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Abstract

This thesis discusses mainly two Fermionic lattice systems, first a Kondo lattice with

additional Hubbard interaction and second a Hubbard Hamiltonian augmented with ad-

ditional spin and charge interactions.

The first chapter introduces the Quantum Monte Carlo technique, which is then

employed to study the two respective systems. We present an innovation that allows to

calculate time displaced Greens functions more efficiently. The calculation of imaginary-

time-displaced correlation functions with the auxiliary-field projector quantum Monte

Carlo algorithm provides valuable insight (such as spin and charge gaps) into the model

under consideration. Assaad et al. [8] proposed a numerically stable method to compute

those quantities. Although precise, their method is expensive in CPU time. Here we

present an alternative approach which is an order of magnitude quicker, just as precise,

and very simple to implement. The method is based on the observation that for a given

auxiliary field the equal-time Green-function matrix G is a projector: G2 = G.

In the second chapter we consider the Kondo lattice model in two dimensions at half

filling. In addition to the Fermionic hopping integral t and the superexchange coupling

J the role of a Coulomb repulsion U in the conduction band is investigated. We find the

model to display a magnetic order-disorder transition in the U -J plane with a critical

value of Jc which is decreasing as a function of U . The single-particle spectral function

A(~k, ω) is computed across this transition. For all values of J > 0, and apart from

shadow features present in the ordered state, A(~k, ω) remains insensitive to the magnetic

phase transition with the first low-energy hole states residing at momenta ~k = (±π,±π).

As J → 0 the model maps onto the Hubbard Hamiltonian. Only in this limit does

the low-energy spectral weight at ~k = (±π,±π) vanish such that the lowest energy hole

states reside at wave vectors on the magnetic Brillouin-zone boundary. Thus we conclude

that (i) the local screening of impurity spins determines the low-energy behavior of the

spectral function and (ii) one cannot deform continuously the spectral function of the

half-filled Hubbard model at J = 0 to that of the Kondo insulator at J > Jc . Our

results are based on both T = 0 Quantum Monte-Carlo simulations and a bond-operator

mean-field theory.



Abstract V

In the third chapter we investigate the phase diagram of a new model that exhibits a

first order transition between s-wave superconducting and antiferromagnetic phases. The

model, a generalized Hubbard model augmented with competing spin-spin and pair-pair

interactions, was investigated using the projector quantum Monte Carlo method. Upon

varying the Hubbard U from attractive to repulsive, we find a first order phase transition

between superconducting and antiferromagnetic states.
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Zusammenfassung

Die vorliegenden Arbeit beschäftigt sich mit ausgewählten Themen zum Problem der

stark wechselwirkenden Elektronensysteme. Genauer untersuchen wir Kondo- und Hubbard-

Gittermodelle mit Quanten-Monte-Carlo (QMC) Methoden. Somit haben wir es im we-

sentlichen mit den folgenden drei Konzepten zu tun: starke Elektron-Elektron Korrelati-

on, Gittermodelle und der Quanten-Monte-Carlo Technik als nicht perturbative Methode

zur Berechnung von Korrelationsfunktionen auf endlichen Gittern.

Der bei weitem schwierigste der oben genannten Begriffe sind die elektronischen Korre-

lationseffekte bei starker Wechselwirkung. Der erste große Erfolg in der Festkörpertheorie

kam in den frühen Tagen der Quantenmechanik mit dem Pauli-Prinzip und der Fermi-

Dirac Verteilung. Daraus entwickelte sich eine einfache Theorie für nicht wechselwirkende

Systeme mit dem Fermisee als Grundzustand und wohldefinierten Einteilchenanregun-

gen. Der Fermisee beschreibt schon nicht triviale Korrelationen, da er das Pauli-Prinzip

berücksichtigt, demzufolge zwei Elektronen nicht am gleichen Ort sein dürfen. Moderne

Bandstrukturrechnungen, der Struktur nach auch nur effektive Einteilchenmodelle, wer-

den mit erstaunlichem Erfolg angewandt. Man kann Bandstrukturrechnungen sogar noch

so anpassen, dass sie Supraleitung und Bandmagnetismus korrekt wiedergeben, was na-

helegt, daß auch diese Korrelationen mit dem Einteilchenbild verträglich sind. Wie ist das

aber möglich, wenn im nackten Hamiltonoperator die Coulombabstoßung der Elektronen

so groß ist? Und wie ist der Zusammenhang zwischen dem so erfolgreichen Quasiteil-

chenbild und dem ursprünglichen, stark wechselwirkenden System? Anders gefragt, was

unterscheidet Systeme, die dem Quasiteilchenbild entsprechen, von jenen, die es ver-

letzen? Die Fermiflüssigkeitstheorie [59] sucht eine Antwort vom störungstheoretischen

Blickwinkel aus. Für dreidimensionale Systeme mit abgeschirmter Coulombwechselwir-

kung gilt dann laut Fermiflüssigkeitstheorie, daß das niederenergetische Spektrum gut

durch ein System von schwach wechselwirkenden Quasiteilchen beschrieben wird. Die
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Einelektron-Greensfunktion für k Zustände nahe der Fermifläche ist dann durch

