by J. Hubbard [4]. The basic assumption of Hubbard was to neglect all inter atomic inter-

actions due to the small overlap of the atomic wave functions, so that the electron-electron

repulsion is restricted to the on-site interaction U between electrons on the same site. On

the basis of the tight-binding approximation [5] the electrons are also allowed to tunnel

between the atomic orbitals of neighboring sites. Thus, the kinetic energy is scaled by

the transfer integral or hopping matrix element t. The Hubbard Hamiltonian in second

quantization reads

ĤHub = −t
∑

〈ij〉

∑

σ

(

ĉ†i,σ ĉj,σ + H. c.
)

+
U

2

∑

i

∑

σ

n̂i,σn̂i,−σ . (1.1)

Here, ĉ†i,σ and ĉi,σ create and annihilate electrons with spin σ at site i. n̂i,σ = ĉ†i,σ ĉi,σ
stands for the particle density operator. Although the Hubbard model is for most physical

systems an over simplified model, it is of great importance for the study of the interplay

between the kinetic energy and the potential energy, the influence of the Pauli exclusion

principle [6] and the effects of lattice structures [7]. In spite of its simplicity an analytic

description of the ground state of the Hubbard model is only known for the one dimensional

(1D) case [8, 9]. For higher dimensionality it is still an unsolved problem. Nevertheless, the

Hubbard model is the basis of many low energy models including quantum spin systems

which are the central subject of this work.
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1 Introduction

The low energy physics of the Hubbard model in the large-U regime near half filling is

given by the t-J model [10, 11]. Taking the hopping term of Eq. (1.1) as a perturbation

one obtains the effective t-J Hamiltonian where, due to the large on-site repulsion, double

occupancy only appears as virtual intermediate states. Furthermore the so-called three-

site-terms are neglected. They describe processes where an electron virtually hops to

an occupied site, whilst obeying the Pauli exclusion principle, and finally ends up at a

different unoccupied site. Those correlated hopping terms can be argued to be neglected

near half filling since the density of holes is very small. The t-J model then reads

ĤtJ = P̂S



−t
∑

〈ij〉

∑

σ

(

ĉ†i,σĉi,σ + H. c.
)

+ J
∑

〈ij〉

(

Ŝi · Ŝj − 1
4 n̂in̂j

)



 P̂S . (1.2)

Here, the second order term is scaled by J ≡ 4t2/U . The operator P̂S projects onto the

subspace with no double occupancy. n̂i =
∑

σ ĉ
†
i,σ ĉi,σ denotes the occupation number

operator and Ŝi is the spin operator at site i with components

Ŝz
i =

1

2

(

ĉ†i,↑ĉi,↑ − ĉ†i,↓ĉi,↓
)

, Ŝ+
i = ĉ†i,↑ĉi,↓ and Ŝ−

i = ĉ†i,↓ĉi,↑ . (1.3)

Hence the very origin of quantum spin systems lies in the Coulomb repulsion. Since

J > 0 one finds antiferromagnetic interaction within the Hubbard model. Such doped

antiferromagnets are discussed in the context of high-temperature superconductivity in

cooper oxides [1, 12, 13]. In section 3.3 the t-J model is used to implement the single hole

dynamics into the considered spin model.

Exactly at half filling the charge fluctuations cease to exist, and the model maps onto a

pure spin model described by the isotropic Heisenberg Hamiltonian:

ĤHeis = J
∑

〈ij〉
Ŝi · Ŝj . (1.4)

In a pure spin model the exchange constant J describes the magnetic coupling between

neighboring spins and can be either positive (antiferromagnetic coupling) or negative (fer-

romagnetic coupling). Classically, the exchange coupling may be interpreted as the influ-

ence of the magnetic moments of the electrons on each other by dipol-dipol interaction.

In fact the dipolar interaction is relatively weak and can be neglected. The underlying

mechanisms of the magnetic order are based on pure quantum mechanical effects [11], such

as the electron spin, the delocalization energy, Heisenberg’s uncertainty principle [14] and

Pauli’s exclusion [6] principle, and of course the Coulomb repulsion.

A ferromagnetic (FM) ordering of spins causes an anti-symmetric orbital wave function:

ψ(. . . ri . . . rj . . .) = −ψ(. . . rj . . . ri . . .), where electrons i and j can never be at the same

place: ri 6= rj . This reduces, in general, the Coulomb interaction energy and is the basic

principle of Hund’s rule [15]. On the other hand, an antiferromagnetic (AF) coupling J > 0
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enables more delocalization of the electron, because the electron is not restricted by Pauli’s

exclusion principle. As a consequence of Heisenberg’s uncertainty principle a delocalized

electron reduces the momentum uncertainty, thus reducing the kinetic energy. Which of

these effects is more significant and thus which kind of magnetic coupling is preferred

depends on the molecular structure of the considered physical system. In general, FM

ordering is favored if the orbitals are orthogonal but occupy the same region is space,

whereas AF ordering is preferred if the orbitals are non-orthogonal but located in different

regions in space [11].

In this work the focus is on pure spin models described in terms of the Heisenberg model.

It is structured in two parts. The first part presented in chapter 5 discusses the single-

hole dynamics in the two dimensional (2D) Kondo necklace model [see below] and bilayer

Heisenberg model. In the second part (chapter 6) the 1D spiral staircase Heisenberg model

is considered, and the question primarily addressed is the opening of the spin gap as a

function of coupling.

The analyses in the first part are motivated by the modeling of heavy fermion systems.

Such systems are based on an array of localized spin degrees of freedom coupled antiferro-

magnetically to conduction electrons and show competing interactions which lead to mag-

netic quantum phase transitions between an antiferromagnetically ordered and disordered

phase as a function of the AF exchange interaction J . For large J the localized mag-

netic moments are screened by the conduction electrons. This so-called Kondo screening

leads to a paramagnetic heavy fermion ground state. In contrast, the Ruderman-Kittel-

Kasuya-Yosida (RKKY) interaction favors antiferromagnetic ordering and is dominant at

small values of J . The RKKY [16, 17, 18, 19] interaction is an indirect exchange coupling

between the localized spin degrees of freedom and is mediated by the polarization of the

spins in the conduction band. It is given by JRKKY ∝ J2
⊥χ(q, ω = 0) where χ(q, ω) cor-

responds to the spin susceptibility of the conduction electrons. Typically, heavy fermion

systems are captured by the 2D Kondo lattice model (KLM) and its variations. In this

work a very simplified situation is considered, namely that of a doped hole in the Kondo

insulating state as realized by the Kondo necklace. However, it allows to investigate the

form of the quasiparticle dispersion relation from strong to weak coupling.

The KLM emerges from the periodic Anderson model (PAM), which consists of localized

orbitals (LO) with on-site Hubbard interaction Uf and extended orbitals (EO), which form

a conduction band with dispersion ε(p) = −2t (cos(px) + cos(py)). The overlap between

the LOs and the EOs within each unit cell is described by the hybridization matrix element

V . For large Uf charge fluctuations on the localized orbitals becomes negligible and the

PAM maps via the Schrieffer-Wolff transformation onto the KLM [20, 21]:

ĤKLM =
∑

p,σ

ε(p)ĉ†p,σ ĉp,σ + J
∑

i

Ŝc
i · Ŝf

i . (1.5)
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1 Introduction

Here, Ŝc
i and Ŝf

i are spin-1/2 operators for the extended orbitals and the localized orbitals

respectively. In the first term, which represents the hopping processes, the fermionic

operators ĉ†p,σ (ĉp,σ ) create (annihilate) electrons in the conduction band with wave

vector p and z-component of spin σ. At half filling – one conduction electron per localized

spin – the 2D KLM is an insulator and shows a magnetic order-disorder quantum phase

transition at a critical value of Jc/t = 1.45 ± 0.05 [22].

By taking into account an additional Coulomb repulsion U between electrons within the

conduction band, one obtains a modification of the KLM, the UKLM:

ĤUKLM =
∑

p,σ

ε(p)ĉ†p,σ ĉp,σ + J
∑

i

Ŝc
i · Ŝf

i + U
∑

i

(

n̂i,↑ − 1
2

) (

n̂i,↓ − 1
2

)

. (1.6)

Here, n̂i,σ = ĉ†
i,σĉi,σ is the density operator for electrons with spin σ in the conduction

band. The additional Coulomb repulsion displaces the quantum critical point towards

smaller value of Jc/t. However, the physics, in particular the single hole dynamics, remains

unchanged [23]. This allows to take the limit U/t → ∞ to map the UKLM onto a Kondo

necklace model (KNM) which one writes as

Ĥ = J⊥
∑

i

Ŝ
(1)
i

· Ŝ(2)
i

+
∑

〈ij〉

∑

m

J
(m)
‖ Ŝ

(m)
i

· Ŝ(m)
j

. (1.7)

Here, Ŝ
(m)
i

is a spin-1/2 operator, which acts on a spin degree of freedom at site i. J
(m)
‖

stands for the intralayer exchange and the upper index m = 1, 2 labels the two different

layers. The interlayer exchange, formerly the AF coupling J between LOs and EOs, is

now characterized by J⊥. Clearly, since the KNM is motivated from a strong coupling

limit of the UKLM, one has to set:

J
(1)
‖ ≡ J‖ and J

(2)
‖ = 0 (KNM). (1.8)

The above models all have in common that the only interaction between the localized spins

stems from the RKKY interaction. This in turn leads to the fact that at J = 0 for the

KLM and UKLM or J⊥ = 0 for the KNM the ground state is macroscopically degenerate.

This pathology is lifted in the bilayer Heisenberg model (BHM) in which an independent

exchange between the localized spins is explicitly included in the Hamiltonian. Hence the

isotropic BHM which takes the form of Eq. (1.7) with

J
(1)
‖ = J

(2)
‖ ≡ J‖ (BHM) (1.9)

is also considered. Both, the KNM and BHM, are sketched in Fig. 5.1 and are discussed

in detail in section 5. For both models the discussion includes a numerical determination

of the quantum critical point which separates the antiferromagnetically ordered and para-

magnetic phase at zero temperature. It also covers an analysis of the spin dynamics in the
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BHM. Furthermore the single particle spectral function is extensively studied. It turns

out that there are significant differences between both models based on the additional spin

coupling within the second layer of the BHM. Finally attention is turned to the fate of the

quasiparticle residue across the quantum phase transition. Here, the results are obtained

with a self-consistent Born approximation and large scale quantum Monte Carlo methods.

The second part of this work deals with a similar situation, but in lower dimension.

Here, a spin-1/2 two leg ladder is considered, where the spins on a rung are coupled

ferromagnetically (J⊥ < 0). Whereas the AF coupling (J‖ > 0) along the first leg is fixed,

the coupling along the second leg can be tuned until it completely vanishes. The extreme

case of dangling spins which are not coupled to each other within the second leg is called

the 1D Kondo necklace, even if the coupling on the rungs is considered as FM. This model

is captured by the following Heisenberg Hamiltonian:

Ĥ = J‖
∑

i

(

Ŝ1,i · Ŝ1,i+1 + cos2 (θ/2) Ŝ2,i · Ŝ2,i+1

)

+ J⊥
∑

i

Ŝ1,i · Ŝ2,i . (1.10)

Here, Ŝα,i is a spin-1/2 operator acting on leg α and lattice site i. Geometrically, this

model may be understood as a continuous twist deformation of an isotropic 2-leg ladder

with interleg coupling J‖ along leg 1 by an angle θ [see Fig. 6.1] and is called the spiral

staircase Heisenberg (SSH) model. As a result of the deformation the coupling between

neighboring sites along leg 2 is rescaled to the form J‖ cos2 (θ/2).

The motivation of this study is given by the Haldane conjecture [24] proposed more than

20 years ago which states that the properties of SU(2) symmetric AF spin-S Heisenberg

chains are different for integer and half-integer spins. The excitations in AF Heisenberg

chains with half-integer spins are gapless [25] whereas for integer spin chains a gap exists.

The pure 1D AF spin-1/2 Heisenberg chain can be mapped onto a Luttinger liquid which

allows to treat such chains by means of exact fermionization and bosonization methods,

resulting in a well understood gapless phase [25]. In contrast, for the AF spin-1 Heisenberg

chain it is widely accepted and extensively shown by numerical analyses [26, 27, 28, 29]

that the excitations exhibit a gap. However, coupling identical chains to form a spin ladder

allows to analyze intermediate systems and thus to study the crossover between an AF

spin-1/2 and an AF spin-1 Heisenberg chain. Moreover, from the theoretical point of view

the question arises of how the spin gap behaves if two unequivalent spin-1/2 chains are

coupled. Especially the behavior of the spin gap for a single chain with dangling spins is

a current controversy [30, 31, 32, 33].

It is known from the seminal bosonization work of Shelton, Nersesyan und Tsvelik [35]

that the FM coupling of AF spin chains induces a Haldane gap which for weak interleg

couplings is proportional to J⊥/J‖. When the spin velocity on one of the legs vanishes

the bosonization methods fails since a simple formulation of the continuum limit on which
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1 Introduction

N

O

N

N
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O

Figure 1.1: An experimental realization of the 1D

Kondo necklace model is found in the organic biradical

crystal PNNNO. (PNNNO =̂ 2− [4′−(N−tert−butyl−
N − oxyamino)phenyl] − 4, 4, 5, 5 − tetramethyl − 4, 5 −
dihydro − 1H − imidazol − 1 − oxyl 3 − oxide) [34]

the approach relies breaks down. This poses the challenge to tackle this problem with

other analytical and numerical methods. Beside this theoretical interest there is also an

experimental motivation. The Kondo necklace (θ = π) has been used for modeling a stable

organic biradical crystal of PNNNO [34] [see Fig. 1.1]. A PNNNO molecule consists of

two radical units, an N − tert− butyl nitoxide unit (tBu−NO) and a nitronyl nitroxide

(NN) unit. The units can be understood as single occupied molecular orbitals (SOMOs)

each filled by an unpaired electron. In agreement with the rule of thumb that alignment

of the spins is preferred for orbitals that occupy the same region in space, the spin de-

grees of freedom of these unpaired electrons couple ferromagnetically within the molecule.

Furthermore the PNNNO molecules themselves form a lattice structure composed of one

dimensional chains where the links corresponds to NN units which are coupled antifer-

romagnetically among each other. Whereas the coupling for an PNNNO model is of the

order of J⊥/J‖ ≃ −44 (2J⊥/kB ≃ −638K and 2J‖/kB ≃ 14.5K) [34] this work is mainly

focused on the low coupling (J⊥ ≪ J‖) region of the SSH model. In section 6.1 Jordan-

Wigner mean field calculations for the SU(2) symmetric Heisenberg ladder and the 1D

Kondo necklace are presented. Already on this approximate level significant differences in

the scaling behavior of the spin gap become apparent. Furthermore, the results obtained

by the mean field calculation are supported by exact diagonalization techniques and large

scale quantum Monte Carlo methods. The different scaling behavior of the spin gap can be

interpreted in terms of an emergent Suhl-Nakamura (SN) interaction in the weak coupling

region of a strongly twisted (θ ≃ π) ladder. This SN interaction [36, 37, 38] describes an

indirect exchange coupling between the dangling spins via polarization effects of the spin

degrees of freedom on leg 1. It is comparable to the RKKY interaction and takes the very

similar form JSN ∝ J2
⊥χ(q, ω = 0) where χ(q, ω) is the spin susceptibility of the spins on

leg 1. In addition, intermediate systems with 0 < θ < π are also observed. Finally, by

way of string order parameters an attempt is made to answer the question of whether or

not the different scaling of the gap is also associated with different quantum phases.

The results presented in this work are obtained with different analytical and numerical

techniques. The substantial analysis is done with large scale path integral quantum Monte

Carlo simulations. Here the model is formulated in terms of world lines. The updating

is done via the very efficient loop algorithm [39]. The autocorrelation length of the loop
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algorithm is investigated in appendix D. A short introduction to the world line formu-

lation of spin systems and the implementation of observables into world lines is given in

section 3. Numerical simulations generally are restricted to finite sized lattices, where

boundary effects emerge beside bulk effects. The advantages of a Monte Carlo method is

the ability to simulate comparatively large systems, where the effects of the boundaries

are negligible or can be eliminated by finite size scaling. Another advantage of Monte

Carlo simulations is given by the fact that they yield exact results. Here, exact means

that the results just have a statistical error which can be arbitrarily reduced and depends

on the amount of CPU time. The most prominent disadvantage of quantum Monte Carlo

methods is the so-called minus sign problem which makes the simulation of certain models

difficult or even unfeasible. However, in the non-frustrated spin systems dealt with in this

work the minus sign problem is absent and the reader is referred to Ref. [40] for detailed

informations. Another disadvantage of the QMC method is the difficulty of resolving very

low energy scales which becomes explicitly apparent in chapter 6 where the spin gap of

the SSH model is calculated. This disadvantage is lifted by using exact diagonalization

(ED) techniques. Here, the problem is solved exactly in every sense. An introduction into

the Lanczos method, which is the most established exact diagonalization technique for the

determination of ground state properties, is given in chapter 4. The great disadvantage

of the ED technique is that is only allows to compute very small systems, where often the

behavior of the bulk system is not observable. Another method in the analysis of the dis-

cussed models is the mean field approach. In this approximative method the many diverse

interactions are replaced by a mean field. In other words, the Hamiltonian of the model is

expanded in fluctuations, where only the linear terms contribute. Fluctuations of higher

order are neglected. This allows to solve this simplified model self-consistently. The ad-

vantage of the mean field approximation is given in its simplicity. It can be solved without

huge computational effort. The disadvantage of the mean field approach is obvious: Since

it it just an approximative method crucial mechanisms could be missed.

In the following section the work starts with a short introduction to phases and phase

transitions. There, two quantum phases which become relevant in this work are especially

emphasized: the antiferromagnetic phase and the Haldane phase.
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Quantum Monte Carlo Studies of Strongly Correlated Electron Systems

in High Performance Computing in Science and Engineering, Garching 2007

in press (Springer-Verlag, 2007)

16



Quantum Phases and

Phase Transitions 2
Different phases and phase transitions make the world rich and interesting. This becomes

already obvious by the fact that one can skate on a lake during the winter and to go swim-

ming in it in the summer time. Even more, phase transitions make the world possible since

they seem to be very important for the origin of the observable universe [41]: “. . . indeed

it is widely argued that the very existence of the observable universe is attributable to the

phase change in the state of some pre-existing vacuum, and that the disposition of mat-

ter in and around galaxies should be understood in terms of fluctuations associated with

some such transition . . . ” [42]. Also, and in particular, in solid state physics many different

phases of matter are distinguishable. Besides different crystalline structures, which allow,

for instance, that solids of carbon can be used for fossil burning as well as for decoration in

the form of diamonds, several conducting and magnetic phases can emerge. In this work

attention is turned towards different magnetic phases, however this chapter also gives an

overview of the basic concepts of phases and phase transitions in general. At the end of

this chapter a short introduction is given to antiferromagnetic phases and Haldane phases

which are subjects in the main part of this work.

2.1 Basic Concepts in General

In nature matter emerges in different states of aggregation which can be transferred into

each other by tuning external parameters like temperature and pressure, but also coupling

and doping. One distinguishes between first order phase transitions, where a finite amount

of latent heat has to be spent to initialize the transition, and continuous phase transitions.

An example of a continuous phase transition is the transition between a paramagnetic

phase and a ferromagnetic phase. For these kinds of transitions the system goes from a

symmetric or disordered phase to an ordered phase with spontaneously broken symmetry.

In this special case the underlying symmetry is the rotational symmetry in spin space which

is broken in the ferromagnetic phase where a certain direction of the magnetic moments of

the spins is preferred. Although many phase transitions in the thermodynamics of fluids
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2 Quantum Phases and Phase Transitions

paramagneticferromagnetic

•

Tc T →

−M0

M0

↑ M

(a) Magnetic phase transition

supercritical fluidcoexistence regime

•

ρgas

ρfluid

Tc T →

ρc

↑ ρ

(b) Phase transition of a fluid

Figure 2.1: Example for universality: both phase diagrams show similar features. The ferromag-

netic order is indicated by the magnetization M which is finite for T < Tc. The corresponding

quantity in the liquid-gas diagram is given by the difference ρfluid − ρc (or ρc − ρgas) between the

fluid (or gas) density and the critical density.

are of first order, e. g. the boiling or freezing of water, one also finds a continuous phase

transition by going along the coexistence curve of a liquid-gas diagram. At the critical

point one enters a new phase, called supercritical fluid, which is characterized by only a

single stable phase. The remarkable phenomenon is that the transitions between all these

phases show similar fundamental characteristics [see Fig. 2.1]. In particular this implies

that in the vicinity of the critical points the topology of the phase diagrams of various

systems look quite similar, and the critical exponents which characterize the behavior

of the system in the critical region seem to be identical for many different systems [43,

44]. This generality is pointed out in the so-called universality hypothesis: “All phase

transition problems can be divided into a number of different classes depending upon the

dimensionality of the system and the symmetries of the ordered state. Within each class

all phase transitions have identical behavior in the critical region. Only the names of the

thermodynamic variables are changed ” [45]. The universality can be understood by the

fact that in the vicinity of the phase transition the thermal or quantum fluctuations lead

to long range correlations, characterized by the divergence of the correlation length ξ.

Thus, in this critical region the system behaves collectively and only global features like

dimensionality and symmetry are significant.

As a consequence of the divergence of the correlation length the systems behaves equally on

all length scales. This means in particular that microscopic components can be combined

to a cluster and an effective interaction can be introduced, so that the rescaled systems

shows up unchanged. This conservation property is known as scale invariance and has

a mathematical description by the renormalization group (RG) theory. The RG theory
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2.2 Quantum Phase Transitions

was formulated by K. G. Wilson [46] who received the Nobel price in 1982 for his seminal

work [47]. A major result of the RG theory is that it provides a theoretical basis for the

so-called scaling laws. Even more, the RG permits the numerical calculation of the critical

exponents. One of these scaling laws describes the behavior of the order parameter within

the critical region. The order parameter is a quantity which is usually finite within the

ordered phase and zero within the disordered phase. Therefore it is used to indicate the

critical point of a phase transition. For a ferromagnetic system a possible order parameter

is given by the magnetization M [see Fig. 2.1(a)], for the phase transition in the liquid-gas

diagram this could be the difference ρfluid − ρc (or ρc − ρfluid) between the fluid (or gas)

density and the critical density [see Fig. 2.1(b)]. However, in general the order parameters

are not unique. For an arbitrary order parameter O one obtains the following power law:

O ∝ Θ(g − gc) |g − gc|β . (2.1)

Here, g − gc is a dimensionless distance to the critical point which can be associated with

some kind of temperature or coupling. Θ denotes the Heaviside function and β stands for

the critical exponent.

2.2 Quantum Phase Transitions

The phase transitions which one usually observes are mostly triggered by the tempera-

ture, and the macroscopic order at a critical temperature Tc is destroyed due to thermal

fluctuations. But phase transitions can also take place at zero temperature [48]. Here a

non-thermal control parameter, such as coupling or doping, determines the phase and can

be tuned to access the transition point. Since at zero temperature no thermal fluctuations

are present such transitions are induced by quantum fluctuation: Instead of exchanging

energy with a heat bath, the temporary microscopic fluctuations in energy emerge due to

the Heisenberg uncertainty principle.