Gret (k, ω) =
Zk

ω − εk − iγk

+Gincoh (k, ω)

gegeben, wobei Zk das Quasiteilchengewicht und γk die Dämpfung bezeichnen

γk (ω) ∝ (ω − εk)
2 +O(ω3). (1)

Der inkohärente Hintergrund Gincoh ist eine glatte Funktion in ω mit verschwinden-

dem Beitrag nahe der Fermifläche. Die Aussage (1) spiegelt die Tatsache wieder, daß

der Phasenraum für die Coulomstreuung nahe der Fermifläche wie (ω − µ)2 verschwin-

det. Die Fermiflüssigkeitstheorie demonstriert, daß die obige Quasiteilchenbeschreibung

konsistent mit der diagrammatischen Störungstheorie ist [67, 21]. Weiters beweist das

Luttinger Theorem [66], dass das Fermi-Volumen in jeder Ordnung Störungstheorie in-

variant ist. Daraus folgt, daß das Fermiflüssigkeitsverhalten garantiert ist, solange die

Störungstheorie konvergiert. Umgekehrt ist es natürlich möglich Fermiflüssigkeitsverhalten

zu beobachten, auch wenn die Störungstheorie nicht konvergiert. D.h. Fermiflüssigkeitsverhalten

ist viel allgemeiner als Störungstheorie um den Grenzfall freier Elektronen.

Die wesentlichen Aussagen der Fermiflüssigkeitstheorie sind direkt mit der Phasenrau-

meinschränkung verbunden. Jedoch verbleibt eine möglicherweise große Entartung, die

mit den k-Zuständen an der Fermifläche verbunden ist, und zu Fermiflächeninstabilitäten

führen kann. Falls eine Zweiteilchenwechselwirkung systematisch Elektronenpaare an

der Fermifläche koppelt, wird die Störungstheorie zusammenbrechen. Beispiele für sol-

che Instabilitäten sind die Cooper-Instabilität, das sogenannte “nesting”, die Kohn-

Luttinger Instabilität und die 2kF Instabilität von eindimensionalen Systemen, die der

Phänomenologie der Luttingerflüssigkeit zugrunde liegt. Diese Instabilitäten können zu

geordneten Tieftemperaturphasen führen, wobei die Ordnungstemperatur drei oder vier

Grössenordnungen kleiner ist als die Fermitemperatur. Diese subtile Umordnung des Nie-

derenergiebereichs hin zu einem geordneten Zustand ist sowohl für analytische als auch

numerische Methoden eine Herausforderung.

Typischerweise wird der Begriff “stark korreliert” für Systeme gebraucht, die mit

Bandstrukturmethoden nur schlecht zu beschreiben sind. Eine Liste von typischen, stark

korrelierten Materialien und Phänomenen enthält jedenfalls:

• Übergangsmetalloxide und den Mott-Übergang
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• Selten-Erd Verbindungen und Kondo-Physik

• Fraktionale Quanten-Hall Effekt

• Luttinger Flüssigkeiten (Eindimensionale Systeme)

Als Prototyp für starke Korrelationen kann der Mottisolator gelten. Mott hat schon sehr

früh erkannt [77], daß Elektronen, die sich in einem halbgefüllten Band bewegen, sich

gegenseitig behindern, was bei starke Coulombabstoßung zu vollständiger Lokalisierung

führen kann. Der Wettbewerb zwischen kinetischer Energie (Delokalisierung) und Cou-

lombenergie (Lokalisierung) führt zum Mott-Hubbard Metal-Isolator Übergang. Als Mo-

dell für den Mott Übergang formulierte Hubbard [47] das stark vereinfachte Gittermodell

HU = −t
∑

〈i,j〉,σ

(

c†i,σcj,σ +H.c.
)

+ U
∑

i

ni,↑ni,↓. (2)

Die Freiheitsgrade in der Einheitszelle i werden auf ein einziges Orbital c†i eingeschränkt

und die kinetische Energie wird durch einen einzigen Parameter t beschrieben. Von der

langreichweitigen Coulomb-Wechselwirkung wird ausschließlich die lokale Komponente

berücksichtigt. Dieses vereinfachte Gittersystem dient als minimales Modellsystem um

das Phasendiagramm des Mottübergangs zu studieren. Der Vorzug einer solchen Vor-

gehensweise besteht darin, daß man mit Gleichung (2) ein Benchmark System definiert

hat. Eine Lösung desselben steht aber immer noch aus! Einige exakte Resultate konnten

jedoch für das Hubbard-Modell bewiesen werden. In einer Dimension kann die Hubbard-

kette mit Betheansatzmethoden exakt gelöst werden [32]. Und in zwei Dimensionen gibt

Quanten-Monte-Carlo “numerisch exakte” Resultate für spezielle Punkte im Phasendia-

gram, wie z.B. die isolierende Phase bei halber Füllung. Die Einteilchen-Zustandsdichte

illustriert den Unterschied zum Quasiteilchenbild. Wird das Hubbard U vergrössert, ent-

wickelt sich die Zustandsdichte in einen Quasiteilchenpeak bei niedriger Energie und

die zwei Hubbardbänder bei hohen Energien. Eine komplexe Struktur der Einteilchen-

Spektralfunktion ist wesentliches Merkmal von stark korrelierten Systemen. Ein weiteres

Beispiel ist das eindimensionale Luttinger Modell [68, 73], bei dem die Quasiteilchen-

peaks mit ihrer Polsingularität vollständig verschwinden und in der Greensfunktion zwei

separate Potenzsingularitäten für Spin- und Ladungsanregungen zusammen mit einem

Anregungskontinuum auftauchen.