Generally in a quantum system both thermal and quantum fluctuations occur. However,

for finite temperatures the thermal fluctuations dominate in the majority of cases. Only in

the absence of thermal fluctuations do the quantum fluctuations become significant, there-

fore such phase transitions at zero temperature are called quantum phase transitions. This

does not imply that quantum mechanical effects are insignificant for finite temperature

phase transitions. For example, the emergence of a superconducting phase or a superfluid

phase can only be understood by quantum mechanics, however these phase transitions are

triggered by thermal fluctuations and thus the phase transitions are classified as classi-

cal [48, 49]. Fig. 2.2 shows a possible phase diagram where both, thermal and quantum

fluctuations, destroy the order of the ordered phase. Classically fluctuations can be un-

derstood as a temporal sequence of different states [49]. In the Ising model, for example,
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2 Quantum Phases and Phase Transitions

Figure 2.2: Phase diagram of a quan-

tum mechanical system. The tempera-

ture T can be tuned to induce a classi-

cal phase transition by thermal fluctua-

tions. A quantum phase transition oc-

curs when a non-thermal parameter g

like coupling or doping is triggered at

zero temperature. The disordered phase

splits into three regions with different

physical properties. However, these re-

gions are separated by gradual crossovers

and not by phase transitions [49].

this could be a sequence where the spins temporarily fluctuate between up and down.

The expectation value of the magnetization is then given by an averaging over the whole

temporal sequence with a certain variance which indicates the fluctuations. In a quantum

mechanical magnetic system the actual state is already a superposition of up-spins and

down-spins. The expectation value is now determined by this single superposed state.

Nevertheless, the fluctuations in terms of the variance are still finite which is a result of

the non-commutativity of the quantum mechanical operators.

Therefore one may suggest that the quantum fluctuations do not take place in real time.

Indeed, formally the time dimension can be analytically continued and the quantum fluc-

tuations can then be understood as fluctuations in imaginary time. This formalism is used

in section 3.1 where the partition function of a quantum mechanical system is interpreted

as a path integral in imaginary time.

In classical statistical mechanics the thermodynamic properties can be derived from the

partition function given by

Z =

∫

ddp

∫

ddq e−βH(p,q) , (2.2)

where H(p,q) is the classical Hamilton function depending on the momentum p and the

space coordinate q which splits into a kinetic part T (p) and a potential part V(q). Since

classically T and V commute, the partition function factorizes: Z = ZT ZV . To study

classical phase transitions it is usually sufficient to use effective time-independent theories

where the kinetic part of the partition function does not contribute [50]. Therefore, the

configuration space with dimensionality d covers only the d space dimensions. In quantum

mechanics the situation is different. Here, the partition function is given by

Z = Tr e−βĤ . (2.3)
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2.3 The Antiferromagnetic Phase

In contrast to the classical case the partition function does not factorize, which is often

expressed by saying statics and dynamics do not decouple [51], and the dynamics has to

be incorporated. This is done by formulating the partition function as a path integral.

Since the density operator ρ̂ ≡ e−βĤ looks like a time evolution operator in imaginary time

τ = − i t one identifies the inverse temperature β as an extra dimension, the imaginary

time. Zero temperature corresponds to a full time dimension, whereas for β → 0 the

imaginary time dimension vanishes and the quantum mechanical system maps to a classical

system where no quantum fluctuations occur.

In general time scaling differs from space scaling, so that one defines a dynamical critical

exponent z [50, 51, 52]:

τc ∝ ξz , (2.4)

where ξ is the correlation length in space and τc is a typical scale for the decay of the fluc-

tuations in time. According to the universality hypothesis the scaling behavior is affected

by the dimensionality. Therefore a d dimensional quantum system should correspond to

a d+ z dimensional classical system. However, for many systems it holds: z = 1.

2.3 The Antiferromagnetic Phase

In an antiferromagnetically coupled system the spins favor anti-alignment, so that there

is, in contrast to a ferromagnetically coupled system, no total magnetic moment in the

absence of an external magnetic field. Thus, the obvious realization of the ground state

seems to be that in which the spins are arranged alternately up and down. Clearly, for

some lattice structures such as the triangular lattice in two dimensions or the pyrochlor

lattice in three dimensions it is not possible to arrange all spins to be anti-aligned to

their nearest neighbors. Those systems are called geometrically frustrated and shall not be

discussed in this work. However, even for non-frustrated antiferromagnetic (AF) systems

it is not trivial to find the ground state. Whereas in the Ising model the simple anti-aligned

spin configuration | · · · ↑↓↑↓↑↓ · · · 〉, known as Néel state, is clearly an eigenstate of the

Hamiltonian, in the Heisenberg model described by the Hamiltonian of Eq. (1.4) such a

configuration is not an eigenstate and thus not the ground state. To see this one has to

consider the following term of the Heisenberg Hamiltonian:

Ŝi · Ŝj = Ŝz
i Ŝ

z
j + 1

2

(

Ŝ+
i
Ŝ−

j
+ Ŝ−

i
Ŝ+

j

)

. (2.5)

While the Ŝz
i Ŝ

z
j -term of the Heisenberg Hamiltonian conserves the z-component of the

spins, the Ŝ±
i Ŝ

∓
j -terms cause spin-flips. Therefore, when the Heisenberg Hamiltonian acts

on a simple anti-aligned spin configuration (Néel state) this state changes and thus cannot

be an eigenstate. Actually the determination of the ground state of the AF Heisenberg
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2 Quantum Phases and Phase Transitions

model is still an unsolved problem. Only for the one dimensional system with coupling

between nearest neighbors has the exact ground state been found by Bethe [53]. It is also

widely accepted that the one dimensional AF Heisenberg system does not exhibit magnetic

long range order and thus no phase transition between an AF ordered and paramagnetic

disordered phase can be observed.

Furthermore it was shown by Mermin and Wagner [54] that in an isotropic Heisenberg

system with short-range interactions in one and two dimensions and for finite temperatures

no ordered phase exists and thus no thermal phase transition between an ordered and

disordered phase is expected. However, in a two dimensional system at zero temperature

the ground state does show long-range order and at least a quantum phase transition can

be observed for the dimensionality d ≥ 2. To indicate the quantum phase transition an

order parameter has to be introduced. One may define the staggered magnetization

Ms =
1

Ld

〈

∑

i

eiQ·iŜz
i

〉

, (2.6)

which is finite in the antiferromagnetically ordered phase and zero in the disordered phase.

Here, Q = (π, . . . , π) is the AF wave vector and L the linear lattice size. Ŝz
i denotes the

z-component of the spin operator at site i. However, the definition of the order parameter

is not unique and it turns out that another quantity, called spin stiffness, which is easily

obtained within quantum Monte Carlo simulations is also appropriate to indicate the

quantum phase transition.

To intuitively understand the spin stiffness one can consider the free energy F given by

F = − 1

β
lnZ , (2.7)

where β is the inverse temperature and Z stands for the partition function. To probe

for long-ranged magnetic order one induces a continuous twist in spin space which, when

cumulated along the length L along (e. g.) the x-axis, amounts to a twist of angle φ around

a certain spin axis e. This means that the boundary condition reads Ŝi+Lex = R[e, φ]Ŝi

where R[e, φ] is a matrix describing an SO(3) rotation around the axis e by the angle

φ. In the disordered system the free energy should not be affected by the twist angle,

whereas in the magnetically ordered system the free energy takes a minimum for φ = 0.

One obtains

∂2F(φ)

∂φ2

∣

∣

∣

φ=0
= 0 for the disordered system and

∂2F(φ)

∂φ2

∣

∣

∣

φ=0
> 0 for the ordered system.

Thus, the second derivative of the free energy is a quantity which indicates the degree of

spin order. Following Eq. (2.7) this leads directly to the definition of the spin stiffness:

ρs = − 1

Ld−2

1

β

∂2

∂φ2
lnZ(φ)

∣

∣

∣

∣

φ=0

, (2.8)
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2.4 The Haldane Phase

where d is the dimensionality. In the presence of long-range order ρs takes a finite value

and in the disordered phase it vanishes. In subsection 3.4.4 the implementation of the spin

stiffness into the world line algorithm is explicitly shown.

2.4 The Haldane Phase

In this section attention is turned to one dimensional systems, especially the AF spin

chains. As already mentioned in the previous section Bethe [53] proposed a solution

for the ground state of the one dimensional AF Heisenberg system and determined its

energy. Further studies by Lieb, Schultz and Mattis [55] and by Cloizeaux and Pearson [56]

using the Bethe ansatz showed that the excitation spectrum of the spin-1/2 system is

gapless where the lowest excited states are known to be triplet states [57] (for a review

see Ref. [58]). In contrast, for the spin-1 chain it is widely accepted and extensively

shown by numerical analyses [26, 27, 28, 29] that the excitation spectrum exhibits a gap.

These results are summarized and generalized by Haldane [24] in his conjecture, which

states that the excitations of an isotropic AF Heisenberg chain with half-integer spins

are gapless, whereas for the integer spin chain there a gap exists. In the spirit of his

assumption the gapped phase in the integer spin Heisenberg chain is nowadays known as

the Haldane phase. In the following the discussion focuses on the Haldane phase of a

spin-1 chain, for which Affleck et al. [59, 60] suggested a solution for the ground state,

called valence-bond solid (VBS) state. More precisely, they presented the ground state of

the bilinear-biquadratic Heisenberg Hamiltonian

Ĥ =
∑

i

(

Ŝi · Ŝi+1 − β(Ŝi · Ŝi+1)2
)

(2.9)

for β = 1
3 . For β = 1 it is known from the Bethe ansatz that there is a unique ground state

with no gap. On this basis Affleck et al. anticipate in Ref. [59] that the case β = 1 marks a

critical point, below which the ungapped VBS phase – or equivalently the Haldane phase

– occurs. Thus, for the case β = 0, which corresponds to the common Heisenberg model,

one expects that the system is in the Haldane phase and the ground state is described

by a VBS state. The VBS state is constructed in the following way: (i) Every spin-1

is decomposed into two spin-1/2 degrees of freedom. (ii) Between adjacent spin-1/2’s of

different sites singlet bonds are arranged as shown in Fig. 2.3. (iii) Finally, the spin-1/2’s

on each site have to be symmetrized to restore the spin-1 chain. Thus, the gap in the one

dimensional AF spin-1 Heisenberg chain turns out to be the energy which is needed to

break a singlet bond.

As a consequence it follows that if one goes along the chain and neglects all sites with

magnetic quantum number m = 0 one finds a kind of Néel order with an alternating

z-component of the total spin on each site. As den Nijs and Rommelse demonstrate in
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2 Quantum Phases and Phase Transitions

surface

VBS

m =            0            +1           −1             0              0             +1             0            −1            0

Figure 2.3: Valence-bond solid (VBS) state: Every spin-1 is decomposed into two spin-1/2 degrees

of freedom. Pairs of adjacent spin-1/2 degrees of freedom form singlet bonds (blue lines). To restore

the characteristics of a spin-1 chain the spin pairs on each site (red boxes) have to be symmetrized.

The magnetic quantum number m denotes the z-component of the spin-1 on each site. The VBS

state corresponds to the disordered flat phase (green contour) which is known from statistical

mechanics of surface roughening transitions [62] and can be understood as a kind of hidden Néel

order.

Ref. [61] this hidden AF order corresponds to the disordered flat (DOF) phase which is

known from statistical mechanics of surface roughening transitions [62]. If one attributes

every site with m = +1 to an upward step in a one dimensional contour along the chain

and every site with m = −1 to a downward step, then the resulting structure is nearly

flat. There are no two or more upward steps after another. Every elevated plateau is

followed by a downward step [see Fig. 2.3]. Following this analogy den Nijs et al. defined

an order parameter for the Haldane phase, which is called string order parameter and in

the framework of the spin degrees of freedom reads

Os = lim
n→∞

〈

Ŝz
n0

exp

(

iπ

n0+n
∑

i=n0

Ŝz
i

)

Ŝz
n0+n

〉

. (2.10)

Os is finite in the Haldane phase. Ŝz
i is the z-component of the spin operator that measures

the magnetic quantum number m. One has to note that there is a particular state where

every site with m = +1 is followed by a site with m = −1. This true Néel state corresponds

to a battlement structure in the framework of surface roughening physics which is named

body-centered solid on solid (BCSOS) flat phase and which cannot be distinguished from

the hidden AF order by the order parameter given in Eq. (2.10). Nevertheless the BCSOS

flat phase differs essentially from the DOF phase. It has long-range order and exhibits no

gap. Although such a phase is not expected in the one dimensional AF Heisenberg chain,

other quasi one dimensional systems could exhibit a kind of Néel order. Therefore another

order parameter should be introduced to distinguished between the hidden AF order and

the Néel order [61]:

OH = lim
n→∞

〈

exp



iπ

n0+n
∑

j=n0

Ŝz
j





〉

. (2.11)
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2.4 The Haldane Phase

ground state Os OH gap analogon

Haldane phase VBS state 6= 0 = 0 yes DOF

Néel phase Néel state 6= 0 6= 0 no BCSOS flat

Table 2.1: Characteristics of the Néel phase and the Haldane phase and their analogon in the

physics of surface roughening transitions.

This string order parameter is finite in the BCSOS flat phase corresponding to the spin-1

Néel order and zero in the DOF phase which corresponds to the VBS phase with hidden

AF order. A summary of the characteristics of the two different phases and their analogon

in terms of surface roughening physics is given in Tab. 2.1.
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Quantum Monte Carlo 3
Monte Carlo (MC) simulations are relevant in many scientific, but also non-scientific fields,

where analytic approaches are not practicable. For example, it is used in mathematics to

solve high dimensional integrals. Furthermore, MC methods are applied in the financial

engineering and insurance industry for the estimate of risks, in meteorology for weather

forecasting or in chemistry for molecular modeling. Moreover, MC simulation is one of

the most and powerful numerical methods applied in strongly correlated electron systems.

Although the fields of applications still flourish, the origins of MC simulations are traced

back to the 18th century when the French scientist G.-L. Leclerc, Compte de Buffon

(1707-1788), estimated the value of π using his famous needles experiment [63]. In mod-

ern physics the MC methods were introduced by J. von Neumann and S. Ulam during the

Manhattan project in the 1940s. Neumann and Ulam solved integrals by means of random

numbers and coined the name Monte Carlo for such random experiments. Since then a lot

of progress, in particular in the development of improved sampling techniques, has been

made. Nowadays, by applying cluster algorithms the efficiency is dramatically enhanced

and with the use of supercomputers complex quantum many body systems can be simu-

lated. However, the development of new algorithms, which for instance avoid the so-called

minus sign problem [64] in quantum Monte Carlo methods, is still an ongoing challenge.

By the term quantum Monte Carlo (QMC) various MC methods are summarized which

are applied to quantum systems, for instance auxiliary field QMC [65, 66] or the recently

developed Gaussian QMC [67, 68]. In this work the path integral QMC method is used.

Here the d dimensional quantum system can be mapped to an d+ 1 dimensional classical

system and the calculation of the observables corresponds to that known from classical

MC methods in statistical mechanics.

In classical statistical mechanics the properties of a macroscopic many particle system

can be derived from the microscopic properties of each single particle. The macroscopic

observables are usually distributed around a mean value due to thermal fluctuations of

the microscopic properties. Thus, the expectation value of an observable can be computed

by averaging over the whole configuration space, in which every configuration x occurs
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3 Quantum Monte Carlo

with a certain weight determined by the Boltzmann factor e−βE(x), where β is the inverse

temperature and E(x) gives the total energy of configuration x. In statistical quantum

mechanics the phase space is given by the Hilbert space of the total system. Each state

of the Hilbert space occurs with a certain probability, summarized in the so-called density

matrix ρ.

Because the configuration space usually increases exponentially with increasing system

size, averaging over the whole configuration space very soon becomes impossible. The

quantum Monte Carlo method, as well as the classical Monte Carlo method, can therefore

be a tool to estimate the mean value of an observable without averaging over the whole

configuration space. In a series of random experiments only the most likely and important

configurations are considered (importance sampling).

In this chapter the path integral QMC method based on a world line description in discrete

time is introduced. For the updating the very efficient loop algorithm is applied.

3.1 Path Integral Formulation and World Lines

Static properties in thermal equilibrium can be deduced from the thermal density operator

ρ̂ = e−βĤ, where Ĥ is the Hamiltonian of the system. An observable can then be computed

by

〈Ô〉 = Z−1 Tr ρ Ô . (3.1)

Z stands for the partition function

Z = Tr ρ =

∫

∑

λ

〈λ|e−βĤ|λ〉 , (3.2)

where {|λ〉} is an arbitrary orthonormal basis of the Hilbert space. If one associates β with

some sort of imaginary time, then the thermal density operator looks like the propagation

operator in imaginary time. Hence, the partition function can be interpreted as a path

integral in imaginary time:

Z = lim
∆τ→0

∫





β/∆τ
∏

i=1

dλi



 〈λ1|e−∆τĤ|λN 〉 . . . 〈λ2|e−∆τĤ|λ1〉 . (3.3)

The imaginary time axis can be understood as an additional dimension. The variations

of the path along this extra dimension reflect the quantum fluctuations. The paths in

imaginary time are called world lines.

In the following the discussion is focused on the one dimensional Heisenberg model as a

simple example for the application of the path integral QMC method. The Hamiltonian

is given by

Ĥ = J
∑

i

Ŝi · Ŝi+1 . (3.4)

28



3.1 Path Integral Formulation and World Lines

τ = 0

τ = β
im

ag
in

ar
y 

tim
e

real space

(a) World line representation

real space

τ = 0

τ = β

im
ag

in
ar

y 
tim

e

(b) Six vertex representation

Figure 3.1: (a) World line configuration: The bold lines represent the time evolution of the

up-spins, the empty sites correspond to the down-spins. Periodic boundary conditions in space

and imaginary time are considered. (b) Mapping to the six vertex representation of a world line

configuration. According to Eq. (3.15) every plaquette in Fig. 3.1(a) corresponds to a vertex.

where the Ŝi’s are spin operators which satisfy commutation rules:
[

Ŝα
i , Ŝ

β
j

]

= i δijǫαβγ Ŝ
γ
i ,

where ǫαβγ is the total antisymmetric Levi-Civita tensor. Furthermore, periodic boundary

conditions are imposed: Ŝi+L = Ŝi. The basic concept of the world line algorithm is to

split the Hamiltonian into sums of independent two site problems:

Ĥ ≡ Ĥ1 + Ĥ2 =
∑

i

Ĥ(2i−1) +
∑

i

Ĥ(2i) , (3.5)

where each Ĥ(i) describes a two site interaction:

Ĥ(i) = JŜi · Ŝi+1 = J
(

Ŝz
i Ŝ

z
i+1 + 1

2

(

Ŝ+
i Ŝ

−
i+1 + Ŝ−

i Ŝ
+
i+1

))

. (3.6)

By using a Trotter decomposition [69] the path integral is divided into m small propa-

gations generated in two steps by Ĥ1 and Ĥ2. Thus, the partition function of Eq. (3.3)

reads

Z = lim
∆τ→0

∑

σσσ1,...,σσσ2m

〈σσσ1|e−∆τĤ2 |σσσ2m〉〈σσσ2m|e−∆τĤ1 |σσσ2m−1〉 . . . 〈σσσ2|e−∆τĤ1 |σσσ1〉 , (3.7)

where m∆τ = β. Each sum over σσστ runs over a complete basis of the tensor product

Hilbert space spanned by the states

|σσστ 〉 =

L
⊗

i=1

|σ(τ)〉i ≡ |σ1(τ) . . . σL(τ)〉 , (3.8)
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3 Quantum Monte Carlo

where |σ(τ)〉i ∈ { | ↑ 〉, | ↓ 〉 } is a single site state at site i. Because Ĥ1 and Ĥ2 do not

commute:
[

Ĥ1, Ĥ2

]

6= 0, in the case of finite time steps an error of order O(∆τ2) occurs.

Fig. 3.1(a) depicts a graphical representation of the path integral of Eq. (3.7) for the one

dimensional Heisenberg model. At τ = 0 the system starts with configuration σσσ1 and ends

up with configuration σσσ1 again at τ = β. During this time interval the system is allowed

to fluctuate. Every bold line in Fig. 3.1(a) represents the world line of a single up-spin

[39, 40].

The partition function Z now writes

Z =
∑

w

Ωw with Ωw =
m
∏

t=1

〈σσσ2t+1|e−∆τĤ2 |σσσ2t〉〈σσσ2t|e−∆τĤ1 |σσσ2t−1〉 , (3.9)

where the sum runs over all possible world line configurations. Ωw denotes the statistical

weight of each world line configuration. Note, periodic boundary conditions are used:

σσσ2m+1 = σσσ1. The expectation value of an observables can be computed via

〈Ô〉 =

∑

w ΩwOw
∑

w Ωw
, (3.10)

where Ow denotes the observable for world line configuration w. Because the Hamilto-

nians Ĥi with i = 1, 2 consist of independent two site interactions each matrix element

〈σσστ+1|e−∆τĤi |σσστ 〉 of Eq. (3.9) can be decomposed into products:

〈σσστ+1|e−∆τĤ1 |σσστ 〉 =

L/2
∏

i=1

〈σ2i−1(τ + 1)σ2i(τ + 1)|e−∆τĤ(2i−1) |σ2i−1(τ)σ2i(τ)〉 ,

〈σσστ+1|e−∆τĤ2 |σσστ 〉 =

L/2
∏

i=1

〈σ2i(τ + 1)σ2i+1(τ + 1)|e−∆τĤ(2i) |σ2i(τ)σ2i+1(τ)〉 . (3.11)

with σL+1 = σ1 and |σi(τ)σj(τ)〉 ≡ |σ(τ)〉i ⊗ |σ(τ)〉j . Every matrix element corresponds

to the weight of a single plaquette shown in Fig. 3.1. Each plaquette describes a two

site interaction between neighboring sites. There are six possible spin configurations on

a plaquette which respect spin conservation. The matrix elements for each possible spin

configuration can be easily computed and are given by

W ( ) = 〈↑↓ |e−∆τĤ(i) | ↑↓〉 = e∆τJ/2 cosh(∆τJ/2)

W ( ) = 〈↓↑ |e−∆τĤ(i) | ↓↑〉 = e∆τJ/2 cosh(∆τJ/2)

}

≡W (±1)

W ( ) = 〈↑↓ |e−∆τĤ(i) | ↓↑〉 = −e∆τJ/2 sinh(∆τJ/2)

W ( ) = 〈↓↑ |e−∆τĤ(i) | ↑↓〉 = −e∆τJ/2 sinh(∆τJ/2)

}

≡W (±2)

W ( ) = 〈↑↑ |e−∆τĤ(i) | ↓↓〉 = e−∆τJ/4

W ( ) = 〈↓↓ |e−∆τĤ(i) | ↑↑〉 = e−∆τJ/4

}

≡W (±3) .

(3.12)
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3.2 Monte Carlo Sampling

FM (J < 0) AF (J > 0)

W (±1) e−∆τ |J |/4 cosh(∆τ |J |/2) e∆τJ/4 cosh(∆τJ/2)

W (±2) e−∆τ |J |/4 sinh(∆τ |J |/2) e∆τJ/4 sinh(∆τJ/2)

W (±2) e∆τ |J |/4 e−∆τJ/4

Table 3.1: Weights W (s) for different plaquettes s for the ferromagnetic (FM) and antiferromag-

netic (AF) case in a non-frustrated spin system. The straight forward calculation leads to negative

weights in the AF system for s = ±2 [see Eq. (3.12)], thus a canonical transformation is applied

to preserve exclusively positive weights.

One can identify each matrix element with a weight W (s) of a spin configuration s on

a plaquette. One should note that the weights of the spin-flip processes (s = ±2) come

with a minus sign for J > 0. Since in non-frustrated lattices each world line configuration

has an even number of spin-flip processes, the overall weight for a world line configuration

remains positive. In other words for J > 0 one can apply a canonical transformation to

yield exclusively positive weights on a plaquette. In Tab. 3.1 the weights W (s) of the

different spin configurations s on a plaquette for the antiferromagnetic case (J > 0) and

ferromagnetic (J < 0) case in a non-frustrated spin system are listed.