X ZUSAMMENFASSUNG

Stark korrelierte Systeme können heute allgemein nur durch verschiedene Näherungen

behandelt werden. Jenseits der perturbativen Näherungen, die nur für kleine Störungen

kontrollierbar sind, benützen alle gebräuchlichen Näherungen selbstkonsistente Schema-

ta. Damit können sie flexibler als reine Störungstheorie eingesetzt werden, sind zugleich

aber auch vollkommen unkontrollierte Näherungen und die Struktur der selbstkonsisten-

ten Gleichungen bestimmt in hohem Maße den Charakter der Lösungen. Die Kohn-Sham

Gleichungen in der Dichtefunktionaltheorie (LDA) sind wie die Hartree-Fock Gleichun-

gen Beispiele für Theorien, die von Anfang an auf das Quasiteilchenbild eingeschränkt

sind. Der Versuch, starke Korrelationen adhoc in Bandstrukturrechnungen einzubauen,

führt zu LDA+U [5] und LDA + DMFT [4], wobei die dynamische Molekularfeldtheorie

(DMFT) die exakte Lösung des Anderson Störstellenproblems mit räumlicher Molekular-

feldtheorie verbindet, und im Limes von unendlich vielen Dimensionen exakt wird [35].

Eine andere Möglichkeit sind selbstkonsistente Gleichungen “höherer Ordnung”, wie bei

Bickers [13] (FLEX) und Tremblay [2], wobei auf die Einhaltung von Erhaltungssätzen

geachtet werden muss. Neue “funktionale” Renormierungsgruppenmethoden erlauben im

Regime schwacher Kopplung auch kontrollierte Näherungen [39]. Andere Versuche, starke

Korrelationseffekte im Hubbard Modell zu beschreiben, umfassen die Gutzwiller Metho-

de [38,15] und “slave particle” Rechnungen [19]. Zusammenfassend kann man sagen, daß

mit der Ausnahme von Schwachkopplungs RG alle oben genannten Methoden unkontrol-

lierte Näherungen sind. Abgesehen von den wenigen exakt lösbaren Modellen, stellen also

die “numerisch exakten” Rechnungen die einzigen verlässlichen Resultate zur Verfügung.

Leider muss man aber auch betonen, daß die zwei wichtigsten numerischen Verfahren,

nämlich die Dichte-Matrix Renormierungsgruppe (DMRG) und Quanten-Monte-Carlo,

unter eigenen schweren Einschränkungen leiden. Beide sind auf relativ kleine System-

größen beschränkt. Mit DMRG kann man darüber hinaus nur eindimensionale Systeme

behandeln und QMC funktioniert nur für sehr spezielle Wechselwirkungen, die eine vor-

zeichenfreie Simulation erlauben.

Nun wenden wir uns den Materialien zu. Es wurde schon seit langem erkannt, daß

Bandstrukturtheorie nicht in der Lage ist Übergangsmetalloxide und Seltenerdverbin-

dungen korrekt zu beschreiben. Zusammengenommen stellen diese beiden Gruppen die

Mehrzahl der stark korrelierten Materialien mit ihren faszinierenden Eigenschaften, wie

der großen effektiven Masse, dem Mott-Hubbard Metall-Isolator Übergang, Schwerfermi-
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on Verhalten und der Hochtemperatur-Supraleitung. Das generische Bild wird von den

stark lokalisierten d-Orbitalen für die Übergangsmetalle und den f -Orbitalen für die Sel-

tenerdverbindungen bestimmt. Für die einfachen Übergangsmetalle wie Kupfer liegen

diese lokalisierten Bänder weit unterhalb der Fermienergie und nehmen nicht an nie-

derenergetischen Anregungen teil. Befindet sich das gleiche Kupferatom jedoch in einer

Oxidverbindung, so gibt es sein s-Elektron an den Sauerstoff ab und die d-Elektronen

befinden sich nun auf Ferminiveau und hybridisieren mit den Sauerstoffnachbarn. Somit

können die ursprünglich lokalisierten d-Elektronen nun auf die Nachbarplätze hüpfen.

Die starken Korrelationen sind Folge dieses Wechselspiels von Coulombabstoßung auf

den stark lokalen Orbitalen und der kinetischen Energie, die mit dem Hüpfen zwischen

Sauerstoff- und Metallplätzen verbunden ist. Die Elektronen müssen sich bewegen, um

ihre kinetische Energie zu minimieren, ein Prozess der mit der Quasiteilchendispersion

verbunden ist. Zugleich versuchen dieselben Elektronen, sich auf den stark lokalisierten

Orbitalen aus dem Weg zu gehen.

Bei den Übergangsmetallen sind die Kupferoxide (i.e. La2−xSrxCuO4) wegen ihrer

bekannten Hoch-Tc Supraleitung [11] hervorzuheben; bei den Vanadaten V2O3, das den

klassischen Fall eines Hubbard-Mott Isolators darstellt und bei den Manganaten das

Nd1−xSr1MnO3, ein Doppelaustauschsystem, das orbitale Ordnung entwickeln kann. Die

Klasse der Schwerfermionsysteme wird durch das CexLa1−xCu6 seht gut representiert,

wobei das Ce-f Elektron die wesentliche Rolle spielt. Im Grenzfall hoher Verdünnung und

niedriger Cer-Konzentration wird ein Störstellen-Kondoeffekt beobachtet, wohingegen

das reine CeCu6 bei Temperaturen unter 0.1K ein schweres Quasiteilchenband entwickelt.