3.2 Monte Carlo Sampling

The objective is to calculate the expectation values of physical observables in a quantum

system, e. g. described by the one dimensional Heisenberg model defined in Eq. (3.4). Since

the configuration space grows exponentially with system size, averaging over the whole

configuration space becomes impossible for larger system sizes. In this case a Monte Carlo

simulation provides an efficient tool to estimate the expectation value without averaging

over the whole configuration space. In the previous section it is shown how to calculate the

statistical weight Ωw for each world line configuration w in the one dimensional Heisen-

berg model. Each world line corresponds to a trajectory in the configuration space. The

Monte Carlo simulation produces a random walk through the configuration space selecting

configurations depending on their statistical weight. Since the world line representation

maps the d dimensional quantum system onto a d+1 dimensional classical system classical

Monte Carlo still can be used, but with higher dimensionality because quantum fluctua-

tions have to be included. Such a random walk through the configuration space is called

a Markov process. For the Markov process two conditions have to be satisfied:
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3 Quantum Monte Carlo

(i) Stationarity

The probability distribution W (s) of a configuration s does not change during the

Markov process. If P [s→ s′] is the probability of going from configuration s to

configuration s′, then one has to demand

∑

s

P
[

s→ s′
]

W (s) = W (s′) . (3.13)

There exists a tougher condition, where stationarity is automatically satisfied. It is

called detailed balance and it reads

P
[

s→ s′
]

W (s) = P
[

s′ → s
]

W (s′) . (3.14)

(ii) Ergodicity

Within a finite number of steps every configuration s can be reached from an arbi-

trary configuration with finite probability.

Each interaction on a plaquette is described by a local Hamilton operator, thus detailed

balance and ergodicity can be satisfied locally on individual plaquettes. This allows to

create global updates with local stochastic decisions [39].

The task is now to find an updating scheme which provides an adequate path through the

configuration space. For this the world line representation is mapped onto a six vertex

model. Each plaquette corresponds to a vertex:

→ → →
→ → →

(3.15)

A world line configuration in terms of vertices is shown in Fig. 3.1(b). A new configuration

can be produced as follows: One starts at a randomly chosen vertex and follows one of

the outgoing arrows to the next vertex. At the next vertex there are two possibilities to

continue the path. One chooses, in an appropriate way to be discussed later, one of these

possibilities and pursues the path until one arrives at the initial vertex again. Such closed

paths are called loops. A new configuration is then given by flipping all the arrows along

the loop.

The different possibilities for a move on a plaquette are described by graphs: graph 1

stands for a vertical move ( ), graph 2 for a horizontal move ( ) and graph 3 describes

a diagonal move ( ). In Tab. 3.2 all possible graphs for a given vertex are listed. By

introducing the graphs the space of vertices is expanded to a space of vertices and graphs.

If W (s) is the statistical weight of a vertex, the following identity for the weight W (g|s)
of the graph g by a given vertex s holds:

∑

g

W (g|s) = W (s) . (3.16)
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3.2 Monte Carlo Sampling

possible graphs

(s = ±1)
/

: ∨

(s = ±2)
/

: ∨

(s = ±3)
/

: ∨

Table 3.2: Possible graphs g for a given vertex

s. If a graph is related to a vertex, its weight

V (g) is independent of the associated vertex. If

a graph is not related to a vertex the weight is

V (g) = 0 [see Eq. (3.17)].

In order to achieve a constant acceptance rate one proposes the following rule for choosing

a graph which fulfils ergodicity:

W (g|s) = V (g) for W (g|s) 6= 0

W (g|s) = 0 for W (g|s) = 0 .
(3.17)

This implies, that the weights of graphs are independent of a given vertex s for all W (g|s) 6=
0. The probability of flipping the spins on a plaquette according to the graph g is then,

for example, given by the Metropolis algorithm:

P
[

(g, s) → (g, s′)
]

= min

[

1,
W (g|s′)
W (g|s)

]

= 1 . (3.18)

Detailed balance in the space of vertices and graphs is trivially satisfied:

W (g|s)P
[

(g, s) → (g, s′)
]

= W (g|s′)P
[

(g, s′) → (g, s)
]

. (3.19)

Now the space of vertices and graphs is again reduced to the space of vertices. The actual

transition probability P [s→ s′] from one vertex to the other is given by

P
[

s→ s′
]

=
∑

g

W (g|s)
W (s)

P
[

(g, s) → (g, s′)
]

. (3.20)

By combining Eq. (3.19) and Eq. (3.20) detailed balance in the space of vertices can also

be seen very easily:

W (s)P
[

s→ s′
]

= W (s′)P
[

s′ → s
]

. (3.21)

Thus, the rule for choosing a graph proposed in Eq. (3.17) fulfils both ergodicity and

stationarity. According to Eq. (3.16) and Eq. (3.17) the weights of graphs V (g) are deter-

mined by the following equations:

W (±1) = V ( ) + V ( ) (3.22)

W (±2) = V ( ) + V ( ) (3.23)

W (±3) = V ( ) + V ( ) . (3.24)

The weights of the vertices W (s) are taken from Tab. 3.1. The resulting probabilities

P (g) ≡ V (g)/
∑

g V (g) of the graphs are summarized in Tab. 3.3. Now, if the probability

of a graph for a given vertex is known, one can allot a graph to a vertex by stochastic

decisions. The so chosen graph decides the path of the loop, where the spins have to be

flipped.
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AF (J > 0) FM (J < 0)

P ( ) 2/ (1 + exp(∆τJ)) e−∆τ |J |/2 cosh(∆τ |J |/2)

P ( ) tanh(∆τJ/2) 0

P ( ) 0 e−∆τ |J |/2 sinh(∆τ |J |/2)

Table 3.3: The probabilities for choosing an allowed graph for antiferromagnetic (AF) and ferro-

magnetic (FM) couplings. The allowed graphs for a given vertex are listed in Tab. 3.2.

3.3 Implementation of Single Hole Dynamics

In the following it is shown how to implement the dynamics of a single doped hole within

the magnetic environment of the Heisenberg model into the world line algorithm. To

incorporate the dynamics and to allow hopping the Heisenberg model has to be extended.

This can be done within the framework of the t-J model [11]:

ĤtJ = P̂S



−t
∑

〈ij〉

∑

σ

(

ĉ†i,σĉj,σ + H. c.
)

+ J
∑

〈ij〉

(

Ŝi · Ŝj − 1
4 n̂in̂j

)



 P̂S . (3.25)

The sums run over all nearest neighbors. σ stands for the spin degree of freedom. ĉ†i,σ

creates a fermionic particle with spin σ at site i:
{

ĉi,σ, ĉ
†
j,σ′

}

= δijδσσ′ . n̂i =
∑

σ ĉ
†
i,σ ĉi,σ is

the occupation number operator. The operator P̂ =
∏

i

(

1̂− n̂i,↑n̂i,↓
)

with n̂i,σ = ĉ†i,σ ĉi,σ
projects onto the subspace S with only unoccupied or single occupied states:

S =
{

|ςςς〉 =
⊗

i

|ς〉i
∣

∣

∣ 〈ςςς|
∑

σ

n̂i,σ|ςςς〉 ≤ 1 ∀i
}

. (3.26)

Here, |ς〉i ∈ { | 0 〉, | ↑ 〉, | ↓ 〉, | ↑↓ 〉 } is a single site state. In the case of half filling the

hopping term in Eq. (3.25) vanishes and one can easily see that the t-J model maps to

the Heisenberg model of Eq. (3.4) up to constant.

To implement the single hole dynamics into the world line formulation a canonical transfor-

mation, introduced by A. Angelucci [70], has to be applied. This transformation separates

the spin degree of freedom and the occupation number:

| ↑ 〉 → |1,⇑〉
| ↓ 〉 → |1,⇓〉
| 0 〉 → |0,⇑〉
| ↑↓ 〉 → |0,⇓〉

ĉi,↑ → σ̂z,+
i f̂ †i − σ̂z,−

i f̂i

ĉ†i,↑ → σ̂z,+
i f̂i − σ̂z,−

i f̂ †i

ĉi,↓ →
(

f̂i + f̂ †i

)

σ̂+
i

ĉ†i,↓ → σ̂−i

(

f̂ †i + f̂i

)

.

(3.27)

f̂ †i and f̂i are spinless fermion operators which act on the charge degree of freedom and

create (annihilate) a hole at site i: f̂ †i |1, σ〉 = |0, σ〉, σ̂±i are ladder operators for the spin
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degree of freedom and σ̂z,±
i = 1

2

(

1̂± σ̂z
i

)

are projection operators acting on the spin degree

of freedom. Within this basis the Hamiltonian of the t-J model writes

ĤtJ = P̂S



t
∑

〈ij〉

(

f̂ †j f̂iP̂ij + H. c.
)

+
J

2

∑

〈ij〉

(

P̂ij − 1̂

)

∆̂ij



 P̂S (3.28)

with P̂ij = 1
2

(

σ̂σσi · σ̂σσj + 1̂
)

where σ̂σσ = (σ̂x, σ̂y, σ̂z)T ≡ 2Ŝ is related to the spin operator Ŝ

and ∆̂ij = 1̂− f̂ †i f̂i− f̂ †j f̂j. P̂S =
∏

i

(

1̂− f̂ †i f̂iσ̂
+
i σ̂

−
i

)

is a projection operator in Angelucci

representation which projects onto the subspace S. This representation has two important

advantages which facilitate the numerical simulations:

(i) Because the Hamiltonian commutes with the projection operator,
[

ĤtJ , P̂S

]

= 0,

the bare Hamiltonian (ĤtJ without projections) generates only states of subspace S

provided that the initial state is in the relevant subspace.

(ii) The Hamiltonian is bilinear in the spinless fermion operators.

The dynamics of the doped hole are determined by the Green’s function. Without loss of

generality in the following the determination of the Green’s function is restricted to the

up-spin sector. Following Refs. [71, 72] one defines

G(j − i, τ) = 〈T ĉ†j,↑(τ)ĉi,↑(0)〉 . (3.29)

Here, T induces time ordering. In the following τ ≥ 0 is assumed. The Green’s function

can also be reformulated in the basis of Eq. (3.27). Within the Angelucci representation

it writes

G(j − i, τ) =
1

Z
Tr
[

e−(β−τ)ĤtJ σ̂z,+
j f̂je

−τĤtJ σ̂z,+
i f̂ †i

]

, (3.30)

where Z = Tr e−βĤtJ is the partition function. Here, the time evolution of the operators

is explicitly introduced: Ô(τ) = eτĤtJ Ôe−τĤtJ . To derive a world line formulation of the

Green’s function a complete set of basis states with no hole are introduced by

1̂ =
∑

σσσ

|v,σσσ〉〈v,σσσ| with |v,σσσ〉 =

L
⊗

i=1

|1, σ〉i , (3.31)

where |1, σ〉i denotes a single site state in Angelucci representation. Analogically, one finds

for the Hilbert space with a single doped hole

1̂ =
∑

h,σσσ

|h,σσσ〉〈h,σσσ| with |h,σσσ〉 = σ̂z,+
h f̂ †h|v,σσσ〉 . (3.32)

Next, the Hamiltonian ĤtJ is split into two sets of independent two site problems by a

Trotter decomposition similar to the splitting of the Heisenberg Hamiltonian in section 3.1:

ĤtJ = Ĥ1 + Ĥ2. For the Green’s function in Eq. (3.30) one obtains

G =
1

Z

∑

σσσ1

〈v,σσσ1|
(

e−∆τĤ2e−∆τĤ1

)m−n
σ̂z,+

j f̂j

(

e−∆τĤ2e−∆τĤ1

)n
σ̂z,+

i f̂ †i |v,σσσ1〉(3.33)
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with n∆τ = τ and m∆τ = β. The systematic error of order O(∆τ2) due to the discretiza-

tion of the imaginary time is neglected. By inserting the unit operators of Eq. (3.31) and

Eq. (3.32) at every time step one arrives at the Green’s function in the following form:

G(i − j, τ) =

∑

w ΩwGw(i− j, τ)
∑

w Ωw
, (3.34)

where the sums run over all possible world line configurations with no hole. The weight

Ωw of a world line configuration w is given by

Ωw =

n
∏

t=1

〈v,σσσ2t+1|e−∆τĤ2 |v,σσσ2t〉〈v,σσσ2t|e−∆τĤ1 |v,σσσ2t−1〉 . (3.35)

Note, that within the basis of configurations with no hole the t-J Hamiltonian maps to the

Heisenberg Hamiltonian, and the weights correspond exactly to the weights of the world

line configurations in the Heisenberg model. The Green’s function for a given world line

configuration is of the form

Gw(i− j, τ) = (3.36)

=
∑

h2,...,h2n

〈v,σσσ2n+1|σ̂z,+
j f̂je

−∆τĤ2 |h2n,σσσ2n〉 × . . .× 〈h2,σσσ2|e−∆τĤ1 σ̂z,+
i f̂ †i |v,σσσ1〉

〈v,σσσ2n+1|e−∆τĤ2 |v,σσσ2n〉 × . . .× 〈v,σσσ2|e−∆τĤ1 |v,σσσ1〉
.

This expression for the Green’s function corresponds to a multiple matrix multiplication:

Gw(i− j, τ) = [A1(σσσ2n+1,σσσ2n) × A2(σσσ2n,σσσ2n−1) × . . .× A2(σσσ2,σσσ1)]ij , (3.37)

where the matrix element

[Aα(σσστ+1,σσστ )]ij =
〈v,σσστ+1|σ̂z,+

j f̂je
−∆τĤα σ̂z,+

i f̂ †i |v,σσστ 〉
〈v,σσστ+1|e−∆τĤα |v,σσστ 〉

(3.38)

describes the weight of the hole to propagate from site i to site j within the time step ∆τ .

It can be easily shown that the evaluation of the matrix elements reduces to the subspace

of a two site problem, so that it only depends on the spin configuration (vertex s) of the

plaquette, on which the hole propagation takes place:

Alr(s) =
l〈v, στ+1| ⊗ r〈v, στ+1|σ̂z,+

j f̂je
−∆τĤ(lr)

σ̂z,+
i f̂ †i |v, στ 〉l ⊗ |v, στ 〉r

l〈v, στ+1| ⊗ r〈v, στ+1|e−∆τĤ(lr) |v, στ 〉l ⊗ |v, στ 〉r
. (3.39)

Here, Ĥ(lr) denotes the Hamiltonian of the two site interaction between site l and site r

where the hole is supposed to propagate: i, j ∈ {l, r}. There are four possible processes

for a given vertex s. The matrix elements Alr(s) for these processes are listed in Tab. 3.4.

3.4 Implementation of Observables

In this section some observables and their implementation into the world line algorithm

are introduced.

36



3.4 Implementation of Observables

s l → l l → r r → l r → r

cosh(−∆τt)

e∆τJ/2 cosh(∆τJ/2)
0 0 0

0 0 0 cosh(−∆τt)

e∆τJ/2 cosh(∆τJ/2)

0 0 sinh(−∆τt)

−e∆τJ/2 sinh(∆τJ/2)
0

0 sinh(−∆τt)

−e∆τJ/2 sinh(∆τJ/2)
0 0

cosh(−∆τt) sinh(−∆τt) sinh(−∆τt) cosh(−∆τt)

0 0 0 0

Table 3.4: Calculated matrix elements defined in Eq. (3.39), which represent the weight of the

hole to propagate at a given plaquette, depending on the spin configuration or the corresponding

vertex s. The plaquette is bordered by a left (l) and right (r) site. In this table the four possible

moves within a time step ∆τ are listed.

3.4.1 Energy

The total energy E of a system is given by the expectation value of the Hamilton operator,

which for instance is given by Eq. (3.4). Using the Trotter decomposition (β = m∆τ) and

neglecting the quadratic error in ∆τ one writes

〈Ĥ〉 =
1

Z
Tr
[(

e−∆τĤ2e−∆τĤ1

)m (

Ĥ1 + Ĥ2

)]

, (3.40)

where a splitting of the Hamiltonian analog to Eq. (3.5) is done. If one inserts the unity

operator at each time steps, one obtains

〈Ĥ〉 =
1

Z

∑

σσσ1,...,σσσ2m

[

m
∏

t=1

〈σσσ2t+1|e−∆τĤ2 |σσσ2t〉〈σσσ2t|e−∆τĤ1 |σσσ2t−1〉
]

×

×
[

〈σσσ3|e−∆τĤ2Ĥ2|σσσ2〉
〈σσσ3|e−∆τĤ2 |σσσ2〉

+
〈σσσ2|e−∆τĤ1Ĥ1|σσσ1〉
〈σσσ2|e−∆τĤ1 |σσσ1〉

]

, (3.41)

where the periodic boundary condition σσσ2m+1 = σσσ1 has to be considered. This formula

takes the form

〈Ĥ〉 =

∑

w ΩωEw
∑

w Ωw
, (3.42)

which is convenient for the Monte Carlo simulation. The weight Ωw corresponds to the

weight of a world line configuration given in Eq. (3.9). The energy Ew for a given world

line configuration writes

Ew = − ∂

∂∆τ

[

ln〈σσσ3|e−∆τĤ2 |σσσ2〉 + ln〈σσσ2|e−∆τĤ1 |σσσ1〉
]

. (3.43)
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3 Quantum Monte Carlo

ε(s)

(s = ±1)
/

: −J
4

(

1 + 2 tanh
(

∆τJ
2

))

(s = ±2)
/

: −J
4

(

1 + 2 coth
(

∆τJ
2

))

(s = ±3)
/

: J/4

Table 3.5: Energy ε(s) as defined in

Eq. (3.44) for two site interactions on a

plaquette. The energy depends on the

spin configuration or equivalently the

vertex s of the plaquette.

Thus, the energy is nothing but the logarithmic derivative of the weight of a single time

slice with respect to ∆τ . Since the trace of Eq. (3.40) is invariant under cyclic permutation,

the choice of the time slice is arbitrary. Therefore it is reasonable to average over all time

slices to reduce fluctuations. According to Eq. (3.11) the weight of a time slice can be

split into a product of weights of plaquettes. Thus, for the energy it holds

Ew = −
L
∑

i=1

∂

∂∆τ
〈σi(τ + 1)σi+1(τ + 1)|e−∆τĤ(i) |σi(τ)σi+1(τ)〉 =

L
∑

i=1

εi(s) (3.44)

with periodic boundary condition L+ i = i. It is obvious that the energy splits into a sum

of energy fractions where each fraction stands for a two site interaction energy depending

on the vertex s that corresponds to the plaquette between two neighboring sites. For the

Heisenberg Hamiltonian the different energies for a plaquette depending on the vertex are

listed in Tab. 3.5.

3.4.2 Spin Correlation Function

In the case of an SU(2) symmetric model, for instance the Heisenberg model of Eq. (3.4),

there is no difference between the longitudinal and the transversal correlation function.

Since the world line approach is formulated in a basis of the z-components of the spins a

natural definition of the spin correlation function is

Sij(τ) = 〈Ŝz
i (τ)Ŝz

j (0)〉 , (3.45)

where Ŝz
i locally conserves the z-component of the spin: Ŝz

i |σσστ 〉 = σi(τ)|σσστ 〉 with |σσστ 〉 as

defined in Eq. (3.8). The spin correlation function is then given by

Sij(τ) =

∑

w ΩwSw(i− j, τ)
∑

w Ωw
with Sw(i− j, τ) = σi(τ)σj(0) , (3.46)

where the sums run over all possible world line configurations and the weight Ωw is given

by Eq. (3.9). σi(τ) = ±1
2 denotes the z-component of the spin at site i and imaginary

time τ .
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3.4 Implementation of Observables

3.4.3 String Order Parameters

The string order parameters Os and OH are non-local order parameters which are used to

characterize phases in one dimensional systems. An illustration and the definitions of the

string order parameters are given in section 2.4. Since the definitions of the string order

parameters only contain Ŝz-operators they can be computed in the same easy way as it is

done for the spin correlation function. The expectation value is given by

〈Ôs,H〉 =

∑

w ΩwOw
∑

w Ωw
, (3.47)

where the sums run over all possible world line configurations and the weight of each world

line configuration is given by Eq. (3.9). The observables of each world line configuration

are given by

〈Ôs〉 : Ow = σn0





n0+L/2
∏

i=n0

exp (iπσi)



σn0+L/2 (3.48)

〈ÔH〉 : Ow =

n0+L/2
∏

i=n0

exp (iπσi) (3.49)

where σi = ±1
2 denotes the z-component of the spin at site i. L stands for the lattice size

and n0 can be an arbitrary site. Since there is no preference for the time slice where the

measurement is done, averaging over all time slices is reasonable to reduce fluctuations.

3.4.4 Spin Stiffness

The spin stiffness is a quantity which indicates the degree of spin order in a system. In

section 2.3 a motivation of its definition is given:

ρs = − 1

Ld−2

1

β

∂2

∂φ2
lnZ(φ)

∣

∣

∣

∣

φ=0

, (3.50)

where L is the linear system size and d is the dimensionality. β stands for the inverse

temperature. The partition function Z(φ) depends on a twist angle φ [see section 2.3].

According to Eq. (3.9) the partition function is given by

Z(φ) =
∑

w

[

∏

p

W (sp, φ)

]

with W (sp, φ) = 〈σσστ+1|e−∆τĤp(φ)|σσστ 〉 , (3.51)

Here, W (sp, φ) denotes the weight of a single plaquette p. Thus, the product over p runs

over all plaquettes of a world line configuration. Each plaquette is related to a vertex sp

depending on the spin configuration on the plaquette. The interaction on a plaquette is

determined by the two site Hamiltonian Ĥp(φ) which depends on the twist angle φ. By
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3 Quantum Monte Carlo

real space

τ = 0

τ = β
im

ag
in

ar
y 

tim
e

(a) No winding

real space

τ = 0

τ = β

im
ag

in
ar

y 
tim

e

(b) With winding

Figure 3.2: (a) If the number of right and

left going paths is equal, the world lines do

not wind. (b) For an unequal number of

left and right going paths winding occurs.

taking the derivatives in the definition (3.50) and regarding Eq. (3.51) one ends up with

the following form:

ρ =

∑

w Ωwρw
∑

w Ωw
, (3.52)

where Ωw =
∏

pW (sp, φ) denotes the weight of a world line configuration w. The spin

stiffness of a certain world line configuration is determined by

ρw = − 1

Ld−2

1

β

(

∑

p

∂
∂φW (sp, φ)

W (sp, φ)

)2
∣

∣

∣

∣

∣

∣

φ=0

. (3.53)

For small time steps, as required in the world line approach, the exponential function in

Eq. (3.51) can be expanded and the weights Wp(s, φ) can be approximated by

W (sp, φ) ≃ l〈στ+1| ⊗ r〈στ+1|
(

1̂− ∆τĤp(φ)
)

|στ 〉l ⊗ |στ 〉r , (3.54)

where l and r denote the left and right hand sites of a plaquette p. Assuming a one

dimensional Heisenberg system which is twisted along the ez-spin-axis, the spin operators

are transformed by Ŝ → Ŝ′ = R [ez, φ] Ŝ where R is a SO(3) rotation matrix, and the

twisted Hamiltonian of a two site interaction is given by

Ĥp(φ) = J

(

Ŝz
l Ŝ

z
r +

1

2

(

eiφ/LŜ+
l Ŝ

−
r + e− iφ/LŜ−

l Ŝ
+
r

)

)

, (3.55)

where Ŝ±
i = Ŝx

i ±Ŝ
y
i are spin-flip operators. The spin stiffness of a world line configuration

given in Eq. (3.53) reduces to

ρw =
1

L

1

β

(

∑

p

δsp,±2 sign (sp)
)2
. (3.56)

Here, the sum over all plaquettes counts the number of vertices with s = ±2, which

correspond to spin-flip processes. Since the counting also takes the sign of the vertex into

consideration two different spin-flip processes cancel each other. If the spin stiffness takes

a finite value, one kind of spin-flip process dominates. In the world line representation

this corresponds to an imbalance between right and left going paths leading to world

line winding [see Fig. 3.2]. Thus, the winding number W ≡ ∑p δsp,±2 sign(sp) is directly

related to the spin stiffness.
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Exact Diagonalization 4
The goal of many theoretical analyses is to solve a given model exactly. Unfortunately,

this can only be done for just a small amount of simple models and in a few special

cases. The exact diagonalization (ED) technique which is discussed in this chapter is a

method which does solve the considered problem exactly, but has the great disadvantage

that it is limited to very small system sizes. If the interest is in the properties of the

thermodynamic limit this method cannot necessarily predict reliable results. However,

the ED technique can be used for an extrapolation to the thermodynamic limit and thus

it stands as a complementary method beside other numerical methods like quantum Monte

Carlo simulation.

The principle of the ED technique is rather simple: One represents the Hamiltonian in

an adequate basis and solves the problem by diagonalization of the matrix. The difficulty

of this method is obvious. If one considers just a pure spin model with two possible

alignments of the spin on each lattice site the Hilbert space in which the model is defined

grows tremendously as 2N if N denotes the lattice size. Therefore diagonalization of the

corresponding Hamilton matrix very soon becomes impossible.

The Lanczos method extends the ED technique to larger system sizes. As described in

this chapter, here the Hilbert space is reduced to a smaller subspace in which the ground

state and the ground state energy can be determined more easily. Furthermore, within

the Lanczos method dynamical properties can also be obtained as shown in section 4.3

4.1 Basic Mathematical Principles

Suppose H is a N×N matrix which cannot be diagonalized due to the large value of N

and thus its eigenvectors and eigenvalues cannot be determined. The space H in which

H is defined obviously has the dimension N and is spanned by the vectors {φφφi} with

i = 1, . . . , N . One chooses a subspace G ⊂ H with dimension M < N which is spanned

by a set of vectors {γγγi}. By reasons which become apparent in the following one defines
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4 Exact Diagonalization

a N×M matrix G which is composed by the vectors {γγγi}:

[G]ji = [γγγi]j . (4.1)

Furthermore, another matrix HG is introduced:

HG ≡ G†HG . (4.2)

with G†G = 1. As apparent, HG has to be a M×M matrix and, if M ≪ N , its eigenvalue

equation can be solved much easier than for the matrix H:

HGψψψi = ǫiψψψi . (4.3)

Here, ψψψi is an eigenvector of HG and ǫi is the corresponding eigenvalue. By using Eq. (4.2)

it follows

H (Gψψψi) = ǫi (Gψψψi) . (4.4)

Obviously, ǫi is also an eigenvalue of the initial matrix H. Since the number of eigenvalues

of H is larger than the number of eigenvalues of HG not every eigenvalue of H can be

obtained via the eigenvalue equation of HG. Which eigenvalues one obtains depends on

the choice of the subspace G. Furthermore, every eigenvector ϕϕϕi of H which belongs to

an eigenvalue determined by Eq. (4.3) can be explicitly represented within the basis {γγγi}.

Let ψ
(i)
j be the i-th component of the eigenvector ψψψj . Then, according to Eq. (4.4) and

Eq. (4.1) the eigenvector ϕϕϕj is given by

ϕϕϕj = Gψψψj =
∑

i

ψ
(i)
j γγγi . (4.5)

To determine the lowest eigenvalue ǫ0 the corresponding eigenvector ϕϕϕ0 has to be within

the subspace G. In the following it is shown how to construct a subspace K, called Krylov

space, which contains the eigenvector ϕϕϕ0.

The idea is to generate successively elements out of H by applying H to an arbitrary vector

φφφ1 ∈ H with 〈ϕϕϕ0|φφφ1〉 6= 0. The Krylov space is then given by

K = linspan
{

φφφ1 , Hφφφ1 , H
2φφφ1 , . . . , H

M−1φφφ1

}

. (4.6)

For the last element one obtains

HM−1φφφ1 = HM−1
N−1
∑

i=0

ciϕϕϕi = c0ǫ
M−1
0

(

ϕϕϕ0 +

N−1
∑

i=1

ci
c0

(

ǫi
ǫ0

)M−1
ϕϕϕi

)

≃ c0ǫ
M−1
0 ϕϕϕ0 for M ≫ 1 . (4.7)

ci denotes expansion coefficients. Provided |ǫ0| > |ǫi| for all i > 0 the vector HM−1φφφ1

converges to the eigenvector ϕϕϕ0 corresponding to the lowest eigenvalue ǫ0. This implies

that
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4.2 Lanczos Method

(i) K is (approximately) an invariant subspace of H and

(ii) ϕϕϕ0 lies within the subspace K.

The Lanczos method provides an orthogonalization procedure of the vectors given in

Eq. (4.6). The new basis spans an (approximately) invariant subspace which contains

the eigenvector ϕϕϕ0 of the lowest eigenvalue ǫ0 of the initial matrix H. Furthermore, the

auxiliary matrix HG is tridiagonal within this new basis as shown in the next section 4.2

and thus can be solved very easily.

4.2 Lanczos Method

The problem under consideration is described by the Hamilton operator Ĥ which is repre-

sented by the matrix H. The basic idea of the Lanczos method is to construct a subspace

H of the actual Hilbert space, in which the Hamiltonian has a tridiagonal representation

Hn and can be solved more easily. If one uses the Krylov space as introduced in the

previous section 4.1 for the subspace, namely

H = linspan
{

|φ1〉 , Ĥ|φ1〉 , Ĥ2|φ1〉 , . . . , Ĥn|φ1〉
}

, (4.8)

the ground state is within this subspace and the ground state energy can be determined

by the Hamiltonian in tridiagonal representation. The basis states of the subspace are

constructed in the following way: First one takes a randomly chosen state to be the initial

state |φ1〉, which has only to fulfill the condition 〈ϕ0|φ1〉 6= 0, where |ϕ0〉 is the exact

ground state of the problem. Then the next basis states are obtained recursively by

|φn+1〉 = Ĥ|φn〉 − an|φn〉 − b2n|φn−1〉 , (4.9)

where |φ0〉 ≡ 0. The coefficients an and b2n are determined by

an =
〈φn|Ĥ|φn〉
〈φn|φn〉

and b2n =
〈φn|φn〉

〈φn−1|φn−1〉
(4.10)

with b1 ≡ 0. The orthogonality of this set of basis states can be shown very easily by

induction. Within this basis {|φn〉} the Hamiltonian is written in a tridiagonal form:

Hn =





























a1 b2 0 0 · · · 0

b2 a2 b3 0 · · · 0

0 b3 a3 b4 · · · 0

0 0 b4 a4 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · an





























, (4.11)
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4 Exact Diagonalization

where n denotes the number of iterations done in Eq. (4.9). Usually, one starts with a

small set of basis states and computes the eigenvalues by diagonalization of Hn. With

increasing number of iterations n the subspace H grows and the approximation of the

ground state [see Eq. (4.7)] and thus the ground state energy becomes better. Typically

for n ≈ 100 the ground state energy is sufficiently converged [see appendix C].

Although Hn with n ≈ 100 can be diagonalized very easily by computer based standard

routines a bottle neck of this method is given by the limitation in memory capacity. To

construct the matrix Hn one has to store at least three basis states within one iteration

step [see Eq. (4.9)]. The dimension of each basis state corresponds to the dimension of

the initial Hilbert space in which the problem is defined and thus grows exponentially

with lattice size. If some prior information about the symmetries of the model is known,

the initial Hilbert space can be reduced. For example, within a pure spin system the

z-component Ŝz
tot of the total spin is conserved:

[

Ĥ, Ŝz
tot

]

= 0. Since the Hamiltonian Ĥ
commutes with Ŝz

tot the Hamilton matrix H can be written in a block diagonal form where

each block corresponds to a different magnetic quantum number. Therefore, every block

in H can be solved separately. Of course, analog simplifications can be applied for other

conserved quantities, such as lattice symmetries.

4.3 Dynamical Properties

The Lanczos method also allows to compute dynamical properties as explicitly shown in

Refs. [1, 73, 74]. In this section attention is concentrated on the dynamical spin structure

factor defined as [1]

S(q, ω) = − 1

π
Im 〈ϕ0| Ŝ−

q

1

ω + ǫ0 + i δ − Ĥ
Ŝ+

q |ϕ0〉 , (4.12)

which expresses the spectral decomposition of the spin excitations. |ϕ0〉 denotes the ground

state of the system described by the Hamiltonian Ĥ. ǫ0 stands for the ground state energy.

By using the Dirac identity Eq. (4.12) can be rewritten as

S(q, ω) =
∑

i

|〈ϕi|Ŝ+
q |ϕ0〉|2δ (ω − (ǫi − ǫ0)) . (4.13)

|ϕi〉 is an eigenstate of the Hamiltonian Ĥ with energy ǫi. Suppose within a first Lanczos

iteration the ground state of the problem is already determined, hence the initial state of

a second Lanczos iteration can be set to

|φ1〉 =
Ŝ+

q |ϕ0〉
√

〈ϕ0|Ŝ−
q Ŝ

+
q |ϕ0〉

. (4.14)

Eq. (4.13) then reads

S(q, ω) =
∑

i

|〈ϕi|φ1〉|2〈ϕ0|Ŝ+
q Ŝ

−
q |ϕ0〉δ (ω − (ǫi − ǫ0)) . (4.15)
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4.3 Dynamical Properties

According to Eq. (4.5) an eigenstate |ϕi〉 can be expanded in terms of basis states {|φj〉}
of the subspace H :

|ϕi〉 =
∑

j

ψ
(j)
i |φj〉 . (4.16)

The expansion coefficient ψ
(j)
i can be taken from the i-th component of the eigenvector of

the tridiagonal matrix Hn. One obtains

〈φ1|ϕi〉 =
∑

j

ψ
(j)
i 〈φ1|φj〉 = ψ

(1)
i . (4.17)

Hence, for the dynamical spin structure factor it holds

S(q, ω) =
∑

i

|ψ(1)
i |2〈ϕ0|Ŝ+

q Ŝ
−
q |ϕ0〉δ (ω − (ǫi − ǫ0)) . (4.18)

Thus, given an initial state as defined in Eq. (4.14) every energy ǫi is related to a spectral

weight, which is determined by the absolute square of the first component ψ
(1)
i of each

eigenvector ψψψi when the tridiagonal Hamilton Hn matrix is diagonalized within a sec-

ond Lanczos iteration. Usually one obtains a discrete spectrum which can be artificially

broadened with Lorentz peaks.
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The Kondo Necklace and

Bilayer Heisenberg Model

on a Square Lattice 5
The modeling of two dimensional (2D) spin systems has received attention in the context of

high-temperature superconductors [75] and heavy fermion systems. This chapter focuses

on the results of the study of the 2D Kondo necklace model (KNM) and the isotropic bilayer

Heisenberg model (BHM). Both models are captured by the following Hamiltonian:

Ĥ = J⊥
∑

i

Ŝ
(1)
i · Ŝ(2)

i +
∑

〈ij〉

∑

m

J
(m)
‖ Ŝ

(m)
i · Ŝ(m)

j . (5.1)

Here, Ŝ
(m)
i is the spin-1/2 operator which acts on a spin degree of freedom at site i. J

(m)
‖

stands for the intralayer exchange, and the upper index m = 1, 2 labels the two different

layers. J⊥ denotes the interlayer coupling. For the different types of model one has to set

J
(1)
‖ ≡ J‖ and J

(2)
‖ = 0 for the KNM and

J
(1)
‖ = J

(2)
‖ = J‖ for the BHM.

(5.2)

Both models exhibit a quantum phase transition from an antiferromagnetically ordered

phase to a disordered phase, which will be explicitly shown in the following section.

5.1 Quantum Phase Transition

In the weak coupling limit (J⊥ ≪ J‖) the BHM consists of two weakly coupled antiferro-

magnetically ordered planes. The KNM shows antiferromagnetic (AF) ordering within the

first layer. However, with increasing interplane coupling both systems tend to dimerize.

Due to AF coupling the spins of neighboring sites on different layers prefer to form sin-

glets which leads to a breakdown of the AF order. Thus, both systems exhibit a magnetic

order-disorder quantum phase transition as a function of the interlayer coupling J⊥.

To demonstrate this quantum phase transition and to test the numerical method for both

models, the BHM and the KNM, the quantum critical point as well as critical exponents

are determined. For this the spin stiffness, which indicates the degree of spin order in
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5 The Kondo Necklace and Bilayer Heisenberg Model on a Square Lattice

(a) Bilayer Heisenberg model (b) Kondo necklace model

Figure 5.1: Sketch of the isotropic BHM and the 2D KNM. The red lines correspond to the

antiferromagnetic coupling J‖. The blue lines indicate the interlayer coupling J⊥.

the system, is computed. In section 2.3 a motivation of its definition is given. The spin

stiffness reads:

ρs = − 1

Ld−2

1

β

∂2

∂φ2
lnZ(φ)

∣

∣

∣

∣

φ=0

, (5.3)

where d is the dimensionality. In the presence of long-range order ρs takes a finite value

and in the disordered phase it vanishes. In subsection 3.4.4 the implementation of the spin

stiffness into the world line algorithm is explicitly shown.

Fig. 5.2(a) and Fig. 5.2(c) plot the spin stiffness for the BHM and the KNM as a function

of lattice size. The presented data still show finite size effects, so an extrapolation to

the thermodynamic limit is carried out by fitting to the form ρs ∝ a + b/L in the range

L = 8 . . . 16. The extrapolated data for the BHM and KNM are depicted in Fig. 5.2(b)

and Fig. 5.2(d) and fitted to the form

ρs ∝
[

(

J⊥
J‖

)

c

−
(

J⊥
J‖

)

]ν

. (5.4)

For the KNM one obtains
(

J⊥/J‖
)

c
= 1.3780 ± 0.020 and a critical exponent of ν =

0.662 ± 0.087. The value for the critical exponent agrees well with the value of Ref. [76].

The value for the critical point is slightly below the literature value of Ref. [77]:
(

J⊥/J‖
)

c
=

1.41 ± 0.02, but still within the error bars. Similar simulations for the BHM yield a value

of
(

J⊥/J‖
)

c
≃ 2.51 in good agreement with the literature value:

(

J⊥/J‖
)

c
= 2.525 ±

0.002 [78]. The critical exponent ν in the BHM is found to agree well with that of

Ref. [76]; hence confirming the point of view that both the BHM and the KNM belong

to the same universality class. In Ref. [79] the BHM and the KNM are approached via

a dimer series expansion. Within this framework the numerical results above compare

quite well. Recent high-precision calculations presented in Ref. [80] yield a critical value

of
(

J⊥/J‖
)

c
= 2.5220(1) for the BHM and

(

J⊥/J‖
)

c
= 1.3888(1) for the KNM.
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5.2 Spin Dynamics in the BHM

(a) Finite size scaling for the BHM (b) Result for the BHM (Fit: J⊥/J‖ = 2.0 . . . 2.5)

(c) Finite size scaling for the KNM (d) Result for the KNM (Fit: J⊥/J‖ = 1.0 . . . 1.3)

Figure 5.2: (a,c) Spin stiffness ρs as a function of linear size L for different interplanar couplings

J⊥/J‖. Extrapolation to the thermodynamic limit is carried out by fitting to the form ρs ∝ a+b/L

(range of fit L = 8 . . . 16). (b,d) Extrapolated values of the spin stiffness as a function of J⊥/J‖.

The dashed lines corresponds to the fit according to the form of Eq. (5.4). Simulations are carried

out at βJ‖ = 50.0 for L = 16 and βJ‖ = 30.0 for all other lattice sizes (∆τJ‖ = 0.02).

5.2 Spin Dynamics in the BHM

In this section excitation spectra of the BHM in the disordered phase are presented. For

J⊥ → ∞ the system exclusively consists of singlet dimers. That means that the ground

state wave function is a tensor product of singlets in each unit cell, which is given by two

neighboring spins on different layers. Starting from this state, an excitation (magnon)

corresponds to breaking a singlet to form a triplet. These excitation are reflected by the

dynamical spin susceptibility.
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5 The Kondo Necklace and Bilayer Heisenberg Model on a Square Lattice

(a) J⊥/J‖ = 2.5 (b) J⊥/J‖ = 2.7

(c) J⊥/J‖ = 3.0 (d) J⊥/J‖ = 3.5

Figure 5.3: Dynamical spin susceptibility for different couplings on a 12× 12 lattice in the BHM

(βJ‖ = 30.0, ∆τJ‖ = 0.02). The red points in 5.3(a) reflect the dispersion given by Eq. (5.21).

5.2.1 Dynamical Spin Susceptibility

Within the QMC it is easy to obtain the spin correlations 〈Ŝz
i (τ)Ŝz

j (0)〉 in real space

and imaginary time τ , where the imaginary time evolution of the spin operator reads

Ŝz
i (τ) = eτĤŜz

i e
−τĤ. Its representation in momentum space is related to the dynamical

spin susceptibility S(q, ω) via

〈Ŝz
q(τ)Ŝz

−q(0)〉 =
1

π

∫

dω e−τωS(q, ω) . (5.5)

By using the stochastic maximum entropy (ME) method [81] one can extract the dynamical

spin susceptibility. Fig. 5.3 plots the dynamical spin structure factor as a function of J⊥/J‖
for the BHM. In the deeply disordered phase the dispersion has a cosine like shape. In

first order perturbation theory in J‖/J⊥, the magnon acquires a dispersion relation

Ω(q) ∼ J⊥ + 1
2J‖γ(q) (5.6)

50



5.2 Spin Dynamics in the BHM

(a) Spin correlation function at J⊥/J‖ = 2.7 (b) Spin gap as a function of J⊥

Figure 5.4: (a) Spin correlation function in imaginary time τ at J⊥/J‖ = 2.7 (βJ‖ = 30.0, L = 12,

∆τJ‖ = 0.02). The data is fitted to the form given in Eq. (5.7) in order to extract the spin gap.

(b) Spin gap as a function of interleg coupling J⊥. Fit according to Eq. (5.8). Temperature used:

βJ‖ = 30.0 for L = 12, βJ‖ = 50.0 for L = 16 and βJ‖ = 70.0 for L = 20.

with γ(q) = 2 (cos(qx) + cos(qy)).

This approximative approach is roughly consistent with the large-J⊥ case in Fig. 5.3(d).

For large values of τ and on any finite lattice, the spin correlation function is dominated

by the lowest excitations:

〈Sz
q(τ)Sz

−q(0)〉 ∝ e−Ω(q)τ for τJ‖ ≫ 1 , (5.7)

where Ω(q) stands for the momentum dependent gap to the first spin excitation.

In Fig. 5.4 the spin correlation function for J⊥/J‖ = 2.7 (L = 12) and the spin gap as

a function of J⊥/J‖ are depicted. The gap energy ∆ is obtained from the asymptotic

behavior of the spin correlations: ∆ ≡ min [Ω(q)]. For this the spin correlation function

is fitted to the form given in Eq. (5.7) as shown Fig. 5.4(a). The gap ∆ is depicted in

Fig. 5.4(b) for different coupling ratios J⊥/J‖. As a function of decreasing coupling J⊥
the spin gap progressively closes as

∆ ∝
[

(

J⊥
J‖

)

−
(

J⊥
J‖

)

c

]ν

, (5.8)

where
(

J⊥/J‖
)

c
= 2.525 ± 0.02 [78] denotes the critical coupling. At the critical coupling

the magnons at q = (π, π) condense to form the antiferromagnetic order. This physics is

also captured by the following bond mean field approximation.
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5.2.2 Bond Mean Field Approach

In this subsection a bond mean field calculation for the bilayer Heisenberg model is pre-

sented. The bond mean field approach [82] is a strong coupling approximation in J⊥.

The spins between layers dominantly form singlets and the density of triplets is low. This

assumption allows one to neglect triplet-triplet interaction. The bond operator represen-

tation describes the system in a basis of pairs of coupled spins, which can either be in a

singlet or triplet state:

|s〉i = ŝ†
i
|0〉i = 1√

2
(| ↑↓〉i − | ↓↑〉i)

|tx〉i = t̂†i,x|0〉i = −1√
2
(| ↑↑〉i − | ↓↓〉i)

|ty〉i = t̂†i,y|0〉i = i√
2
(| ↑↑〉i + | ↓↓〉i)

|tz〉i = t̂†i,z|0〉i = 1√
2
(| ↑↓〉i + | ↓↑〉i) .

(5.9)

However, in the limit J⊥ → ∞ the ground state is a product state of singlet bonds on

each rung [83]:

|Ψ0〉 =
⊗

i

|s〉i . (5.10)

The excitations in this limit are given by localized triplets. The operators defined in

Eq. (5.9) satisfy Bose commutation rules provided that one imposes the constraint

ŝ†i ŝi +
∑

α

t̂†i,αt̂i,α = 1̂ . (5.11)

The original spin-1/2 degrees of freedom read [82]

Ŝ
(1,2)
i,α = 1

2

(

± ŝ†i t̂i,α ± t̂†i,αŝi − i
∑

β,γ

ǫαβγ t̂
†
i,β t̂i,γ

)

. (5.12)

On the left hand side of Eq. (5.12) the lower indices α now denote the different components

of the spin operator. ǫαβγ stands for the totally antisymmetric Levi-Civita tensor. The

Hamiltonian (5.1) for the BHM can then be rewritten in the bond operator representation:

Ĥ = J⊥
∑

i

(

− 3
4 ŝ

†
i ŝi + 1

4

∑

α

t̂†i,αt̂i,α
)

−
∑

i

µi

(

ŝ†i ŝi +
∑

α

t̂†i,αt̂i,α − 1̂

)

+
J‖
2

∑

〈ij〉

∑

α

(

ŝ†i ŝ
†
j t̂i,αt̂j,α + ŝ†i ŝjt̂i,αt̂

†
j,α + H. c.

)

+
J‖
2

∑

α,β,γ

(

t̂†i,β t̂i,γ t̂
†
j,β t̂j,γ − t̂†i,β t̂i,γ t̂

†
j,γ t̂j,β

)

. (5.13)

µi is a Lagrange parameter which enforces locally the constraint (5.11). The interpla-

nar part shows the characteristic Hamiltonian of two antiferromagnetically coupled spins
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5.2 Spin Dynamics in the BHM

whereas the intraplanar part includes the interaction between singlets and triplets of dif-

ferent bonds. Now the standard method of Sachdev and Bhatt [82] is followed. In the

disordered phase one expects a singlet condensate (s̄ = 〈s〉 6= 0). Additionally the con-

straint given by Eq. (5.11) is imposed only on average (µi = µ). As mentioned above one

neglects triplet-triplet interactions. Apart from a constant one obtains the following mean

field Hamiltonian in momentum space:

ĤMF =
∑

α

∑

q

Aqt̂
†
q,αt̂q,α +

∑

α

∑

q

Bq

2
(t̂†q,αt̂

†
−q,α + H. c.) , (5.14)

where

Aq =
J⊥
4

− µ+ J‖s̄
2
(

cos(qx) + cos(qy)
)

and (5.15)

Bq = J‖s̄
2
(

cos(qx) + cos(qy)
)

. (5.16)

The parameters µ and s̄ = 〈s〉 are determined by the saddle point equations
〈

∂ĤMF

∂µ

〉

= 0 and

〈

∂ĤMF

∂s̄

〉

= 0 . (5.17)

The Hamiltonian is diagonalized by a Bogoliubov transformation [17]:

α̂†
q,α = uqt̂

†
q,α − vqt̂−q,α . (5.18)

In terms of magnon creation and annihilation operators the mean field Hamiltonian (5.14)

writes

ĤMF =
∑

q

∑

α

Ω(q)α̂†
q,αα̂q,α . (5.19)

The Bogoliubov coefficients uq and vq satisfy the relation u2
q − v2

q = 1, which follows from

the bosonic nature of the magnons:
[

α̂q, α̂
†
q′

]

= δqq′ . The coefficients are given by

uq, vq =

√

Aq

2Ω(q)
± 1

2
, (5.20)

where Ω(q) =
√

A2
q −B2

q is the magnon dispersion. In the vicinity of the critical point it

can be approximated by

Ω(q) =
√

∆2 + v2
s(q − Q)2 (5.21)

with ∆ the energy gap to magnon excitations, vs the magnon velocity and Q = (π, π).