Eine ganz andere Klasse von Materialien, in denen ebenfalls stark korreliertes Verhal-

ten beobachtet wird, sind die organischen Systeme mit π-Leitungselektronen, wie zum

Beispiel die κ-(BEDT-TTF)2-X, mit ausgeprägt zweidimensionaler Struktur [60]. Den

Grundbaustein bilden hier die BEDT-TTF Moleküle und die metallischen Eigenschaften

können auf Basis der BEDT-TTF Molekülorbitale gut verstanden werden. Bedenkt man

die Komplexität der Moleküle, funktioniert die “tight-binding” Näherung erstaunlich gut

und es stellt sich die Frage, ob sich Korrelationseffekte ebenfalls auf solch einfachem

Niveau einbauen lassen.

In dieser Arbeit werden einige zweidimensionale fermionische Gittermodelle unter-

sucht, die auf dem Hubbard (2) und dem Kondo-Gittermodell (3) aufbauen. So wie das
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Hubbard Modell ursprünglich zur Beschreibung des Metall-Isolator Übergangs entwickelt

wurde, dient das Kondo-Gittermodell als generisches Modell für die Schwerfermionsyste-

me. In dieser Arbeit werden generell zweidimensionale Gitter untersucht. Die Dimensiona-

lität bestimmt besonders die geordneten Tieftemperaturphasen. Zum Beispiel wurde das

2D Hubbard Modell intensiv als Prototyp für die Hoch-Tc Supraleitung untersucht und

experimentell zeigen La2−xSrxCuO4 oder κ-(BEDT-TTF)2-X ausgeprägte Schichtstruk-

tur. Auf der numerischen Seite sind Quanten-Monte-Carlo Techniken besser zum Studium

zweidimensionaler als eindimensionaler Systeme geeignet, für die numerische RG Metho-

den besser geeignet scheinen. Dreidimensionale Systeme sind andererseits für eine QMC

Rechnung immer noch eine Herausforderung, da bei fermionischen Monte-Carlo Algo-

rithmen die typische Gittergröße 500 Plätze nicht übersteigt, was in drei Dimensionen

maximal ein 8× 8× 8 Gitter zuläßt.

Aufbau

Der Hauptteil der Arbeit ist folgendermaßen gegliedert:

• Im ersten Kapitel wird die verwendete Methode, nämlich Determinanten-Quanten-

Monte-Carlo im Detail eingeführt. Monte Carlo Techniken haben eine lange Tra-

dition in der klassischen statistischen Physik, wo sie eine stochastische Darstel-

lung der Zustandssumme ermöglichen. Der Grundgedanke besteht darin, daß das

Boltzmanngewicht einer einzelnen Konfiguration immer berechenbar ist. Nur die

vollständige Summation aller möglichen Konfigurationen wird durch deren Anzahl,

die exponentiell mit der Systemgröße wächst, unmöglich. In der Monte-Carlo Si-

mulation ersetzt man nun die exakte Summe durch die Summation einer zufällig

gewählten Untermenge. Damit stellen Monte-Carlo Resultate statistische Schätzwerte

dar, und die Genauigkeit der Rechnung wird durch einen Fehlerbalken angezeigt.

Dieser Fehler skaliert wie 1/
√

CPU-Zeit was einer systematischen Näherungen der

Summe weit überlegen ist. Für Quanten-Monte-Carlo gelten die gleichen Überlegungen,

nachdem die quantenmechanische Zustandssumme, umgeschrieben als Pfadintegral

auf der imaginären Zeitachse, formal equivalent zu einem klassischen statistischen

Problem erscheint. Bei fermionischen Problemen taucht dabei aber das schwerwie-

gende Vorzeichenproblem auf, wonach das statistische Gewicht einzelner Konfigu-
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rationen oder Beiträge zum Pfadintegral negativ oder komplex werden. Dann gibt

es aber kein Kriterium für wichtige und unwichtige Konfigurationen nach dem Ge-

wicht mehr und die Monte-Carlo Simulation funktioniert nicht länger. Eine speziel-

le Klasse fermionischer Systeme leidet aber nicht unter diesem Vorzeichenproblem,

nämlich Systeme mit attraktiver Wechselwirkung. Weiters muss das Pfadintegral

noch mittels Hubbard-Stratonovich Transformation konstruiert werden. Der daraus

resultierende BSS Algorithmus [14] basiert auf auf Slaterdeterminanten. Unter spe-

ziellen Symmetriebedingungen, nämlich halber Füllung und bipartitem Gitter, ist

es möglich das attraktive und repulsive Hubbard Modell aufeinander abzubilden.

Damit ist möglich, wenigstens diesen speziellen Punkt des repulsiven Phasendia-

gramms zu untersuchen. Ein großer Vorzug bei Determinanten-Monte-Carlo ist die

Möglichkeit, praktisch jede beliebige Korrelationsfunktion für alle imaginäre Zei-

ten zu berechnen. Um die gewünschten dynamischen Informationen zu gewinnen,

wird mit Hilfe der “Maximum Entropy” Methode noch eine analytische Fortsetzung

zu reellen Frequenzen unternommen. Im Detail wird noch eine neue Methode vor-

gestellt, eben diese zeitabhängigen Greensfunktionen zu “messen” [28]. Assaad et.

al. [8] haben ein numerisch stabiles Verfahren zur Berechnung dieser zeitabhängigen

Greensfunktionen vorgeschlagen, das jedoch sehr viel CPU-Zeit benötigt. Hier wird

eine alternative Methode diskutiert, die eine Größenordnung schneller, ebenso genau

und einfacher zu implementieren ist. Die neue Methode beruht auf der Beobach-

tung, daß bei gegebenen Hubbard-Stratonovich Feld die Matrix der Greensfunktion

G die Projektoreigenschaft G2 = G besitzt. Zuletzt wird noch der Hirsch-Fye Al-

gorithmus und die zugehörige Dyson Gleichung diskutiert, die eine konzeptionelle

Vereinigung von BSS und Hirsch-Fye Störstellenalgorithmus erlaubt.

• Im zweiten Kapitel wird zunächst das Kondo-Gittermodell eingeführt

HKLM = −t
∑

〈i,j〉,σ

(

c†i,σcj,σ +H.c.
)

+ J
∑

i

~Si,c
~Si,f , (3)

das erst seit kurzem mit Determinanten-QMC untersucht werden kann, nachdem

eine vorzeichenfreie Formulierung gefunden wurde [7]. Das Kondo-Gittermodell fun-

giert als das minimale Modell zur Beschreibung von Schwerfermionsystemen und

beschreibt die Wechselwirkung des Leitungsbands mit lokalisierten f -Orbitalen. In

Folge der starken Coulomb Abstoßung sind die f -Orbitale nur einfach besetzt und
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Ladungsfluktuationen werden unterdrückt. Im Grenzfall verbleibt nur der Freiheits-

grad eines f -Spins, der mit antiferromagnetischem Austausch J an die Leitungs-

elektronen ankoppelt. Es wird vermutet, daß ein solches Kondo-Gittermodell ver-

schiedene Aspekte der Schwerfermion-Physik beschreibt. Zuerst wird der Übergang

von freien zu abgeschirmten f -Spins bei einer Temperaturskala der Störstellen-

Kondotemperatur TK gefunden. Zum zweiten ist eine effektive Ruderman-Kittel

Wechselwirkung zwischen den f -Spins enthalten, die über die Spinsuszeptibilität der

Leitungselektronen vermittelt wird, und als verantwortlicher Mechanismus für die

vielen magnetisch geordneten Phasen bei den Schwerfermion-Materialien angesehen

wird. Drittens nimmt man noch an, daß der Grundzustand des Kondo-Gittermodells

eine Fermiflüssigkeit mit extrem schwerem Quasiteilchenband ist, eben das Charak-

teristikum der schweren Fermionen. Damit verhalten sich die niederenergetischen

Anregungen im Kondo-Modell sehr unterschiedlich von jenen im Hubbard-Modell.

In diesem Kapitel untersuche wir ein Kondo-Gittermodell mit zusätzlicher Hubbard

Wechselwirkung für die Leitungselektronen (UKLM), wobei der Schwerpunkt auf

der Untersuchung der Dynamik der Einlochbewegung liegt. Um kein Vorzeichen-

problem zu bekommen, können wir das Modell nur bei halber Füllung studieren.

Auf einem quadratischen Gitter (bipartit) werden aber sowohl das Kondo- als auch

das Hubbard-Modell schon bei schwacher Kopplung einen antiferromagnetischen,

isolierenden Grundzustand haben. Im Hubbard-Modell kann man von einer Spin-

dichtewelle sprechen und beim Kondo-Gittermodell ist der Ursprung des Antiferro-

magnetismus die RKKY Wechselwirkung. Aber die Einteilchen-Spektralfunktionen

sind sehr unterschiedlich. Ein wichtiges Kriterium bei der Beschreibung der Ein-

teilchendispersion ist der k-Vektor minimaler Energie. Im Hubbard Modell liegt er

genau bei k = (π/2, π/2), beim Kondogitter-Modell wird er jedoch am Zonenrand,

also bei k = (π, π) gefunden. Im UKLM sind beide Wechselwirkungen vorhanden

und es ist nicht klar wie sich die zwei vollständig unterschiedlichen Dispersionen von

Hubbard und Kondo Modell verbinden. Unser Resultat zeigt, daß sich zwei Bänder

ausprägen, von denen das eine der typischen Kondo, das andere der Hubbardform

folgt. Bei k = (π, π) verhalten sich die Gewichte dieser zwei Bänder qualitativ wie

die Stärke der Wechselwirkungen J und U . Daraus folgt aber, daß bei endlichen

J die Ladungslücke vom kondoartigen Dispersionszweig bestimmt wird. Weiters
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zeigt unser Kondogitter-Modell einen quantenkritischen Punkt, der vom Wechsel-

spiel von RKKY Magnetismus und der Ausbildung von lokalen Kondo Singlets bei

großen J herrührt. Das zugehörige Phasendiagramm in Abhängigkeit von U und J

wurde bestimmt.