Eq. (5.21) gives an accurate description of the dispersion relation in the vicinity of the

critical point [see Fig. 5.3(a)]. At the critical point the gap ∆ vanishes, so that the triplets

can condense thus forming the AF static ordering.
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5.3 Single Hole Dynamics

In this section the system is doped with a single mobile hole. The motion of the hole is

restricted to one layer thereby staying in the spirit of Kondo lattice models. To understand

the coupling of the hole to magnetic fluctuations within the magnetic disordered phase

one can extend the previously described bond mean field approximation [see Eq. (5.19)]

to account for the hole motion. This is done in the following subsection 5.3.1. In the

subsequent subsection results of the spectra and a discussion of the effective mass of a

mobile hole are presented. Finally, in subsection 5.4 the delicate issue of the quasiparticle

residue (QPR) of the hole in the vicinity of the magnetic quantum phase transition is

analyzed.

5.3.1 Bond Mean Field Approach with Single Hole

To include the single hole dynamics into the mean field approach of the BHM [see

Eq. (5.19)] one initially uses an intuitive description of the doped system given by a

formulation in terms of dimer states. For this one introduces the operator ĉ†
i,(σ1σ2) which

creates a dimer state at site i with spin σ1 in layer 1 and spin σ2 in layer 2:

ĉ†
i,(σ1σ2)|vac〉 = |σ1σ2〉i (5.22)

with σm = +1 for an up-spin and σm = −1 for a down-spin. Furthermore an operator ĥ†
i,σ

which creates a hole with spin σ in layer 1 at site i is introduced:

ĥ†i,σ|vac〉 = | 0σ〉i . (5.23)

Since the analysis is restricted to a single hole the considered Hilbert space is given by
{

|Ψ〉 =
⊗

i

|σ1σ2〉i
∣

∣

∣ 〈Ψ|
∑

i

∑

σ

ĥ†i,σĥi,σ|Ψ〉 = 1
}

. (5.24)

For the explicit calculation one has to differentiate between the coupling of a propagating

hole to magnons and the coupling of a hole at rest to magnons. For a hole which propagates

between two sites one regards the following process: A hole is annihilated and a dimer

state is created at site j, while at site i a dimer state is annihilated and a hole is created.

The corresponding two site Hamiltonian writes

Ĥ(ij)
t = t

∑

σ1,σ2,σ3

[

ĥ†
i,σ3

ĉi,(σ1σ3)ĉ
†
j,(σ1σ2)ĥj,σ2 + H. c.

]

. (5.25)

The sums run over all possible static spin configurations. Every ancillary spin-flip process

is excluded. t stands for the hopping matrix element of the propagating hole. Another

possible process, where the hole can couple to the magnetic fluctuations is given, when

the hole in the upper layer rests and the corresponding spins on the second layer interact.
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5.3 Single Hole Dynamics

(a) Propagating hole (b) Hole at rest

Figure 5.5: Two possible processes where the hole can couple to magnons: (a) The hole moves

to a nearest neighbor and couples via ga(p,q) to magnons. (b) The hole is at rest. The coupling

to magnons is denoted by gb(p,q).

This interaction between two neighboring spins on layer 2 is usually characterized by the

Heisenberg Hamiltonian J
(2)
‖
∑

〈ij〉 Ŝi · Ŝj. In terms of the operators of Eq. (5.22) and

Eq. (5.23) this Hamiltonian writes

Ĥ(ij)
J = J

(2)
‖

∑

σ1,σ2,σ3

[ σ2σ3

4
ĉ†
i,(σ1σ2)

ĉi,(σ1σ2)ĥ
†
j,σ3

ĥj,σ3

+
δσ2,−σ3

2
ĉ†
i,(σ1σ3)ĉi,(σ1σ2)ĥ

†
j,σ2

ĥj,σ3

]

. (5.26)

The first term of Eq. (5.26) corresponds to the Ŝz
i Ŝ

z
j -part of the Heisenberg Hamiltonian,

the second term corresponds to the Ŝ±
i Ŝ

∓
j -part. The processes described by the two site

Hamiltonians of Eq. (5.25) and Eq. (5.26) are sketched in Fig. 5.5 and are summed up to

the total Hamiltonian that is considered to describe the coupling of a hole to magnetic

fluctuations:

Ĥ =
∑

〈ij〉
Ĥ(ij)

t + Ĥ(ij)
J . (5.27)

The mapping between the dimer operator of Eq. (5.22) and the bond operators introduced

in Eq. (5.9) is also very intuitive

ĉ†
i,(11) = − 1√

2

(

t̂†i,x + i t̂†i,y

)

ĉ†
i,(−11) = 1√

2

(

t̂†i,z − ŝ†i

)

ĉ†
i,(1−1) = 1√

2

(

t̂†i,z + ŝ†i

)

ĉ†
i,(−1−1) = 1√

2

(

t̂†i,x − i t̂†i,y

)

(5.28)

and is summarized by

ĉ†
i,(σ1σ2) = −δσ1σ2

σ1√
2

(

t̂†i,x + iσ1t̂
†
i,y

)

+ δσ1,−σ2

1√
2

(

t̂†i,z + σ1ŝ
†
i

)

. (5.29)

In the following the Hamiltonian of Eq. (5.27) is formulated in the representation given by

Eq. (5.29) and Fourier transformed into the momentum space. By neglecting the magnon-

magnon interaction, which means that one has to consider only terms that are bilinear in
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5 The Kondo Necklace and Bilayer Heisenberg Model on a Square Lattice

t̂†i,α and t̂i,α, one obtains the following Hamiltonian:

Ĥ =
t

2N

∑

p1,p2

∑

q

∑

σ

γ(q)
[(

ŝ†p1
ŝp2 − σt̂†p1,zŝp2 − σŝ†p1

t̂p2,z

)

ĥ†p2+q,σĥp1+q,σ −
(

t̂†p1,x − i σt̂†p1,y

)

ŝp2ĥ
†
p2+q,σĥp1+q,−σ −

ŝ†p1

(

t̂p2,x + i σt̂p2,y

)

ĥ†p2+q,−σĥp1+q,σ

]

+
J

(2)
‖

8N

∑

p1,p2

∑

q

∑

σ

γ(q)
[(

−σt̂†p1,zŝp1+q − σŝ†p1
t̂p1+q

)

ĥ†p2+q,σĥp2,σ −
(

t̂†p1,x − iσt̂†p1,y

)

ŝp1+qĥ
†
p2+q,σĥp2,−σ −

ŝ†p1

(

t̂p1+q,x + i σt̂p1+q,y

)

ĥ†p2+q,−σĥp2,σ ] . (5.30)

where γ(q) = 2 (cos(qx) + cos(qy)). To handle this Hamiltonian a mean field approxima-

tion is applied as was also done in subsection 5.2.2: 〈ŝ†i 〉 = s̄. Since the system is in the

disordered phase one expects a singlet condensate, thus

〈ŝp〉 = 〈ŝ†p〉 =
1√
N

∑

i

〈ŝ†i 〉eip·i =
√
N s̄ δ0,p . (5.31)

This approximation leads to the following mean field Hamiltonian

ĤMF =
ts̄2

2

∑

q

γ(q)ĥ†
qĥq − ts̄

2
√
N

∑

p

∑

q

γ(q)
[

t̂†p ·
(

ĥ†
qσσσĥp+q

)

+ H. c.
]

−J
(2)s̄

8
√
N

∑

p

∑

q

γ(q)
[

t̂†q ·
(

ĥ†
pσσσĥp+q

)

+ H. c.
]

(5.32)

with spinor ĥq =
(

ĥp,↑, ĥp,↓
)T

and vector t̂q =
(

t̂q,x, t̂q,y, t̂q,z

)T
. σσσ = (σ1, σ2, σ3)T denotes

the Pauli matrices. To add the single hole dynamics to the mean field Hamiltonian of

the undoped System in Eq. (5.19) the above Hamiltonian (5.32) should be rewritten in

terms of magnon creation and annihilation operators as introduced in subsection 5.2.2.

The inverse transformation of Eq. (5.18) is given by

t̂†q = vqααα−q + uqααα
†
q . (5.33)

Using this Bogoliubov transformation the whole mean field Hamiltonian, which includes

the kinetic energy of the magnons, the kinetic energy of the hole and the coupling of the

hole to magnons is given by

ĤMF =
∑

q

Ω(q)α̂αα†
qα̂ααq +

∑

p

ε(p)ĥ†
pĥp +

∑

p,q

[

g(p,q)αααq ·
(

ĥ†
p+qσσσĥp

)

+ H. c.
]

,(5.34)
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where ε(p) = ts̄2 (cos(qx) + cos(qy)) is the mean field dispersion of the hole. The coupling

g(p,q) between the hole and the magnons splits into two parts:

�
p

p + q

q : g(p,q) = ga(p,q) + gb(p,q) . (5.35)

One identifies the two coupling constants with the processes that are shown in Fig. 5.5:

ga(p,q) is proportional to the hopping matrix element and hence describes the coupling

of a mobile hole to the magnetic background, whereas gb(p,q) is proportional to J
(2)
‖

and describes the coupling of a hole at rest with the magnons. The calculations give the

following momentum dependent coupling strengths:

ga(p,q) = − ts̄

2
√
N

(

γ(p + q)v(q) + γ(p)u(q)
)

(5.36)

gb(p,q) = −
J

(2)
‖ s̄

8
√
N
γ(q)

(

v(q) + u(q)
)

. (5.37)

A discussion of the coupling strengths is given in subsection 5.4.1 in detail.

5.3.2 Spectra and Effective Mass of a Mobile Hole

In section 3.3 as well as in Refs. [71, 84] it is shown how to implement the Green’s function

for a single doped hole into the world line algorithm of a quantum Monte Carlo simulation.

The spin dynamics is simulated with the loop algorithm. For each fixed spin configura-

tion one can readily compute the Green’s function. From the Green’s function Gp(τ) in

imaginary time τ one can extract the single particle spectral function A(p, ω) with the

stochastic maximum entropy method [81]:

Gp(τ) =
1

π

∫ ∞

0
dω e−τωA(p,−ω) . (5.38)

For the bare hole dispersion the mean field calculation of subsection 5.3.1 yields

ε(p) = +ts̄2
(

cos(px) + cos(py)
)

. (5.39)

In the limit J⊥ → ∞ the magnon excitation energy diverges and hence the coupling of the

hole to magnetic excitations becomes negligible. In other words, in this limit the magnon

excitations become quite rare, so that: s̄ ≡ 〈s〉 ≈ 1. Thus, in the strong coupling region

one obtains from Eq. (5.34) a hole dispersion relation:

E(p) = t
(

cos(px) + cos(py)
)

. (5.40)

This agrees with the result given by applying perturbation theory in t/J⊥ [21].
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(a) J⊥/J‖ = 1.0 (b) J⊥/J‖ = 2.0

(c) J⊥/J‖ = 2.3 (d) J⊥/J‖ = 2.4

(e) J⊥/J‖ = 2.5 (f) J⊥/J‖ = 10.0

Figure 5.6: Spectra of a mobile hole for a 12×12 lattice in the isotropic bilayer Heisenberg model

(βJ‖ = 30.0, ∆τJ‖ = 0.02). The small dashed lines in 5.6(f) tag the dispersion of a free particle,

in 5.6(a) they outline a dispersion of the form: E(p) = J‖ (cos(px) + cos(py))
2
.
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5.3 Single Hole Dynamics

(a) J⊥/J‖ = 0.5 (b) J⊥/J‖ = 1.0

(c) J⊥/J‖ = 1.5 (d) J⊥/J‖ = 2.0

(e) J⊥/J‖ = 2.5 (f) J⊥/J‖ = 4.0

Figure 5.7: Spectra of a mobile hole for a 12 × 12 lattice in the 2D Kondo necklace model

(βJ‖ = 30.0, ∆τJ‖ = 0.02). The small dashed lines in 5.6(d), 5.6(e) and 5.6(f) tag the dispersion

of a free particle.
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As apparent from Fig. 5.6 and Fig. 5.7 the strong coupling behavior is reproduced by the

Monte Carlo simulations where the dispersion exhibits a cosine form with maximum at

p = (π, π). The form of this dispersion relation directly reflects the singlet formation – in

other words Kondo screening – between spin degrees of freedom on different layers. One

should note that this strong coupling behavior of the dispersion relation sets in at larger

values of J⊥/J‖ for the BHM than for the KNM. This is quite reasonable since in the

BHM the single bonds are coupled among each other within both layers. With decreasing

coupling ratio the bandwidth of the quasiparticle dispersion relation diminishes but the

overall features of the strong coupling remain. In the weak coupling limit considerable

differences are observed between the single particle spectrum of the BHM and KNM. The

following discussion starts with the BHM. For this model the point J⊥/J‖ = 0 is well

defined (i.e. the ground state is non-degenerate on any finite lattice) and corresponds to

two independent Heisenberg planes with mobile hole in the upper plane. The problem of

the single hole in a two dimensional Heisenberg model has been addressed in the framework

of the self-consistent Born approximation [85] and yields a dispersion relation given by

E(p) = J‖ (cos(px) + cos(py))2 . (5.41)

Since at J⊥/J‖ = 0 a well defined ground state is apparent one can expect that turning on

a small value of J⊥/J‖ will not alter the single hole dispersion relation. This point of view

is confirmed in Fig. 5.6(a). At J⊥/J‖ = 1.0, the single hole dispersion is well reproduced

by Eq. (5.41). Hence and as confirmed by Figs. 5.6 the dispersion relation of a single hole

in the BHM continuously deforms from the strong coupling form of Eq. (5.40) to that of

a doped hole in a planar antiferromagnet [see Eq. (5.41)]. Hence, as a function of J⊥/J‖
there is a point where the effective mass diverges at p = (π, π). The effective mass meff is

given by the inverse curvature of the dispersion relation. In general meff is defined as an

effective mass tensor [5]:

[

m−1
eff

]

αβ
= ±∂

2E(p)

∂pα∂pβ
, (5.42)

where α and β denote directions in momentum space. However, for simplicity and due to

symmetry arguments in the following the effective mass is assumed to be

m−1
eff =

∂2E(p)

∂p2
x

=
∂2E(p)

∂p2
y

≃ E(p − ∆p) − 2E(p) + E(p + ∆p)

(∆p)2
(5.43)

with ∆p = (0, 2π/L). Upon inspection of the data [see Fig. 5.6], the point of divergence

of the effective mass is not related to the magnetic quantum phase transition since it

occurs slightly below
(

J⊥/J‖
)

c
. This is explicitly illustrated in Fig. 5.8, which shows

the excitation energy for the BHM for the lattice sizes L = 8 and L = 12. One can

see that there is no size scaling within the error bars for all considered values of J⊥/J‖.

As Fig. 5.8(d) shows, the graphs for J⊥/J‖ = 2.5, which is slightly below the critical
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5.3 Single Hole Dynamics

(a) J⊥/J‖ = 2.0 (b) J⊥/J‖ = 2.3

(c) J⊥/J‖ = 2.4 (d) J⊥/J‖ = 2.5

(e) J⊥/J‖ = 2.6 (f) J⊥/J‖ = 2.7

Figure 5.8: Single hole dispersion E(p) for different values of J⊥/J‖ for L = 8 and L = 12 in

the BHM (βJ‖ = 30.0, ∆τJ‖ = 0.02). The curvature of the graphs at p = (π, π) changes around

J⊥/J‖ = 2.4 which indicates the divergence of the effective mass.
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(a) Divergence of effective mass (b) Drift of dispersion maximum

Figure 5.9: (a) Sketch of the divergence of the effective mass meff as defined in Eq. (5.43) for

the BHM on a 12 × 12 lattice (βJ‖ = 30.0, ∆τJ‖ = 0.02). The Divergence is not related to the

quantum critical point. (b) Single hole dispersion E(p) for different values of J⊥/J‖ for L = 12

(βJ‖ = 30.0, ∆τJ‖ = 0.02). The maximum of the dispersion drifts from p = (π, π) for large J⊥ to

p = (π/2, π/2) for small J⊥.

value, still have a negative curvature at p = (π, π). The curvature at p = (π, π) changes

around J⊥/J‖ = 2.4 which indicates the divergence of the effective mass. Furthermore it

becomes apparent that the point of divergence is not related to the quantum critical point.

Fig 5.9(a) depicts the effective mass explicitly computed by Eq. (5.43) depending on the

coupling J⊥/J⊥. Since Eq. (5.43) is just an approximate formula, the results presented

in Fig 5.9(a) represent a sketch of the development of the effective mass as a function of

J⊥/J⊥ without any error bars and without claim to be precise. Nevertheless it gives some

insight to the divergence of the effective mass in the BHM. As a result of the change of

the curvature the maximum of the dispersion drifts from p = (π, π) to p = (π/2, π/2) as

illustrated in Fig. 5.9(b). This crossover between a dispersion with maximum at p = (π, π)

and maximum at p = (π/2, π/2) with a crossover point lying inside the AF ordered phase

is also documented in Ref. [86].

The above argument cannot be applied to the KNM, since the J⊥/J‖ = 0 point is macro-

scopically degenerate and hence it is not a good starting point to understand the weak

coupling physics. Clearly the same holds for the KLM and UKLM. Inspection of the spec-

tral data deep in the ordered phase of the KNM [see Fig. 5.7(a)] shows that the maximum

of the dispersion relation is still pinned at p = (π, π) such that the strong coupling features

stemming from Kondo screening are still present at weak couplings. For the KNM, down

to the lowest couplings considered in this study, the effective mass at p = (π, π) increases

as a function of decreasing coupling strength but does not seem to diverge at finite values

62



5.4 Quasiparticle Residue

of J⊥/J‖. Precisely the same conclusion is reached in the framework of the KLM [22] and

UKLM [23].

5.4 Quasiparticle Residue

In this section attention is turned to the delicate issue of the quasiparticle residue in the

vicinity of the magnetic quantum phase transition. First this question is addressed within

the framework of the mean field model of Eq. (5.34). Here, the single particle Green’s

function is computed by means of a self-consistent Born approximation. The renormal-

ization coefficient [87] of the one-hole Green’s function, the quasiparticle residue [7, 88],

is defined for a resonance ω = ξi as

Z(p) ≡
∣

∣

∣

∣

1 − ∂

∂ω
Re Σ(p, ω)

∣

∣

∣

∣

−1

ω=ξi

, (5.44)

where Σ(p, ω) denotes the self-energy of the hole. In a second step, the quasiparticle

residue is directly determined from the Monte Carlo data.

5.4.1 Analytical Approach

In the following the coupling to critical magnetic fluctuations is considered. Hence, one

has to concentrate on q = (π, π) ≡ Q and set the system in the proximity of the quantum

phase transition on the disordered side. In this case the magnon dispersion as defined in

subsection 5.2.2 vanishes (Ω(Q) → 0) and the coherence factors uq and vq from Eq. (5.20)

scales as

uq, vq ∝ Ω(q)−
1
2 . (5.45)

Since furthermore γ(p + Q) = −γ(p) one finds that the coupling of a propagating hole to

magnons, characterized by ga(p,Q) vanishes at the critical point. In other words process

(a) couples only to short range spin fluctuations. On the other hand in the vicinity of the

critical point gb scales as gb(p,q) ∝ Ω(q)−
1
2 so that retention of this term only is all that

is needed to understand the coupling to critical fluctuations. Summarizing one can set

g(p,q) → gb(q) ∝ 1
√

Ω(q)
(5.46)

for the subsequent calculations. It is intriguing to note that in this simple approximation

gb(q) scales as J
(2)
‖ , which is strictly speaking zero in the KNM. However, such a coupling

would be dynamically generated via an RKKY-type interaction [16, 17, 18, 19]. With the
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5 The Kondo Necklace and Bilayer Heisenberg Model on a Square Lattice

coupling above the first order self-energy is given by

Σ(1)(p, ω) = �p + q, ω + η

−q,−η

(5.47)

= i

∫

d2q

∫

dη g2
b (q) G0(p + q, ω + η) D0(−q,−η) .

Here, the free propagators for the hole G0 and for the magnons D0 reads

G0(p, ω) =
1

ω − ε(p) + i 0+
and D0(q, ω) =

1

ω − Ω(q) + i 0+
, (5.48)

where ε(p) is the dispersion relation of the hole. For the magnon dispersion relation one

adopts the form of Eq. (5.21) which is suitable in the vicinity of the phase transition and

for q → Q:

Ω(q) =
√

∆2 + v2
s(q − Q)2 . (5.49)

The calculation presented in appendix A yields the first order self energy

Σ(1)(p, ω) =

∫

d2q g2
b (q)

1

ω − ε(p + q) − Ω(q)
. (5.50)

According to Eq. (5.44) the self-energy has to be evaluated at its poles. Bearing in mind

that Ω(Q) → 0 in the vicinity of the critical couplings a pole is found for ω = ε. In this

case the wave vectors have to satisfy the condition

ε(p) = ε(p + Q) (5.51)

and the self-energy takes the form

Σ(1)(p, ω) = −
∫

d2q̃
g2
b (q̃ + Q)

Ω(q̃ + Q)
, (5.52)

where the integration variable is transformed: q → q̃ = q−Q. Finally one has to consider

that gb(q̃) ∝ Ω− 1
2 (q̃) [see Eq. (5.46)] for the coupling to critical fluctuations, so that one

arrives at

Σ(1)(p, ω) ∝
∫

BZ
d2q̃

1

Ω2(q̃ + Q)
∝
∫

BZ
d2q̃

1

q̃2
∝
∫ q̃max

0

dq̃

q̃
(5.53)

with q̃ ≡ |q̃|. Now it can be seen, that for the condition given in Eq. (5.51) the self-energy

diagram shows a logarithmic divergence. Hence one has to sum up all diagrams.
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(a) Iterations within SCB (b) Sizescaling

Figure 5.10: Self-consistent Born approximation in the BHM for p = (π, 0): (a) QPR after n-th

iterations for ∆/J‖ = 0.06 and L = 46. (b) QPR depending on the linear system size L for different

spin gaps ∆.

This is done in the non-crossing or self-consistent Born approximation which in the limit

β → ∞ boils down to the following self-consistent equations:

Σ(p, ω) =
1

N

∑

q

g2(q)G(p − q, ω − Ω(q)) (5.54)

G(p, ω) =
1

ω − ε(p) − Σ(p, ω)
. (5.55)

For the self-consistent Born approximation one uses the magnon dispersion of the form

Ω(q) =
√

∆2 + v2
s (1 + γ(q)/4) with γ(q) = 2 (cos(qx) + cos(qy)), which in the limit q →

Q agrees with the form of Eq. (5.49). By iterating the Green’s function according to

Eq. (5.54) and Eq. (5.55) one obtains for the self-energy in terms of Feynman diagrams

Σ(p, ω) =�
G0

+�
G0 G0 G1

+�
G0 G0 G0 G1 G2

+ . . . (5.56)

where Gi stands for the Green’s function of the i-th iteration. This sum contains all

non-crossing diagrams, which are also called rainbow diagrams due to their structure.

Motivated by the work of Sushkov [89] only these diagrams should contribute to the hole

self-energy. In the presented results the Green’s function is iterated by the self-consistent

equations in (5.54) and (5.55) up to the 15th order to ensure convergence [see Fig. 5.10(a)].