• Im dritten und letzten Kapitel untersuchen wir ein attraktives Hubbard-Modell,

wieder in der einfachen Geometrie des Quadratgitters. Die lokale Hubbard Wech-

selwirkung wird durch nächste Nachbar Spin-Spin, Paar-Paar und Dichte-Dichte

Wechselwirkung ergänzt. Diese Wechselwirkungen werden durch einen einzigen tp

Term in der Gestalt eines quadrierten Hüpfterms beschrieben. Das Modell hat drei

veränderbare Parameter und man kann somit ein reichhaltiges Phasendiagramm

erwarten. Wir konzentrieren uns hier auf zwei Quantenphasenübergänge. Erstens

finden wir einen Punkt mit Koexistenz von Antiferromagnetismus und Supralei-

tung. Durch Variation von dem Hubbard Parameter U findet sich diese Koexistenz

genau am Phasenübergangspunkt erster Ordnung zwischen Magnetismus und Su-

praleitung. Vor kurzem wurde ein solcher Übergang erster Ordnung zwischen An-

tiferromagnetismus und Supraleitung bei dem organischen Supraleiter κ-(BEDT-

TTF)-Cl [61] entdeckt. Wir schlagen unser Modell als geeignete Beschreibung dieser

Tieftemperaturphasen vor, wobei die Spin und Ladungsterme durch eine Elektron-

Phonon Wechselwirkung vom Su-Schrieffer-Heeger Typ [98] erzeugt werden können.

Der zweite Quantenphasenübergang beschreibt den Wechsel von einem Zustand

mit Ladungsdichtewelle zu einem Supraleiter. In der analogen Formulierung mit

Spins bedeutet das den Übergang von “easy axis” zu “easy plane” Ordnung. Beim

Übergang durch den isotropen Heisenberg Punkt beobachten wir das typische Ver-

halten von einem Übergang zweiter Ordnung, obwohl die Orientierung des Ord-

nungsparameters diskontinuierlich von der z-Achse in die Ebene wechselt, was

normalerweise auf einen Übergang erster Ordnung hinweisen würde.
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Introduction

In the present work we will discuss selected topics in the field of strongly correlated

electron systems. In particular we will study Kondo and Hubbard lattice models using

quantum Monte Carlo (QMC) methods. Thus we have to introduce three concepts:

strong electron-electron correlations, lattice Hamiltonians and quantum Monte Carlo as

a non-perturbative approach to calculate correlation functions on finite lattices.

By far the most difficult notion is that of strongly correlated electron systems. The

first success in the theory of metals and insulators came in the early days of quantum me-

chanics with the introduction of the Pauli exclusion principle and Fermi-Dirac statistics.

According to these principles the ground state of the non-interacting electron system is

described by a Fermi sea in the form of a single Slater determinant with well defined

single particle excitations. Such a state includes already many interesting correlations,

such as the exchange hole due to the Pauli principle. Band structure calculations, which

seek a solution within this single particle picture, have been used with remarkable suc-

cess. Suitably adapted, they even describe superconductivity and magnetically ordered

phases, which implies that all these correlations are compatible with a single particle

picture. But certainly the bare Hamiltonian of a highly degenerate electron system is

always strongly interacting. Is it possible to understand how the quasiparticle picture

emerges from an initially strongly interacting system? This should help to understand

what happens in “strongly correlated” that violates the quasi particle picture. Fermi

liquid theory [59] addresses this question from a perturbative point of view. For a three

dimensional system with a screened Coulomb interaction Fermi liquid theory states that

the low lying energy spectrum is well described by system of weakly interacting quasi

particles. Then for k states close to the Fermi surface the single electron Green’s function
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will be given by

Gret (k, ω) =
Zk

ω − εk − iγk

+Gincoh (k, ω) (4)

with the quasiparticle weight Zk and a single particle decay rate γk

γk (ω) ∝ (ω − εk)
2 +O(ω3). (5)

The incoherent background Gincoh is a smooth function in ω with negligible contribu-

tion close to the Fermi surface. The statement (5) reflects the fact that the phase space

available for the Coulomb interaction vanishes as (ω − µ)2 on approaching the Fermi sur-

face. Fermi liquid theory is able to demonstrate that the above quasi particle description

is consistent with perturbation theory [67, 21]. Furthermore the Luttinger theorem [66]

proves to all orders in perturbation theory that the Fermi volume does not change. Thus,

as long as the perturbation series converges, Fermi liquid behavior is granted. Of course

the converse is not true and we may still observe a Fermi liquid when the series does

not converge. In this way, Fermi liquid behavior is much more general then the scope of

perturbation theory.

The central achievement in Fermi liquid theory was due to the restriction of phase

space to states close to the Fermi surface. But there is still a huge degeneracy associated

with k-states on the Fermi surface which can give rise to Fermi surface instabilities.

When a two particle interaction couples systematically pairs of Fermi surface states, per-

turbation theory must break down. Examples of such divergencies are the famous Cooper

instability, nesting instability, Kohn-Luttinger instability [56] and the 2kF instability of

a one dimensional system which causes the transition to the Luttinger liquid. Such insta-

bilities may generate low temperature ordered phases at energy scales which can be three

to four orders of magnitude smaller than the Fermi temperature. The subtle rearrange-

ment of the low energy sector into an ordered state is a challenge for both analytical and

numerical methods.

One typically reserves the label “strongly correlated” to systems which are not well

described by band structure calculations. A list of strongly correlated phenomena in-

cludes:

• Transition metal oxides and the Mott transition

• Rare Earth compounds and Kondo physics
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• Fractional Quantum Hall effect

• Luttinger liquids (one dimensional systems)

The Mott insulator is the prototype scenario for strong electron correlations. It has been

realized early by Mott [77] that electrons moving in half filled bands may be entirely

localized when the on-site Coulomb repulsion becomes too strong and blocks electronic

motion. The competition between delocalization due to the kinetic energy and local-

ization in order to avoid Coulomb repulsion leads to the Mott-Hubbard metal insulator

transition. In order to make any progress Hubbard [47] introduced an oversimplified

lattice Hamiltonian

HU = −t
∑

〈i,j〉,σ

(

c†i,σcj,σ +H.c.
)

+ U
∑

i

ni,↑ni,↓. (6)

The degrees of freedom in the whole unit cell i are restricted to a single orbital c† and

the kinetic energy is modeled by a single tight binding parameter t. Only the local com-

ponent of the long-range Coulomb interaction, given by Uni,↑ni,↓, is retained. Such a

simplified lattice Hamiltonian serves as a minimal model to study the phase diagram

of the Mott transition. The merit of such a reduced lattice formulation is to define a

clear benchmark problem. Unfortunately, the present day status is such that we still fail

to solve this benchmark problem. Only a few exact results on the Hubbard model are

established. In the one dimensional Hubbard chain the ground state can be constructed

with Bethe Ansatz techniques [32]. And in two dimensions quantum Monte Carlo gives

“numerically exact” results at some special points in the phase diagram such as the in-

sulating phase at half filling. The single particle spectral function in the Hubbard model

illustrates the deviation from the quasi particle picture. Upon increasing U the quasi

particle peak develops into a low energy quasiparticle with reduced weight and a high

energy incoherent peak. A complex structure in the single particle spectral function is

a key feature of strongly correlated systems. Another example is provided by the one

dimensional Luttinger model [68,73] where the quasi particle peaks disappear completely

and the pole singularity in the Green’s function is replaced by two separate power law

singularities for spin and charge excitations and a continuum with compact support.

In order to resolve the challenging puzzles of strongly correlated systems one usu-

ally has to resort to some approximation. Apart from perturbative calculations which
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are controlled yet limited to small deviations from the unperturbed solution, the largest

number of approximations are self consistent schemes. These are nonperturbative, but

uncontrolled approximations and the structure of the self consistent equation imposes to

a large degree the character of the possible solutions. The Kohn-Sham equations in local

density approximation (LDA) and the Hartree-Fock mean field equations are examples

where the solution is naturally restricted to the quasiparticle picture.1 Some adhoc at-

tempts to include strong correlation effects into the otherwise successful band structure

calculations include LDA+U [5] and LDA + DMFT [4], where dynamical mean-field the-

ory (DMFT) combines the exact calculation of a single impurity model with a spatial

mean field approach and becomes exact in infinite dimensions [35]. Another possibility

is to consider “higher order” self consistent equations. The conserving approximations of

Bickers [13] (FLEX) and Tremblay [2] are examples of such an approach. Recently, non-

perturbative and controlled approximations have been developed in the form of functional

RG methods [39]. Other attempts to account for the strong local correlation effects in the

Hubbard model include the Gutzwiller approximation [38,15] and slave particle calcula-

tions [19]. To summarize, it is only fair to say that with the exception of weak-coupling

RG, all above methods are uncontrolled approximations. Apart from the few exactly

solvable models “numerically exact” methods are the only calculations that give reliable

results. Unfortunately, the two most prominent numerical techniques, the density-matrix

renormalization group (DMRG) and quantum Monte Carlo (QMC), suffer from other se-

vere shortcomings. First, they are restricted to small system sizes. Worse, DMRG works

well only for one dimensional systems, and QMC applies only to a few systems which

allow a sign free simulation.

Now we turn our attention to materials. It has been long recognized, that band

structure theory fails to describe transition metal oxides and rare earth compounds.

Taken together these two groups constitute a large class of strongly correlated materials

with such diverse properties as large effective mass, a Mott-Hubbard metal insulator

transition, heavy fermion behavior and high temperature superconductivity. The generic

scenario are well localized d-orbitals in transition metals and similar localized f -orbitals

1Mean-field theory works well for an ordered ground state, which justifies mean-field decoupling with

respect to the order parameter. This is not the case for the generic Mott insulator with no spin or charge

order.
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in the rare earth compounds. In a simple transition metal such as Cu, these localized

bands are well below the Fermi level and do not participate in low energy excitations.

But in the transition metal oxides the metal gives up all the s-electrons to the oxygen

and the outermost d-orbitals are found at the Fermi level where they also hybridize with

their oxygen neighbors. Thus, the originally localized orbitals gained a sizeable hopping

amplitude to some neighboring orbitals. Strong correlations arise from the interplay of

Coulomb repulsion on the localized orbital and the kinetic energy from hopping between

metal and oxygen sites. Electrons have to move around in order to reduce their kinetic

energy which generates a quasi particle dispersion. At the same time these electrons try

to avoid each other on the localized d-orbitals.