The spectrum of the hole is calculated via the imaginary part of the Green’s function

ρ(p, ω) = − 1
π ImG(p, ω) in order to determine the resonances ξi.
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5 The Kondo Necklace and Bilayer Heisenberg Model on a Square Lattice

(a) SCB results (b) SCG results on a log-scale

Figure 5.11: Self-consistent Born approximation: QPR in the vicinity of the quantum critical

point for selected hole momenta (a) in a linear plot and (b) in a double logarithmic plot. ∆

corresponds to the spin gap.

Then the QPR is computed at the first pole of the spectrum by Eq. (5.44). Fig. 5.10(b)

shows the QPR for p = (π, π) as a function of linear length L of the square lattice for

different values of the spin gap ∆. The large-L limit is indicated by a line. Figs. 5.11 plot

the quasiparticle weight as a function of the spin gap for hole momenta p = (π/2, π/2),

p = (0, π) and p = (π, π). For hole momenta satisfying the condition given in Eq. (5.51),

which for instance are p = (π/2, π/2) and p = (0, π) , there is no energy denominator

prohibiting the logarithmic divergence of the first order self-energy and the QPR shows

an obvious decrease right up to a complete vanishing at the critical point. Furthermore,

the data is consistent with Z ∝
√

∆. The case p = (π, π) is more complicated since

ǫ(p) 6= ε(p+Q). In first order, the self-energy remains bounded. The scattering of the hole

on q = (π, π) magnons leads to the progressive formation of shadow bands as the critical

point is approached such that at the critical point the relation E(1)(p) = E(1)(p + Q)

holds. This back-folding of the band can lead to the vanishing of the QPR when higher

order terms are included. Although the SCB results show a decrease of the QPR in the

vicinity of the critical point, they are not accurate enough to answer the question of the

vanishing of the QPR at this wave vector.

5.4.2 QMC Approach

As shown in section 3.3 within the path integral QMC simulations for each fixed spin

configuration one can compute the Green’s function for a single hole. From the Green’s

function in imaginary time Gp(τ), it is easy to extract the quasiparticle residue.
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(a) Green’s function for a static hole (b) QPR for a atatic hole

(c) Size scaling (d) Temperature scaling

Figure 5.12: (a) Example of how to read off the quasiparticle residue from the asymptotic form

of the single particle Green’s function. In the limit τ → ∞ the Green’s function is of the form

given in Eq. (5.59). The presented data corresponds to a static hole at J⊥/J‖ = 2.5 on a 12 × 12

lattice in the bilayer Heisenberg model (βJ‖ = 30.0, ∆τJ‖ = 0.02). (b) Quasiparticle residue for a

static hole in the BHM for different lattice sizes: L = 12 (βJ‖ = 30.0), L = 16 (βJ‖ = 50.0) and

L = 20 (βJ‖ = 70.0). (c,d) Green’s function G(τ) for a static hole at J⊥/J‖ = 2.5 in the BHM.

As apparent within the range 5.0 ≤ τJ‖ ≤ 6.0 no considerable size and temperature effects are

observable (βJ‖ = 30.0, ∆τJ‖ = 0.02).

According to Eq. (3.29) in the limit T → 0 the momentum dependent Green’s function

Gp(τ) in the up-spin sector reads

Gp(τ) = 〈ΨN
0 |ĉ†p(τ)ĉp(0)|ψN

0 〉 , (5.57)

where the spin indices are neglected. Here, |ΨN
0 〉 stands for the ground state of the half-

filled system where the upper index N denotes the particle number. ĉ†p and ĉp create and

annihilate an up-spin electron.
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5 The Kondo Necklace and Bilayer Heisenberg Model on a Square Lattice

(a) Fit according to Ref. [90] (b) ηh as a function of J⊥/J‖

Figure 5.13: (a) The Green’s function (J⊥/J‖ = 2.5, L = 20) for a static hole is fitted to the

form given in Eq. (5.61). (b) The so-obtained results for ηh are plotted as a function of J⊥/J‖ for

different lattice sizes. The error bars are potentially underestimated. The results should only give

a qualitative impression. Temperature used: βJ‖ = 30.0 for L = 12, βJ‖ = 50.0 for L = 16 and

βJ‖ = 70.0 for L = 20.

The time evolution of the operators is given by ĉp(τ) = eĤτ ĉpe
−Ĥτ . From Eq. (5.57) it

follows

Gp(τ) =
∑

m

|〈ΨN−1
m |ĉp|ΨN

0 〉|2e−(EN−1
m (p)−EN−1

0 )τe−E(p)τ , (5.58)

where E(p) = EN−1
0 (p) − EN

0 corresponds to the single hole dispersion relation. EN
m is

the energy of the eigenstate |ΨN
m〉. Since EN−1

m − EN−1
0 > 0 for all m 6= 0 in the limit

τ → ∞ the Green’s function reduces to the asymptotic form

Gp(τ) = |〈ΨN−1
0 |ĉp|ΨN

0 〉|2e−E(p)τ . (5.59)

As apparent, the prefactor called renormalization coefficient [87]

Zp = |〈ΨN−1
0 |ĉp|ΨN

0 〉|2 , (5.60)

is nothing but the quasiparticle residue. The analogy between the definitions (5.44) and

(5.60) is shown in Refs. [7, 88], for example. Hence from the asymptotic form of the single

particle Green’s function, one can read off the quasiparticle residue. An example how to

determine the QPR from the imaginary time Green’s function is shown in Fig. 5.12(a).

In the following attention is first given to the static hole in the BHM for which the QMC

data is of higher quality than for the dynamic hole. Fig. 5.12 plots the Green’s function

as a function of lattice size and for different temperatures at J⊥/J‖ = 2.5. Within the

considered range of imaginary times no size and temperature effects are apparent.
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(a) Green’s function in BHM (b) QPR for dynamical hole in the BHM

(c) Green’s function in KNM (d) QPR for dynamical hole in the KNM

Figure 5.14: (a) Green’s function of a dynamical hole (p = (π, π)) at J⊥/J‖ = 2.4 on a 12 × 12

lattice in the BHM. (b) Quasiparticle residue in the vicinity of the quantum critical point for

various couplings and different momenta. (c) Green’s function of a dynamical hole (p = (π, π))

on a 12 × 12 lattice in the Kondo necklace model. (d) Quasiparticle residue in the vicinity of the

quantum critical point in the KNM. (L = 12, βJ‖ = 30.0, ∆τ = 0.02)

The tail (5.0 ≤ τJ‖ ≤ 6.0) of the Green’s function is fitted to the form G(τ) = Ze−Eτ .

The so-obtained value of Z is plotted for values of J⊥/J‖ across the magnetic quantum

phase transition [see Fig. 5.12(b)]. As apparent no sign of the vanishing of the QPR is

observable as one crosses the quantum critical point. The QMC data allows a different

interpretation. Following the work of Sachdev et al. [90] one has to fit the imaginary time

Green’s function to the form

G(τ) ∝ τ−ηh exp (−τE) (5.61)

in the range 2.0 < τJ‖ < 6.0 [see Fig. 5.13(a)]. Clearly, if ηh > 0 then the QPR vanishes.
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The results for ηh are plotted in Fig. 5.13(b). At J⊥/J‖ = 2.5 the result ηh = 0.08(7)

compares very well to that quoted in Ref. [90], ηh = 0.087 ± 0.040. The fact that the

result of Ref. [90] is obtained on a 64 × 64 lattice and the result given in this work on

20 × 20 confirms that for the considered imaginary time range, size effects are nearly

absent. Given the above interpretation of the data, Fig. 5.13(b) suggests that the QPR of

a static hole vanishes for all J⊥/J‖ ≤
(

J⊥/J‖
)

c
≃ 2.5. The choice of the fitting function

reflects different ordering of the limits τ → ∞ and L→ ∞. On any finite size lattice the

QPR is finite and hence it is appropriate to fit the tail of the Green’s function to the form

Z(L)e−τE to obtain a size dependent QPR, and subsequently take the thermodynamic

limit. This strategy has been used successfully to show that the QPR of a doped mobile

hole in a one dimensional Heisenberg chain vanishes [71]. On the other hand, the choice

of Eq. (5.61) for fitting the data implies that one first takes the thermodynamic limit.

Only in this limit, can the asymptotic form of the Green’s function follow Eq. (5.61) with

ηh 6= 0. The fact that both procedures yield different results sheds doubt on the small

imaginary time range used to extract the quasiparticle residue. In particular, using data

from τJ‖ = 2.0 onwards implies that one is looking at a frequency window around the

lowest excitation of the order ω/J ≃ 0.5. Given this, it is hard to resolve the difference

between a dense spectrum and a well defined low-lying quasiparticle pole and a branch

cut.

Finally, the data for a mobile hole in the BHM and KNM [see Fig. 5.14] are presented.

One has to note that in the presented calculations the motion of the hole is restricted to a

single plane. The data for the QPR in the above mentioned figures stem from fitting the

tail of the Green’s function to the form Ze−Eτ . The fit to the form of Eq. (5.61) yields

values of ηh which within the error bars are not distinguishable from zero.
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The Spiral Staircase

Heisenberg Model 6
The Haldane conjecture [24] proposed more than 20 years ago states that the properties of

SU(2) symmetric antiferromagnetic (AF) spin-S Heisenberg chains are different for integer

and half-integer spins. The excitations of integer spin chains are gapped, whereas for half-

integer spin chains there is no gap. In this chapter the spiral staircase Heisenberg (SSH)

model is studied. It interpolates between a spin-1/2 Heisenberg chain and an effective

spin-1 chain and thus allows to analyze the crossover from a gapped Haldane phase to an

ungapped phase. The SSH model is described by the following Heisenberg Hamiltonian:

Ĥ = J‖
∑

i

(

Ŝ1,i · Ŝ1,i+1 + cos2 (θ/2) Ŝ2,i · Ŝ2,i+1

)

+ J⊥
∑

i

Ŝ1,i · Ŝ2,i . (6.1)

Ŝα,i is a spin operator acting on the spin degree of freedom on leg α at site i. The spin

along the leg are coupled antiferromagnetically, J‖ > 0, whereas the coupling on a rung is

assumed to be ferromagnetic (FM) in order to form effective spin-1 degrees of freedom in

the large coupling region |J⊥| ≫ J‖. The SSH model also allows to study the coupling of

two inequivalent spin-1/2 chains, since the AF coupling on the second leg can be tuned by

the angle θ. Thus, the SSH model can be understood as a continuous twist deformation

of an isotropic 2-leg ladder by an angle θ. A sketch of the model is given in Fig. 6.1.

It is convenient to reformulate the model in Eq. (6.1) in terms of new variables,

Ŝi = Ŝ1,i + Ŝ2,i and R̂i = Ŝ1,i − Ŝ2,i , (6.2)

which satisfy the following parity properties:

P̂ŜiP̂ = Ŝi and P̂R̂iP̂ = −R̂i . (6.3)

Here, P̂ is the parity operator which interchanges the leg labeling 1 ↔ 2. These symmetries

become relevant later in subsection 6.3.1 when discussing the spin excitation spectra. The
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(a) Side view (b) View from the top

Figure 6.1: Sketch of spiral staircase

Heisenberg model. For θ = 0 the model cor-

responds to the common antiferromagneti-

cally coupled (red) spin-1/2 Heisenberg lad-

der with FM rung coupling (blue). The case

θ = π represents the 1D SU(2) symmetric

Kondo necklace model.

Hamiltonian of Eq. (6.1) now writes

Ĥ =
J‖
4

∑

i

(

1 + cos2 (θ/2)
)

(

Ŝi · Ŝi+1 + R̂i · R̂i+1

)

+
J⊥
4

∑

i

sin2 (θ/2)
(

Ŝi · R̂i+1 + R̂i · Ŝi+1

)

+
J⊥
4

∑

i

(

Ŝ2
i − R̂2

i

)

. (6.4)

For θ = 0 parity symmetry holds, whereas in the twisted model (θ 6= 0) the parity

symmetry is broken:
[

P̂ , Ĥ
]

6= 0. However, the set of operators Ŝi and R̂i fully defines

the o4 algebra through the following commutation rules:
[

Ŝα
i , Ŝ

β
j

]

= i δijǫαβγ Ŝ
γ
i ,
[

R̂α
i , R̂

β
j

]

= i δijǫαβγŜ
γ
i and

[

R̂α
i , Ŝ

β
j

]

= i δijǫαβγR̂
γ
i . (6.5)

where ǫαβγ is the totally antisymmetric Levi-Civita tensor and the Casimir operators are

given by Ŝ2
i +R̂2

i and (Ŝi ·R̂i) = 0. This work does not go into the details of the symmetry

properties of this model for which the reader is referred to Refs. [30, 31]. However, it is

obvious that in the large coupling region the formation of singlets on a rung becomes rare,

〈R̂i〉 ≃ 0, and the model maps to the following effective Hamiltonian:

Ĥeff = Jeff

∑

i

Ŝi · Ŝi+1 , (6.6)

where the effective coupling is given by Jeff =
J‖

4

(

1 + cos2(θ/2)
)

. The analysis of the SSH

model starts with a Jordan-Wigner mean field calculation of the two extreme cases [91],
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Leg 2

Leg 1

(a) Jordan-Wigner transformation

π

π/2

π/2

π/2

π/2

π π

(b) Gauge transformation

ex

eya

ĉ† d̂†
b

χ

χ

(c) Ladder system

ex

ey

ĉ†

d̂†

φ

χ

(d) Kondo necklace

Figure 6.2: (a) Zigzag path used for the Jordan-Wigner transformation given in Eq. (6.7). (b)

Gauge transformation applied in the ladder system (θ = π). (c) Unit cell (box), basis vectors a

and b and flux χ in the mean field ansatz for the ladder system. (d) Unit cell (box) in mean field

ansatz for the SU(2) symmetric Kondo necklace model.

the one dimensional (1D) Kondo necklace (θ = π), where the coupling along the second

leg is missing, and the common 2-leg ladder system (θ = 0).

6.1 Jordan-Wigner Mean Field Approach

The definition of the Jordan-Wigner transformation for the ladder topology relies on the

choice of a path labeling the different sites. With the choice shown in Fig. 6.2(a) it reads:

Ŝz
1,i = n̂1,i − 1

2 Ŝ+
1,i = ĉ†1,i exp

(

− i π

i−1
∑

l=1

(n̂1,l + n̂2,l)
)

Ŝz
2,i = n̂2,i − 1

2 Ŝ+
2,i = ĉ†2,i exp

(

− i π
(

i
∑

l=1

n̂1,l +

i−1
∑

l=1

n̂2,l

))

(6.7)

where n̂α,i = ĉ†α,iĉα,i is the occupation number operator at site i with leg index α = 1, 2.

ĉ†α,i and ĉα,i are spinless fermionic creation and annihilation operators which satisfy the

anticommutation rule

{

ĉα,i, ĉ
†
β,j

}

= δijδαβ . (6.8)
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In the ladder topology (θ = 0) a spinless fermion can circulate around a plaquette thereby

allowing for a π-flux phase as solution of the mean field equations. This leads, as demon-

strated below, to a spin gap ∆ ∝ |J⊥|. Such a solution is not possible in the Kondo

necklace system since at θ = π one leg of the ladder is removed. In this case, the mean

field solution yields a band structure stemming from the hybridization of a flat band,

accounting for the dangling spins, and a cosine band of width set by J‖ accounting for

the spin dynamics in the chain. Since the hybridization matrix element is set by J⊥, one

obtains an (indirect) spin gap ∆ ∝ |J⊥|2. The mean field calculations are presented in

detail in the following two subsections.

6.1.1 Ladder System

The calculations presented here follow Ref. [92]. After application of the Jordan-Wigner

transformation the Heisenberg Hamiltonian of Eq. (6.4) can be rewritten as

Ĥ = −J⊥
2

L
∑

i=1

{

D̂
†(⊥)
i D̂

(⊥)
i + D̂

(⊥)
i D̂

†(⊥)
i

}

+
J⊥
2

L
∑

i=1

{

D̂
†(⊥)
i + D̂

(⊥)
i

}

−
J‖
2

L
∑

i=1

2
∑

α=1

{

D̂
†(α)
i,i+1D̂

(α)
i,i+1 + D̂

(α)
i,i+1D̂

†(α)
i,i+1

}

+
J‖
2

L
∑

i=1

{

D̂
†(1)
i,i+1e

iπn̂2,i + D̂
†(2)
i,i+1e

i πn̂1,i+1 + H. c.
}

. (6.9)

Here, for the sake of clarity the following abbreviated notations are used: D̂
†(⊥)
i = ĉ†1,iĉ2,i

and D̂
†(α)
i,j = ĉ†α,iĉα,j . In the calculation below, the mean field solution is restricted to a

phase with zero magnetization, 〈Sz
α,i〉 = 0, such that 〈n̂α,i〉 = 1

2 . To proceed further n̂i,α is

replaced by its mean value. Although this simplification cannot be rigorously justified [93]

and more elaborate treatments are possible in a Jordan-Wigner approach [94], it is shown

below that it qualitatively reproduces the results available by more sophisticated methods.

For the further calculation a gauge transformation as sketched in Fig. 6.2(b) and given by

D̂
†(1)
2n−1,2n → D̂

†(1)
2n−1,2ne

− iπ/2 D̂
†(1)
2n,2n+1 → D̂

†(1)
2n,2n+1e

i π/2

D̂
†(2)
2n−1,2n → D̂

†(2)
2n−1,2ne

iπ/2 D̂
†(2)
2n,2n+1 → D̂

†(2)
2n,2n+1e

− i π/2

D̂
†(⊥)
2n → D̂

†(⊥)
2n ei π D̂

†(⊥)
2n+1 → D̂

†(⊥)
2n+1e

iπ

(6.10)
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6.1 Jordan-Wigner Mean Field Approach

is applied. The Hamiltonian then reads

Ĥ = −J⊥
2

L/2
∑

n=1

{

D̂
†(⊥)
2n−1D̂

(⊥)
2n−1 + D̂

†(⊥)
2n D̂

(⊥)
2n + H. c.

}

−J⊥
2

L/2
∑

n=1

{

D̂
†(⊥)
2n−1 + D̂

†(⊥)
2n + H. c.

}

(6.11)

−
J‖
2

2
∑

α=1

L/2
∑

n=1

{

D̂
†(α)
2n−1,2nD̂

(α)
2n−1,2n + D̂

†(α)
2n,2n+1D̂

(α)
2n,2n+1 + H. c.

}

−
J‖
2

L/2
∑

n=1

{

− D̂
†(1)
2n−1,2n + D̂

†(1)
2n,2n+1 + D̂

†(2)
2n−1,2n − D̂

†(2)
2n,2n+1 + H. c.

}

.

As a mean field ansatz one may set

〈D̂†(1)
2n−1,2n〉 = 〈D̂†(2)

2n,2n+1〉 = Qeiχ

〈D̂†(2)
2n−1,2n〉 = 〈D̂†(1)

2n,2n+1〉 = Q

〈D̂†(⊥)
2n−1〉 = 〈D̂†(⊥)

2n 〉 = P .

(6.12)

where the choice of the phase is depicted in Fig. 6.2(c). Here, P and Q are positive

real numbers. To further exploit translation invariance, a unit cell x containing two

orbitals with corresponding fermion operators, ĉ†x and d̂†x, and lattice vectors a and b [see

Fig. 6.2(c)] is defined:

D̂
†(⊥)
2n−1 = ĉ†xd̂x−b D̂

†(1)
2n−1,2n = ĉ†xd̂x D̂

†(2)
2n−1,2n = d̂†xĉx+a+b

D̂
†(⊥)
2n = d̂†xĉx+a D̂

†(1)
2n,2n+1 = d̂†xĉx+a+b D̂

†(2)
2n,2n+1 = ĉ†xd̂x .

(6.13)

Assuming periodic boundary conditions in the y-direction (amounting to a double counting

of J⊥), the mean field Hamiltonian can conveniently be written as

Ĥ = −J⊥
2

∑

x

A
{

ĉ†xd̂x−b + ĉ†x+ad̂x + H. c.
}

(6.14)

+J‖
∑

x

{

B1ĉ
†
xd̂x +B2ĉ

†
x+a+bd̂x + H. c.

}

+ 2J⊥LP
2 + 4J‖LQ

2

with A = (1/2+P ), B1 = (−1/2−Q), B2 = (1/2−Qe− i χ). After application of a Fourier

transformation one arrives at the non-diagonal Hamiltonian of the following form:

Ĥ =
∑

k

(

ĉ†k , d̂
†
k

)





0 ε(k)

ε(k) 0









ĉk

d̂k



+K (6.15)

with K = 2J⊥LP 2 + 4J‖LQ
2. k = (kx, ky)T is the wave vector and ky is restricted to the

values 0 and π. The Hamilton matrix elements are given by

ε(k) = −J⊥
2
A
(

eik·a + eik·b
)

+ J‖B1 + J‖B2e
ik·(a+b) . (6.16)
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(a) Energy for different values of χ (b) J⊥/J‖ = −1.0

Figure 6.3: (a) Energy per site in respect to the mean field parameter χ for different couplings

J⊥/J‖. The minimum of the energy changes from χ = π to χ = 0 around J⊥/J‖ ∼ 5. (b) In the

weak coupling region (J⊥/J‖ = −1.0) the minimum for the energy is found at χ = π.

The Hamiltonian is diagonalized by the transformation α̂†
k,± = (ĉ†

k
± d̂†

k
)/
√

2:

Ĥ =
∑

k

∑

ξ=±
Eξ(k)α̂†

k,ξα̂k,ξ +K (6.17)

with E±(k) = ±
√

|ε(k)|2. For |ε(k)|2 one finds

|ε(kkk)|2 =
J2
⊥
2
A2 (1 + cos(2ky)) + 2J2

‖B
2 (1 − cos(2kx)) − J2

‖ (1 + cos(χ))

+J⊥J‖AQ (1 + cos(χ)) (cos(kx + ky) + cos(kx − ky))

−J⊥J‖AQ sin(χ) (sin(kx + ky) + sin(kx − ky))

+2J2
‖BQ (1 + cos(χ)) cos(2kx) − 2J2

‖BQ sin(χ) sin(2kx) (6.18)

with A = (1/2 + P ), B = (1/2 + Q). One has to note that k · (a + b) = 2kx and

k · (a−b) = 2ky. The mean field parameters P , Q and χ are determined self-consistently

by solving the following saddle point equations:
〈

∂Ĥ
∂P

〉

= 0 ,

〈

∂Ĥ
∂Q

〉

= 0 and

〈

∂Ĥ
∂χ

〉

= 0 . (6.19)

In the range of couplings considered, one finds that the total energy Etot is minimized for

χ = π, thereby favoring a π-flux phase. The total energy per site depending on the mean

field parameter χ is explicitly shown in Fig. 6.3(a). For the π-flux, the dispersion relation

now takes the simple form

E±(k) = ±
√

J2
⊥A

2 + 4J2
‖B

2 sin2(kx) (6.20)
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6.1 Jordan-Wigner Mean Field Approach

(a) Dispersion relation (b) Spin gap

Figure 6.4: (a) Results of the ladder system for the spectra of the spinless fermions for different

couplings within the Jordan-Wigner mean field approach for flux phase χ = π. (b) Results for the

spin gap ∆ as a function of coupling J⊥/J‖. In the ladder system the gap opens linearly.

and the self-consistent equations obtained from Eq. (6.19) reduce to

Q =
1

2L

∑

k

J‖(2Q + 1) sin2(kx)

2E+(k)
(6.21)

P =
1

2L

∑

k

J⊥(2P + 1)

4E+(k)
. (6.22)

Solving these equations numerically, one obtains the dispersion relation for various values

of J⊥/J‖ as depicted in Fig. 6.4(a). In the spinless fermion language, one is considering

the half-filled case or equivalently the zero magnetization case in terms of spins. As

apparent, a particle-hole gap emerges at finite values of |J⊥|/J‖ 6= 0. Within the mean

field approximation developed here, the spin gap is given by

∆ = |J⊥ (1 + 2P )| . (6.23)

The spin gap is plotted in Fig. 6.3(b) for both, FM (J⊥ > 0) and AF (J⊥ < 0) rungs cou-

plings. To extract the asymptotic behavior at small J⊥, the data is fitted to a polynomial

form: αJ⊥ + βJ2
⊥ + · · · . The numerical results are consistent with α 6= 0 irrespective of

the sign of J⊥ thereby suggesting a gap

∆ ∝ |J⊥| (6.24)

at low |J⊥|. Hence, the simple mean field approach is consistent (up to logarithmic cor-

rections) with bosonization [35] and quantum Monte Carlo simulations [95].
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6.1.2 1D Kondo Necklace

Starting from the ladder system in Eq. (6.9), the mean field calculations for the Kondo

necklace system follow by replacing D†(2) with zero:

Ĥ = −J⊥
2

L
∑

i=1

{

D̂
†(⊥)
i D̂

(⊥)
i + D̂

(⊥)
i D̂

†(⊥)
i

}

+
J⊥
2

L
∑

i=1

{

D̂
†(⊥)
i + D̂

(⊥)
i

}

−
J‖
2

L
∑

i=1

{

D̂
†(1)
i,i+1D̂

(1)
i,i+1 + D̂

(1)
i,i+1D̂

†(1)
i,i+1

}

+
J‖
2

L
∑

i=1

{

D̂
†(1)
i,i+1 exp(i πn̂2,i) + D̂

(1)
i,i+1 exp(− i πn̂2,i)

}

. (6.25)

To proceed the following mean field ansatz is taken:

〈D†(⊥)
i 〉 = Pei φ , 〈D†(1)

i,j 〉 = Qei χ and 〈n̂α,i〉 =
1

2
, (6.26)

where again P and Q are real and positive. With the unit cell defined in Fig. 6.2(d) and

the corresponding spinless fermion operators, c†i and d†i , for the two orbitals within the

unit cell, the mean field Hamiltonian reads

Ĥ = J⊥

L
∑

i=1

{

Ãĉ†i d̂i + H. c.
}

+ J‖

L
∑

i=1

{

B̃ĉ†i ĉi+1 + H. c.
}

+ J⊥LP
2 + J‖LQ

2 .

Here, Ã =
(

1
2 − Pe− iφ

)

and B̃ =
(

i
2 −Qe− iχ

)

. After applying a Fourier transformation

the Hamiltonian takes the following non-diagonal form:

Ĥ =
∑

k

(

ĉ†k , d̂
†
k

)





ω(k) ε

ε 0









ĉk

d̂k



+K (6.27)

with K = J⊥LP 2 + J‖LQ
2. The Hamilton matrix elements are determined by

ω(k) = J‖ (sin(k) − 2Q cos(k + χ)) and

ε = J⊥
(

1
2 − Pe− iφ

)

. (6.28)

Diagonalization of the Hamiltonian finally results in a hybridized band structure:

E±(k) =
ω(k)

2
±

√

(

ω(k)

2

)2

+ |ε|2 . (6.29)

The mean field parameters P , Q, φ and χ are determined by the following four saddle

point equations:
〈

∂Ĥ
∂P

〉

= 0 ,

〈

∂Ĥ
∂Q

〉

= 0 ,

〈

∂Ĥ
∂φ

〉

= 0 and

〈

∂Ĥ
∂χ

〉

= 0 . (6.30)
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6.1 Jordan-Wigner Mean Field Approach

(a) J⊥/J‖ = −0.5 (b) J⊥/J‖ = 0.5

Figure 6.5: Energy per site with respect to the mean field parameters χ and θ (a) for FM rung

coupling (J⊥/J‖ = −0.5) and (b) for AF rung coupling (J⊥/J‖ = 0.5).

The first two saddle point equations lead to the self-consistent equation:

Q =
1

2L

∑

k

J‖ cos(k + χ) (2Q cos(k + χ) − sin(k))

2
√
X

P =
1

2L

∑

k

J⊥ (2P − cos(φ))

2
√
X

, (6.31)

where X is given by

X = J2
⊥
(

1
4 + P 2 − P cos(φ)

)

+ 1
4J

2
‖ (sin(k) − 2Q cos(k + χ))2 . (6.32)

For each fixed set of parameters φ and χ the Eqs. (6.31) are solved self-consistently. Fig. 6.5

shows the energy per site depending on φ and χ. For J⊥ < 0 the total energy is minimal

at χ = π/2 and φ = π/2. However, for J⊥ > 0 the total energy is minimal at χ = π/2

and φ = π.

The hybridized bands are displayed in Fig. 6.6(a) as a function of the FM rung coupling

J⊥. Several comments are in order:

(i) For small J⊥, a flat band is apparent reflecting the macroscopic degeneracy of the

model at θ = π and J⊥ = 0. This leads to a dense spectrum of particle-hole excita-

tions at low energies. This narrow feature indicates a very slow magnon velocity. The

slow spin dynamics again set a new low energy scale in the problem, which becomes

dominant in the low coupling region where it affects the low energy physics signifi-

cantly. In the next section this point of view is confirmed by exact diagonalization

techniques.

(ii) The minimal particle-hole excitation, corresponding to the spin gap in the spin

language, lies at wave vector k = π and yields an indirect gap with momentum
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J⊥/J‖ = −2.0
J⊥/J‖ = −1.0
J⊥/J‖ = −0.1

k

E
(k

)/
J
‖

0 π 2π

2

1

0

-1

-2

(a) Dispersion relation (b) Spin gap

Figure 6.6: (a) Results of the Kondo necklace system for the spectra of the spinless fermions

for different couplings within the Jordan-Wigner mean field approach for flux phase φ = π/2 and

χ = π/2. (b) Results for the spin gap ∆ as a function of coupling J⊥/J‖. In the Kondo necklace

system the gap opens as ∆ ∝ J2
⊥ for FM and AF rung couplings.

transfer. It is given by

∆ = E+(3π/2) − E−(π/2) . (6.33)

and represented as a function of J⊥ in Fig. 6.6(b). Fitting the data to a polynomial

form, one finds

∆ ∝ |J⊥|2 . (6.34)

Hence, the mean field theory for the ladder and Kondo necklace systems show radically

different behaviors for the spin gap at low |J⊥|.

6.2 Exact Diagonalization Analysis

In this section the SSH model is analyzed by means of exact diagonalization (ED) tech-

niques using the Lanczos algorithm [1, 96] as introduced in chapter 4. Even though the

ED method only enables computation of small systems, it allows to analyze the very weak

coupling region of the model and, as demonstrated below, it yields quite reasonable and

conclusive results. The analysis starts with the determination of the excitation spectra of

the magnons. Therefor one computes the dynamical spin structure factor S(q, ω) which

reads [see Eq. 4.13]

S(q, ω) =
∑

i

|〈ϕi|Ŝ+
q |ϕ0〉|2δ (ω − (Ei − E0)) , (6.35)
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6.2 Exact Diagonalization Analysis

(a) Isotropic Ladder system (θ = 0)

(b) Kondo necklace system (θ = π)

Figure 6.7: Dynamical spin susceptibility in the weak coupling limit obtained with ED techniques

on a 2 × 12 lattice: (a) isotropic ladder system (θ = 0) and (b) Kondo necklace system (θ = π).

In both cases a broadening of s = 0.1J‖ is chosen. The red lines and blue lines correspond to the

bonding (py = 0) and anti-bonding configuration (py = π), respectively.

where the sum runs over all eigenstates |φi〉 of the Hamiltonian with eigenenergies Ei.

Ŝ+
q denotes the spin-flip operator in momentum space. Since within the ED methods one

deals with a discrete Hilbert space, in the following figures the δ-peaks of Eq. (6.35) are

displayed by a Lorentz curve

δ (ω − (Ei −E0)) → f(ω) =
1

π

1

s2 + (ω − (Ei − E0))2
(6.36)

with a broadening of s = 0.1J‖. Fig. 6.7 presents the spin excitation spectrum for the

isotropic ladder (θ = 0) and the Kondo necklace model (θ = π) in the weak coupling

region. More precisely, it shows the dynamical spin structure factor depending on the

momentum qx along the ladder for both the bonding (qy = 0) and anti-bonding (qy = π)
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Figure 6.8: ED results for the band-

width W of the low energy feature in

the Kondo necklace model (θ = π).

The effective SN interaction yields a

bandwidth proportional to J2
⊥. The

data are fitted to the form W ∝ J2
⊥.

L = 12

L = 8

|J⊥/J||

W
/
J
‖

0.020.0150.010.0050

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0

configuration. For the ladder case, the dynamical spin structure factor shows features of

the two spinon continuum of a single spin-1/2 chain [56] for both the bonding as well as

the anti-bonding case. Such a continuum is well reproduced by the mean field theory, and

corresponds to the particle-hole continuum stemming from the Hamiltonian of Eq. (6.17)

with band structure of Fig. 6.4(a). One should note that the bonding combination, S(q, ω),

has slightly lower energy due to the weak ferromagnetic coupling between the chains.

As apparent in Fig 6.7(b) and as already seen within the Jordan-Wigner mean field ap-

proach a narrow band emerges for the Kondo necklace model. One [97] interprets this new

low energy scale as a consequence of a Suhl-Nakamura (SN) interaction [36, 37, 38]. The

SN interaction describes an effective coupling between the dangling spins along the second

leg via the AF coupled spins on the first leg. Comparable with an RKKY [16, 17, 18, 19]

interaction, where itinerant electrons mediate a long-range spin-spin interaction, the SN

coupling causes spin-spin correlation with very slow decay. This long range interaction

will be confirmed later in subsection 6.3.1. Due to the mediation of the SN interaction by

the coupling on the rungs, in second order perturbation theory the effective SN coupling

JSN takes the form

JSN ∝ J2
⊥χ(q, ω = 0) , (6.37)

where χ(q, ω = 0) is the spin susceptibility of the spin-1/2 chain. Thus, in the weak

coupling region the width W of the low energy feature defined as the differences in energy

between the low energy maxima at qx = π and qx = π/2 for θ = π should scale as

J2
⊥/J‖, too. This scaling behavior in the weak coupling region can be seen in Fig. 6.8 for

small lattice sizes. By means of ED techniques the spin gap depending on the interleg

coupling J⊥ for small system sizes is also calculated. Unfortunately, for the ladder system

(θ = 0) and systems with θ < π size scaling becomes worse with decreasing coupling [see

Fig. 6.9(a)] and an interpolation to the thermodynamic limit is not feasible.
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(a) Spin gap for ladder system (θ = 0) (b) Spin gap for Kondo necklace (θ = π)

(c) Size scaling (d) Point of inflection

Figure 6.9: Opening of the spin gap for (a) the ladder system (θ = 0) and (b) the Kondo necklace

(θ = π) obtained by exact diagonalization techniques for different system sizes 2×L. (c) Size scaling

for the Kondo necklace system. An extrapolation to the thermodynamic limit is not feasible. (d)

Point of inflection as a function of inverse system size in the Kondo necklace model.

However, for θ = π the data for different system sizes seem to collapse in the very weak

coupling limit. Even though a systematic size scaling is delicate as demonstrated in

Fig. 6.9(c), the overall behavior of the spin gap as a function of interleg coupling J⊥
seems to be similar for all considered lattice sizes. Fig. 6.9(b) depicts the spin gap ∆

depending on the coupling J⊥/J‖ for different system sizes 2 × L. As apparent, in the

weak coupling region and for all shown system sizes the spin gap as a function of J⊥
evolves with a positive curvature. Since in the further development of the spin gap a

point of inflection is present, the spin gap converges asymptotically towards a constant

value for |J⊥| → ∞. The point of inflection depending on the system size is depicted in
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Fig. 6.9(d). Although the point of inflection initially decreases for small system sizes, it

increases again for larger system sizes. Therefore one may suggest that indeed the point of

inflection is still present in the thermodynamic limit. A rough estimate locates the point

of inflection around |J⊥/J‖| ∼ 0.5. Consequently, below this value the spin gap evolves as

∆ ∝ (J⊥)α with α > 1. The data of Fig. 6.9(b) in the weak coupling region is fitted to

this form. For all considered lattice sizes one obtains a critical exponent of α ≃ 2. This

result confirms the differences to the scaling behavior of the spin gap in the ladder system,

where it is widely accepted that the gap opens linearly with increasing coupling [35, 95].

Equally to the mean field approach in the Kondo necklace model the spin gap seems to

open quadratically depending on J⊥.

Due to the huge density of energy levels in the low coupling region of the Kondo necklace

model [see Fig. C.3(a)], difficulties in the convergence of the eigenenergies arise. Therefore,

an elaboration of the analysis of the convergence behavior within the ED method by

Lanczos iterations is given in appendix C.

6.3 Quantum Monte Carlo Analysis

Since the energy scales for the Kondo necklace model are very small, ED methods proved

to be very useful in the weak coupling region |J⊥| ≫ J‖. However, to extend the analysis

to large system sizes quantum Monte Carlo (QMC) methods are also used with simulations

performed at finite inverse temperature β = 1/T [97]. In the calculations two variants of

the loop algorithm are applied. For the spin-spin correlation function and for the string

order parameter discussed later a discrete time algorithm [39] is used. From the spin-spin

correlation function one can then extract the spectral function via stochastic analytical

continuation schemes [81, 98]. For the spin gap calculation the continuous time loop

algorithm of ALPS [99, 100] is applied. Here, the spin gap is calculated via a second

moment estimator of the correlation length in imaginary time. For a detailed description

the reader is referred to Refs. [29, 101].

6.3.1 Spin-Spin Correlations

The QMC analysis starts with a discussion of the spin-spin correlation function. In sec-

tion 6.2 the occurrence of the narrow band in the weak coupling spectrum of the Kondo

necklace model is interpreted by a long-range SN interaction with a characteristic length

scale ξ. On length scales |i−j| > ξ one expects that the static spin-spin correlations decay

exponentially:

〈Ŝz
α,iŜ

z
α,j〉 ∝ (−1)|i−j||i− j|−γ exp(−|i− j|/ξ) . (6.38)
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(a) Correlations on leg 1 (b) Correlations on leg 2

Figure 6.10: Static spin-spin correlation function (a) on the first leg and (b) on the second leg

for different couplings J⊥/J‖. For J⊥/J‖ = −0.5 an exponential decay [fit according Eq. (6.38)]

with correlation length ξ ≃ 115 is found, whereas for J⊥/J‖ = −0.3 the correlation length is larger

than the system size. Thus, for very weak couplings the correlation function decays due to the SN

interaction as 〈Ŝz
α,iŜ

z
α,j〉 ∝ (−1)|i−j||i− j|−γ with γ ≃ 1/3.

For |i− j| < ξ the static spin-spin correlation function follows a slow power law due to the

dominating SN interaction, precisely

〈Ŝz
α,iŜ

z
α,j〉 ∝ (−1)|i−j||i− j|−γ for |i− j| ≪ ξ . (6.39)

with γ ≃ 1/3 stemming from the fit [see Fig. 6.10(b)]. This different scaling behavior

of the static spin-spin correlation function can be seen in Fig. 6.10. For J⊥/J‖ = −0.5 a

correlation length of ξ ≃ 115 is found. Already on this length scale the correlation function

decays exponentially. For decreasing couplings the correlation length ξ rapidly grows and

exceeds the order of the considered system sizes. At J⊥/J‖ = −0.3 the correlation length

is above the system size and only the power law decay caused by the SN interaction is

observable. Since there is profound evidence for the domination of the SN interaction

in the weak coupling region of the Kondo necklace model, the low energy scale linked

to this interaction should also be visible in the magnon excitation spectrum. This can

be obtained from the dynamical spin-spin correlation function in imaginary time τ by

stochastic analytical continuation schemes.

〈Ŝz
q (τ)Ŝz

−q(0)〉 =
1

π

∫

dω
e−τω

1 − e−βω
S(q, ω)

〈R̂z
q(τ)R̂z

−q(0)〉 =
1

π

∫

dω
e−τω

1 − e−βω
R(q, ω) (6.40)

Here, q ≡ qx stands for the momentum in x-direction along the ladder. S(q, ω) denotes

the dynamical spin structure factor for the bonding (qy = 0), R(q, ω) is for the anti-
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(a) S(q, ω) for θ = 0 (b) R(q, ω) for θ = 0

(c) S(q, ω) for θ = π (d) R(q, ω) for θ = π

Figure 6.11: QMC results of the bonding (qy = 0) and anti-bonding (qy = π) dynamical spin

susceptibility for the ladder system (θ = 0) (two top panels) and the Kondo necklace system

(θ = π) (two bottom panels) at J⊥/J‖ = −1.0. βJ‖ = 200.0 is taken for the simulations.

bonding (qy = π) combination of the spin operators across the rungs. Ŝz
q and R̂z

q are the

z-components of the spin operators defined before in Eq. (6.2), but in momentum space.

Fig. 6.11 shows the QMC results of the dynamical spin susceptibility for θ = 0 (ladder)

and θ = π (Kondo necklace) with 2 × 100 sites at J⊥/J‖ = −1.0 (βJ‖ = 200). At θ = 0,

inversion symmetry Ŝi,1 ↔ Ŝi,2 holds as already mentioned at the beginning of this chapter:
[

P̂ , Ĥ
]

6= 0, where P̂ is the parity operator which interchanges the leg labeling. Therefore

the ground state and the excited states are symmetric or anti-symmetric. According to

Eq. (6.3) R̂i changes parity whereas Ŝi does not. Since the ground state clearly has even

parity S(q, ω) picks up the dynamics of the triplet excitations across the rungs. For FM

rung couplings J⊥ < 0, one expects low energy spin dynamics represented by S(q, ω).

In the strong coupling limit, S(q, ω) maps onto the spin structure factor of the Haldane

chain. In contrast, R̂i is odd under inversion symmetry and R(q, ω) picks up the singlet

excitations across the rungs. As apparent from Fig. 6.11(b) those excitations are located

at high energy which is set by J⊥ in the strong coupling limit. At θ = π (Kondo necklace),

due to the symmetry breaking mixing of the singlet and triplet formation occurs in the
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6.3 Quantum Monte Carlo Analysis

excitation spectra. As apparent in Fig. 6.11(d), R(q, ω) shows both high and low energy

features. The low energy features again are set by the SN interaction JSN ∝ J2
⊥/J‖ as

shown within the ED calculations of section 6.2.

6.3.2 Spin Gap

Attention is now turned to the analysis of the opening of the spin gap as a function

of the coupling J⊥ for different twist angles θ. Since in the low coupling region of the

Kondo necklace systems very low energy scales and long length scales occur it poses a

great challenge to the numerics. For the presented data simulations are carried out up to

βJ‖ = 2500.0 and 2×512 spins using the continuous time loop algorithm of ALPS [99, 100].

Fig. 6.12(a) displays the spin gap ∆ over a large range of FM rung couplings J⊥/J‖ for

various twist angles θ. In the strong coupling limit J⊥/J‖ → ∞ the model maps onto the

AF spin-1 Heisenberg chain with effective coupling

Jeff =
J‖
4

(

1 + cos2(θ/2)
)

. (6.41)

The spin gap of the SSH model in units of Jeff should then scale to the Haldane gap

∆H/Jeff = 0.41048(6) [29], irrespective of the angle θ. This behavior is clearly apparent

in Fig. 6.12(a). However, as θ grows from θ = 0 to θ = π the approach to the Haldane

limit becomes slower.

In the weak coupling region the scaling behavior differs depending on the twist angle.

For the ladder system (θ = 0) the data stands in agreement with the independent QMC

calculations of Ref. [95], namely the spin gap opens linearly with respect to the coupling

J⊥ up to logarithmic corrections. Nevertheless, it is beyond the scope of this work to

pin down the exact form of the logarithmic corrections, and the reader is referred to

Ref. [95] for further discussion. Enhancing the twist angle from θ = 0 to θ = π leaves

the spin gap, measured in units of Jeff , next to invariant thereby showing that a small

twist is an irrelevant perturbation. It is noticeable that when increasing the twist angle

for θ = 0 to θ = π/2 at values of |J⊥| < J‖ the spin gap grows [see Fig. 6.12(b)]. This

could be consistent with a logarithmic correction to the gap which depends on the twist.

Here and in what follows the logarithmic corrections are neglected. For θ < θc with

5π/6 . θc . 8π/9 the spin gap still opens linearly. However, as apparent in Fig. 6.12(c)

and Fig. 6.12(d) a linear extrapolation of the data for θ = 8π/9 and θ = π would lead

to a vanishing of the spin gap at a finite critical value J⊥,c. Even though the QMC data

evidently do not imply a quadratic dependence of the spin gap on the coupling J⊥, such

a scenario should be preferred, since both the mean field approach in section 6.1 and the

results obtained by ED methods in section 6.2 suggest an opening of the spin gap given

by ∆ ∝ J2
⊥. This scenario is also consistent with a point of inflection which, according to

the ED results, is located around J⊥/J‖ ≃ 0.5 for the Kondo necklace. If one excludes the
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6 The Spiral Staircase Heisenberg Model

(a) Spin gap ∆ depending on J⊥/J‖

(b) Spin gap ∆ depending on J⊥/J‖ (logarithmic scale)

(c) Critical twist angle (d) Spin gap for θ = π

Figure 6.12: (a,b) QMC results for the spin gap. The gap is rescaled by Jeff =
J‖
4

(

1 + cos2(θ/2)
)

such that in the large-J⊥ limit it converges asymptotically towards the Haldane gap of an AF spin-

1 chain ∆H/Jeff = 0.41048(6) [29]. (c) A different scaling behavior of the spin gap is found for

θc ∼ 5π/6 . . . 8π/9. (d) The dashed line represents a fit of the data to the form ∆ ∝ J2
⊥. The red

solid line is a linear extrapolation of the data. The simulations are carried out up to βJ‖ = 2500.0

and 2 × 512 spins.
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6.3 Quantum Monte Carlo Analysis

possibility of a finite critical coupling J⊥,c, a point of inflection should also be apparent

for the case θ = 8π/9 and in accordance with the Kondo necklace the spin gap presumably

opens quadratically. However, due to the limited amount of data in the weak coupling

region the possibility of an exponential decay cannot be excluded. Anyway, there seems

to be a small region around θ = π where the scaling behavior of the spin gap in the weak

coupling region differs essentially from all other values of θ. In agreement with the data

of Fig. 6.12(c) this crossover seems to be located around 5π/6 . θc . 8π/9. To verify the

existence of a spin gap for all J⊥ 6= 0, in the following subsection the analysis of the sting

order parameters introduced in section 2.4 is presented.

6.3.3 String Order Parameters

In the strong coupling region the system maps onto an effective spin-1 chain, irrespective

of the twist angle θ. Thus, the ground state can be understood as a valence-bond solid

(VBS) [59, 60]. In the VBS state the spins on a rung form triplets in such a way that if one

goes along the ladder and neglects all triplets with magnetic quantum number m = 0 one

finds a kind of Néel order with an alternating z-component of the total spin. Therefore

this state is characterized by a hidden AF order, that indicates the Haldane phase of an

effective spin-1 chain. To show that the system remains in the Haldane phase for all

couplings J⊥ 6= 0 and all angles θ the string order parameters as introduced in section 2.4

are determined. For finite systems the string order parameters read

Os =
〈

Ŝz
n0

exp
[

iπ

n0+L/2
∑

i=n0

Ŝz
i

]

Ŝz
n0+L/2

〉

OH =
〈

exp
[

iπ

n0+L/2
∑

i=n0

Ŝz
i

]〉

(6.42)

with Ŝz
i = Ŝz

1,i + Ŝz
2,i. n0 stands for an arbitrary rung and L denotes the system length.

Whereas both order parameter are finite for true Néel order, the order parameter OH is

zero for hidden magnetic order.

Figs. 6.13(a) to 6.13(c) depict both order parameters, Os and OH , depending on the

coupling J⊥/J‖. In the strong coupling region the system is certainly in the Haldane

phase irrespective of the twist angle θ indicated by Os > 0 and OH = 0. Even if the

order parameter Os decreases with decreasing coupling J⊥ for the isotropic ladder system

(θ = 0) and also apparently for the case θ = 8π/9 it remains finite within the whole

coupling region. In addition the order parameter OH is zero in the weak coupling region,

thus indicating that the system is well described by the Haldane physics. However, the

situation for the Kondo necklace is more delicate. Here the bare data in Fig. 6.13(c)

suggest that the string order parameter OH becomes finite for small couplings.
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6 The Spiral Staircase Heisenberg Model

(a) SOPs for θ = 0 (b) SOPs for θ = 8π/9

(c) SOPs for θ = π

(d) Size scaling for θ = 8π/9 and J⊥/J‖ = −0.2 (e) Size scaling for θ = π and J⊥/J‖ = −0.3

Figure 6.13: (a), (b), (c) String order parameters (SOPs) Os and OH depending on the coupling

J⊥ for different twist angle θ. Simulations are carried out up to βJ‖ = 7000 (∆τJ‖ = 0.02).

(d), (e) Finite size scaling of the order parameters. The data for OH are fitted to the form

OH ∝ L−α exp(−J/ξ).
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6.3 Quantum Monte Carlo Analysis

Admittedly as demonstrated in subsection 6.3.1 the correlation length ξ exceeds the lattice

length for weak couplings and thus finite size effects are still present. In particular when

the lattice size is smaller than the correlation length, both OH and Os take non-zero

values, since the very slow decay of the spin correlations mimics Ising type order. As the

system size grows beyond the correlation length, OH decreases exponentially whereas Os

in enhanced. Those size effects are explicitly shown in Fig. 6.13(d) for the parameter set

J⊥/J‖ = −0.2 and θ = 8π/9 where L≫ ξ and in Fig. 6.13(e) for the parameter set J⊥/J‖ =

−0.3 and θ = π where the maximal system size barely exceeds the estimated correlation

length. Taking those size effects into account, one concludes that in the thermodynamic

limit, only the string order parameter Os is finite in the whole (θ, J⊥) plane.

A detailed elaboration of finite size scaling of the string order parameters is given in

appendix B. There, one also finds an analysis of temperature effects on the string order

parameters.
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Summary

In this work one (1D) and two dimensional (2D) quan-

tum spin systems as described by the Heisenberg model

were studied. Depending on dimensionality, coupling ra-

tios and lattice topology those systems show various states

or phases.

In a first part the bilayer Heisenberg model (BHM) and

the 2D Kondo necklace model (KNM) were investigated.

Whereas in the BHM the spins on both layer interact di-

rectly via an antiferromagnetic (AF) exchange coupling J‖,

the spins in the second layer of the KNM just couple via

an RKKY interaction mediated by the AF coupled spins

on the first layer. It was shown that both models exhibit

a quantum phase transition between an antiferromagneti-

cally ordered phase and a disordered phase triggered by the

interlayer coupling J⊥. However, the missing AF coupling

within the second layer of the KNM displaces the quantum

critical point towards smaller values of J⊥. In this work

this was shown by measuring the spin stiffness within large

scale quantum Monte Carlo (QMC) simulations.

Deep in the disordered phase the excitations are well de-

scribed by magnons with a cosine like dispersion relation

and a minimum gap at the AF wave vector q = (π, π). De-

creasing the coupling J⊥ the spin gap progressively closes

and at the critical point the magnons condense at the AF

wave vector to form the order of the ordered phase.

Quantum phase transition

Condensation of triplets
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Summary

Spectra of doped hole

Quasiparticle residue for BHM

SSH model

In a second step the systems were doped with a single

hole. It was shown that in the weak coupling region

(J⊥ < J‖) the single hole dispersion relation differs essen-

tially between both models. For large interlayer coupling

the dispersion has a cosine structure with maximum at

p = (π, π) where p stands for the hole momentum. How-

ever, in the BHM for decreasing coupling the maximum

of the dispersion drifts towards p = (π/2, π/2), whereas in

the KNM the dispersion relation preserves its maximum at

p = (π, π). The behavior within the KNM is very similar to

that of the Kondo lattice model. Here, the localized spins

remain partially screened and the strong coupling physics

in the single hole dispersion relation is present down to ar-

bitrary low interlayer couplings.

The analysis also focused on the coupling of this single

doped hole to the magnons across the quantum phase tran-

sition. Within a bond mean field approach it was shown

that only the hole at rest couples to critical fluctuations.

Within a self-consistent Born approximation for the BHM

it was shown that this coupling leads to a vanishing quasi-

particle residue at the critical coupling J⊥,c of the phase

transition. An attempt was made to confirm this point

with QMC simulations. In the presented results the accu-

racy of the single particle Green’s function at large imagi-

nary time was limited. With these limitations no convinc-

ing evidence was found for a vanishing of the quasiparticle

residue at the critical point for a static and mobile hole in

the BHM as well as for a mobile hole in the KNM.

In the second part of this work attention was turned to the

1D spiral staircase Heisenberg (SSH) model. Here, two an-

tiferromagnetically coupled (J‖) spin-1/2 chains with fer-

romagnetic interchain coupling J⊥ form a spin ladder. A

continuous twist deformation along the first leg, denoted

by the twist angle θ, rescales the AF coupling along the

second leg to the form J‖ cos2(θ/2).

94



This model is of particular interest since it mediates be-

tween a spin-1/2 chain and an effective spin-1 chain. Mo-

tivated by the Haldane conjecture, which states that anti-

ferromagnetically coupled half-integer spin chains are gap-

less whereas integer spin chains have a gap, the crossover

between the ungapped and gapped phase can be studied

using the SSH model. Hence, the primary question was

the opening of the spin gap as a function of the interchain

coupling J⊥.

First, the model was tackled by a Jordan-Wigner mean

field calculation. Already at this simple level the scaling

behavior of the spin gap differs essentially between the

two extreme cases, the isotropic ladder (θ = 0) and the

1D Kondo necklace (θ = π). Whereas in the isotropic

ladder the gap opens linearly with respect to J⊥, in the

Kondo necklace it was found to have a quadratic depen-

dency in the weak coupling region. The results are essen-

tially affected by the topology of the systems. The ladder

topology consists of closed paths where – in terms of the

Jordan-Wigner approach – spinless fermions can circulate

allowing for a π-flux phase. Such a solution is not possible

in the 1D Kondo necklace model. Here a hybridized band

structure occurs, composed of a flat band, accounting for

the dangling spins, and a cosine band, which leads to an

indirect spin gap.

The different scaling behavior was confirmed with exact

diagonalization techniques, which also reveal a narrow fea-

ture in the spin excitation spectrum of the Kondo necklace

for small couplings. This feature indicates a very slow spin

velocity and introduces a new low energy scale into the

problem. This new energy scale can be explained by a

Suhl-Nakamura (SN) interaction, which – comparable to

the RKKY interaction – causes long-range spin correla-

tions which decay according to a power law. This long-

range order was confirmed within large scale QMC simu-

lations, thus supporting the view of the occurrence of the

SN interaction.

Hybridized bands

Long ranged SN interaction

95



Summary

Opening of the spin gap

By means of QMC simulations the opening of the spin gap

depending on the twist angle θ was investigated. Although

the QMC data did not explicitly show a quadratic opening

of the spin gap for θ = π, it implies that the spin gap scales

as ∆ ∝ (J⊥)α with at least α > 1 in order to exclude a

finite critical coupling where the spin gap vanishes. In ad-

dition such scaling behavior is also observable in the close

vicinity around θ = π. The crossover to a linear opening

was located between θ = 5π/6 and θ = 8π/9.

To complete this view the string order parameters, which

indicate the order of the system, were also calculated

within the QMC approach. It was found that, independent

of the choice of the parameter set, the system remains in

the so-called Haldane phase which is gapped and charac-

terized by a hidden AF order. Thus, the occurrence of a

finite critical coupling where the spin gap closes can be ex-

cluded and a different scaling behavior depending on θ is

obvious.
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Calculation of First Order

Self-Energy A
In the following the calculation of the first order self-energy at zero temperature (β → ∞)

given in Eq. (5.47)

Σ(1)(p, ω) = i

∫

d2q

∫

dη g2
b (q) G0(p + q, ω + η) D0(−q,−η) (A.1)

is shown explicitly. The free propagators for the hole G0 and for the magnons D0 are

taken from Eq. (5.48) and transformed via analytic continuation from the real axis to the

imaginary axis by setting ω + i 0+ → iωn, where the bosonic Matsubara frequencies are

defined as ωn = 2πn/β with n ∈ Z:

G0(p + q, iωn + i ηn) =
1

iωn + i ηn − ε(p + q)

D0(−q,− i ηn) =
1

− i ηn − Ω(q)
. (A.2)

Here, the symmetry in the magnon dispersion is used: Ω(q) = Ω(−q). Due to the Wick

rotation onto the imaginary time axis the energy integration in Eq. (A.1) has to be replaced

by a sum over the Matsubara frequencies:

i

∫

dη → − 1

β

∑

i ηn

. (A.3)

The first order self energy then reads

Σ(1)(p, iωn) =

∫

d2q g2
b (q)

1

β

∑

i ηn

1

iωn + i ηn − ε(p + q)

1

i ηn + Ω(q)
. (A.4)

The evaluation of the bosonic Matsubara sum, given by

MS =
1

β

∑

i ηn

f(i ηn) with f(i η) =
1

iωn + i ηn − ε(p + q)

1

i ηn + Ω(q)
(A.5)

follows the standard calculation pointed out, for example, in Ref. [102]. By using the

Cauchy integral formula the Matsubara sum can be rewritten as

MS =
1

2πβ

∑

n

∮

cn

dz
f(z)

eβz − 1
(A.6)
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A Calculation of First Order Self-Energy

(a) Contours cn (b) Contour C

Figure A.1: Integration paths. The black solid dots mark the singularities of the Bose-Einstein

distribution, which correspond to the Matsubara frequencies i ηn. The crosses indicates the singu-

larities of f(z).

where the cn’s denote infinitely small circles around the singularities of the function

g(z) =
f(z)

eβz − 1
(A.7)

As apparent, the singularities lie on the imaginary time axis [see Fig. A.1(a)] exactly at

the Matsubara frequencies i ηn. Since |g(z)| → 0 faster than |z|−1 as |z| → ∞ Jordan’s

lemma states that the circles cn of Eq. (A.6) can be substituted by the contour shown in

Fig. A.1(b). Thus,

MS =
1

2πβ

∫

C
dz

f(z)

eβz − 1
. (A.8)

Now, only singularities of the function f(z) lie within the contour C. By using the residue

theorem the integral of Eq. (A.8) can be evaluated:

MS = −
∑

i

Res [g(z), zi] . (A.9)

The minus sign occurs since the contour C is orientated clockwise. zi denotes the singu-

larities of f(z) which are

z1 = ε(p + q) − iωn and z2 = −Ω(q) . (A.10)

The corresponding residue are given by

Res [g(z), z1] =
1

e− iβωneβε(p+q) − 1

1

ε(p + q) − iωn + Ω(q)
and (A.11)

Res [g(z), z2] =
1

e−Ω(q) − 1

1

iωn − Ω(q) − ε(p + q)
. (A.12)
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The self-energy is to be calculated at zero temperature, therefore the limit β → ∞ should

now be taken. Since ε(p + q) > 0 and Ω(q) > 0 the residue (A.11) vanishes in this limit:

Res [g(z), z1] → 0 for β → ∞, and the Matsubara sum reduces to

MS =
1

iωn − Ω(q) − ε(p + q)
. (A.13)

Finally one obtains the first order self-energy

Σ(1)(p, iωn) =

∫

d2q g2
b (q)

1

iωn − Ω(q) − ε(p + q)
(A.14)

which corresponds to the form given in Eq. (5.50):

Σ(1)(p, ω) =

∫

d2q g2
b (q)

1

ω − Ω(q) − ε(p + q) + i 0+
. (A.15)
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Scaling Behavior of the

String Order Parameters B
The size and temperature scaling of the string order parameters is very delicate, epecially in

the weak coupling limit |J⊥| ≪ J‖ of the one dimensional Kondo necklace model discussed

in chapter 6. Here, additional data is presented which shows the difficulty in the calculation

of the string order parameters Os and OH .

B.1 Temperature Scaling

For weak ferromagnetic interleg couplings J⊥ one is confronted with very low energy scales,

especially at θ = π. In order to resolve them one has to carry out simulations on very large

system sizes and at very low temperatures. The following figures demonstrate the huge

effort that is needed to resolve such low energy scales. Fig. B.1(a) depicts the function

defined as

Gs(n) =
〈

Ŝz
n0

exp

(

i π

n0+n
∑

i=n0

Ŝz
i

)

Ŝz
n0+n

〉

(B.1)

for the Kondo necklace model at J⊥/J‖ = −0.4. Here, Ŝz
i = Ŝz

1,i + Ŝz
2,i where Ŝz

α,i

is the z-component of the spin operator acting on rung i and leg α. n0 denotes an

arbitrary rung. The string order parameter Os is then given by Os = limn→∞Gs(n).

Since within the quantum Monte Carlo simulations one deals with finite system sizes the

string order parameter is determined by Os = Gs(n)|n=L/2 where L is the linear system

size. Fig. B.1(b) shows the string order parameter extracted from the data given in

Fig. B.1(a). As apparent for J⊥/J‖ = −0.4 in the Kondo necklace system temperatures

below T/J‖ = 1/5000 are needed to ensure convergence of the string order parameter Os.

For comparison Fig. B.1(c) shows the temperature scaling in the isotropic ladder system.

Here, the string order parameter for J⊥/J‖ = −0.4 seems to be converged in temperature

already at βJ‖ ≃ 1400. However, it is noticeable that the statistics in the ladder system

are worse than in the Kondo necklace system and lead to much larger error bars.

Fig. B.2 presents more data for the temperature scaling of the Kondo necklace model.
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B Scaling Behavior of the String Order Parameters

(a) Gs(n) for various temperatures at J⊥/J‖ = −0.4

(b) Kondo necklace at J⊥/J‖ = −0.4 (c) Ladder system

Figure B.1: Temperature scaling of the string order parameter Os: (a) Function Gs(n) as defined

in Eq. (B.1) for various inverse temperatures β in the Kondo necklace at J⊥/J‖ = −0.4. The

string order parameter is extracted at n = 200: Os = Gs(n)|n=200, and plotted in Fig. B.1(b). (c)

For comparison, Os for the isotropic ladder system. All simulations are carried out with a 2× 400

system.

(a) Kondo necklace at J⊥/J‖ = −0.3 (b) Kondo necklace at J⊥/J‖ = −0.35

Figure B.2: Temperature scaling of the string order parameter Os in the Kondo necklace system.

All simulations are carried out with a 2 × 400 system. (∆τJ‖ = 0.02)
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B.2 Size Scaling

B.2 Size Scaling

The following figures show the size scaling of the string order parameters Os and OH . The

order parameter OH is defined according to Os:

OH = GH(n)|n=L/2 with GH(n) =
〈

exp



iπ

n0+n
∑

j=n0

, Ŝz
j





〉

(B.2)

where n0 is an arbitrary rung. The results suggest that Os remains finite for all couplings,

whereas OH is zero in the thermodynamic limit. The data for the string order parameter

OH is fitted to the form

OH ∝ L−α exp(−L/ξ) (B.3)

where ξ denotes the correlation length.

(a) J⊥/J‖ = −1.0 (b) J⊥/J‖ = −0.4

(c) J⊥/J‖ = −0.25 (d) J⊥/J‖ = −0.2

Figure B.3: Size scaling in the Kondo necklace model (θ = π). The data for the string order

parameter OH is fitted to the form given in Eq. (B.3). (∆τJ‖ = 0.02)
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B Scaling Behavior of the String Order Parameters

(a) J⊥/J‖ = −0.3 (b) J⊥/J‖ = −0.4

Figure B.4: Size scaling for the case θ = 8π/9. The data for the string order parameter OH is

fitted to the form given in Eq. (B.3). (∆τJ‖ = 0.02)
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Convergence of the Lanc-

zos Method C

Usually, n ≃ 100 iterations within the Lanczos method are sufficient in order to obtain

convergence to the lowest eigenvalue. Fig. C.1 demonstrates the convergence behavior for

a typical parameter set in the spiral staircase Heisenberg model.

As apparent in Fig. C.1, the error in the ground state energy ǫ0 for J⊥/J‖ = −1.0 in the

Kondo necklace on a 2 × 12 lattice after 100 iterations is less than ∆ǫ/(2LJ‖) = 10−11.

However, with decreasing interleg coupling J⊥ the resolution in energy becomes more

difficult due to the low energy scales. This is also reflected by the slow convergence to

the ground state energy for weak couplings as shown in Fig. C.2(c) and Fig. C.2(d). In

particular, the convergence of the energy within the Kondo necklace model is very slow.

The convergence is affected by the energy level separations. By increasing twist angle θ

the energy levels collapse [see Fig. C.3(a)]. Thus the convergence to the ground state level

is more difficult in the Kondo necklace model (θ = π) than for the isotropic ladder (θ = 0).

This is shown in Fig. C.3(b).

Besides the ground state energy the energy of the second lowest energy level also has to be

known in order to determine the spin gap. In the case of the spiral staircase Heisenberg

model the second lowest energy level corresponds to triplet excitations. Thus, due to

symmetry arguments it can be obtained from the ground state energy of the m = ±1

block in the Hamilton matrix since the actual ground state is a m = 0 singlet state. Here,

m denotes the magnetic quantum number of the z-component of the total spin.

The second lowest energy can also be calculated within the Lanczos iterations, but con-

verges more slowly than the ground state energy. This can be seen in Fig. C.4. Further-

more, after the second lowest energy is converged it drops down to the ground state energy

and causes an artificial degeneracy. This may induce confusion in the allocation of the

energy levels.
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C Convergence of the Lanczos Method

Figure C.1: Ground state energy ǫ0 as a function of Lanczos iterations n for the Kondo necklace

model at J⊥/J‖ = −1.0 on a 2×12 lattice. The inset depicts the difference ∆ǫ between the ground

state energy after n iterations and the exact ground state energy for n→ ∞.

(a) Size dependent convergence (b) Size dependent convergence (logscale)

(c) Coupling dependent convergence (d) Coupling dependent convergence (logscale)

Figure C.2: (a,c) Convergence to the ground state energy per site ǫ0/(LJ‖) for different lattice

sizes (J⊥/J‖ = −0.1) and different couplings (L = 10), respectively. (b,d) Error ∆ǫ/(2LJ‖) after

n iterations.
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(a) Collapse of energy levels (b) Convergence for different twist angles θ

Figure C.3: (a) In the Kondo necklace model the energy levels collapse which causes difficulties

in the determination of the ground state energy. (L = 6, J⊥/J‖ = −0.01) (b) Error ∆ǫ/J‖ in the

ground state energy after n iterations for different twist angles θ. (L = 10, J⊥/J‖ = −0.01)

Figure C.4: Artificial degeneracy of the ground state. For large n (number of iterations) higher

energies drop down to the ground state energy. (J⊥/J‖ = −0.5, L = 10, θ = π)
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Loop Length and Correla-

tion Time D
Within the path integral quantum Monte Carlo simulations the loop algorithm is a very

efficient updating scheme, which leads to small autocorrelation times τc. The autocorre-

lation function is defined as

C0(t) =

1
N

∑N
s=1 O(xs)O(xs+t) −

(

1
N

∑N
s=1 O(xs)

)2

1
N

∑N
s=1 O(xs)2 −

(

1
N

∑N
s=1 O(xs)

)2 , (D.1)

where O is an observable for configuration xs at the s-th step within the Markov process.

Note, every step corresponds to a loop update. N denotes the number of considered data

points. One expects that the autocorrelation function decays as [40]

C0(t) ∝ exp (−t/τ0) . (D.2)

The efficiency of the updating scheme is determined by the length of the loops. The loop

length is defined as the number of vertices involved in the loop.

D.1 Correlation Time for BHM

Fig. D.1(a) presents a distribution of the length of the loops for various couplings in the

bilayer Heisenberg model. As apparent the length of the loops on average increases for de-

creasing coupling. Furthermore, the quantum critical point located at J⊥/J‖ = −2.525 [78]

is visible by an abrupt increase of the mean loop length as shown in Fig. D.1(b). For

J⊥ → 0 the average length of the loops extends almost to the maximal length correspond-

ing to the number of plaquettes [see Fig. D.1(b)]:

2 × 16 × 16 × 50 × 1

0.05
= 0.512 × 106 . (D.3)

Since the loops are much longer in the low coupling region than for large couplings the

configurations should change faster such that the autocorrelation time decreases. The

correlation time obtained via the spin stiffness can be see in Fig. D.2. Even in the vicinity

of the critical coupling the correlation time is below τ0 ∼ 10.

109



D Loop Length and Correlation Time

(a) Distribution of loop length (b) Loop length on average

Figure D.1: (a) Distribution of the loop length for various couplings in the bilayer Heisenberg

model. The length of the loop is defined as the number of vertices involved in the loop. Each

data sample includes 10 000 loops. (b) Length of the loop on average. The black dashed line

indicates the quantum critical point. Simulations are carried out on a 16×16 lattice at βJ‖ = 50.0

(∆τJ‖ = 0.05).

Figure D.2: Autocorrelation function as defined in Eq. (D.1) for various couplings on a 16 × 16

lattice at βJ‖ = 50.0 (∆τJ‖ = 0.05). The data are fitted according to Eq. (D.2). The fits yield the

following autocorrelation times: τ0 ≃ 1.6 for J⊥/J‖ = 1.0, τ0 ≃ 3.7 for J⊥/J‖ = 2.3 and τ0 ≃ 6.6

for J⊥/J‖ = 2.5.

D.2 Correlation Time for the 1D Kondo Necklace

In Fig. D.3(a) the distribution of the loop length depending on the interchain coupling J⊥
for the 1D Kondo Necklace model is shown. As apparent, the distribution does not change
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D.2 Correlation Time for the 1D Kondo Necklace

noticeably as a function of J⊥. The loop length on average is roughly constant over the

considered coupling range (0.2 ≤ |J⊥|/J‖ ≤ 1.0) [see Fig. D.3(b)]. This is also reflected in

the correlation length. In Fig. D.4 the correlation length determined via the total energy

is depicted. It does not change greatly with J⊥ and is approximately given by τ0 ∼ 10.

(a) Distribution of loop length (b) Loop length on average

Figure D.3: (a) Distribution of the loop length for various couplings in the 1D Kondo necklace.

The length of the loop is defined as the number of vertices which are passed through within one

loop. Each data sample includes 10 000 loops. (b) Length of the loop on average. Simulations are

carried out on a 2 × 50 lattice at βJ‖ = 50.0 (∆τJ‖ = 0.02).

Figure D.4: Autocorrelation function as defined in Eq. (D.1) for various couplings on a 2 × 50

lattice at βJ‖ = 50.0 (∆τJ‖ = 0.02). The data are fitted according to Eq. (D.2). The fits yield

the following autocorrelation times: τ0 ≃ 8.5 for J⊥/J‖ = −0.2, τ0 ≃ 6.6 for J⊥/J‖ = −0.4 and

τ0 ≃ 6.0 for J⊥/J‖ = −0.6.
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