A few prominent examples in the wide class of transition metal compounds include the

copper oxides (i.e. La2−xSrxCuO4), famous for high temperature superconductivity [11],

the vanadate V2O3 which provides the classical example for a band width controlled

metal-insulator transition and the manganite Nd1−xSr1MnO3, a double exchange system

which can develop orbital order. An example in the class of heavy fermion systems is

provided by the well studied system CexLa1−xCu6 where the Ce -f electrons play the

crucial role. In the dilute limit of small Cerium concentrations, the single impurity

Kondo effect is observed whereas pure CeCu6 develops a heavy quasi particle band at

temperatures below 0.1K.

Quite a different class of materials which shows strongly correlated behavior are the

organic systems with π-electron conduction, such as the κ-(BEDT-TTF)2-X layered mate-

rials [60]. The elementary building blocks in these compounds are BEDT-TTF molecules

and basic metallic properties are well understood, considering only a single molecular

orbital per BEDT-TTF molecule. Given the complexity of the molecule this is a striking

simplification and it remains an open question whether subtle correlation effects can be

modeled on the same basis.

The subject of this thesis is the study of 2D lattice fermion models, based on two

canonical models, the Hubbard (6) and the Kondo lattice model. Whereas the Hubbard

model was originally devised as a minimal model for the metal insulator transition, as

observed in many of the above mentioned materials, the Kondo lattice model was for-

mulated as the generic model for rare earth compounds which display the heavy fermion

behavior. The lattice topology is chosen two dimensional. Dimensionality affects in par-
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ticular the low temperature ordered phases, such as superconductivity. For instance the

2D Hubbard model has been intensively studied as a prototype for high temperature su-

perconductivity and on the material side La2−xSrxCuO4 or the κ-(BEDT-TTF)2-X show

a pronounced layered structure. Technically, quantum Monte Carlo techniques are well

suited for the study of two dimensional systems as opposed to one dimensional topologies,

where it may be favorable to choose numerical RG methods. On the other hand, QMC

analysis of three dimensional lattices is still a challenging issue, since the typical lattice

size in fermionic QMC calculations is below 500 lattice sites which would amount to a

maximum of 8× 8× 8 in three dimensions.

Organization

The organization of the main text is as follows:

• In the first chapter we give a detailed account of determinantal quantum Monte

Carlo. Monte Carlo techniques have a long tradition in the study of classical statis-

tical physics, where they provide a stochastic representation of the partition sum.

The central idea is that the calculation of the Boltzmann weight of a single configu-

ration is always possible. But an exact summation over all possible configurations is

prohibited by the number of configurations which grows exponentially with system

size. In a Monte Carlo simulation one replaces the exact sum by some randomly

chosen subset. Then, Monte Carlo results are a statistical estimate to the exact

result and the quality of the result is expressed by an error bar. The central obser-

vation is that the error of such a simulation scales as 1/
√

CPU-time which compares

favorably with any direct approximation of the sum. In quantum Monte Carlo, the

same statistical approach is used to estimate the quantum partition function, ex-

pressed in the form of a imaginary time path integral. For Fermions, these path

integrals are troubled by the so called sign problem, which states that the statis-

tical weight of a single contribution in the path integral may become negative or

complex. Then we can no longer select important configurations by there respective

weight. Fortunately, a class of fermionic systems with attractive interaction does

not suffer from the sign problem when a Hubbard-Stratonovich transformation is

used in the construction of the path integral. The resulting BSS algorithm [14] is
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based on Slater determinants. Furthermore, under the combined condition of half

filling and a bipartite lattice geometry the attractive and repulsive Hubbard models

map onto each other which allows to gain insight into the repulsive Hubbard model

at least on this special point. A very attractive point in determinantal QMC is

the possibility to calculate virtually any correlation function, static and dynamic,

where the maximum entropy method [50] is employed for the analytic continuation

from imaginary time to real frequencies. Special emphasis is paid to a new method

we developed to “measure” these time displaced Green’s functions [28]. Finally, we

discuss the Dyson equation in the Hirsch-Fye impurity algorithm, which allows a

conceptual unification of the BSS algorithm and the impurity algorithm.

• The second chapter introduces the Kondo lattice model

HKLM = −t
∑

〈i,j〉,σ

(

c†i,σcj,σ +H.c.
)

+ J
∑

i

~Si,c
~Si,f , (7)

which was only recently studied with determinantal QMC after a sign free formu-

lation was found [7]. The Kondo lattice model is the minimal model for heavy

fermion systems and describes the interaction of a conduction band with localized

f -orbitals. As a result of strong Coulomb repulsion the f -orbitals are occupied

by single electron and charge fluctuations are suppressed. The remaining degree

of freedom is a f -spin that couples to the conduction spin via an antiferromag-

netic exchange term. The Kondo model is believed to describe many aspects of

heavy fermion physics. First it displays a crossover behavior from free to screened

f -spins at the temperature scale of the single impurity Kondo temperature TK. Sec-

ond, it contains the Ruderman-Kittel effective interaction between f -spins which

is mediated by the spin susceptibility of the conduction electrons and is the cause

of many magnetically ordered phases in heavy fermion compounds. Finally, the

ground state of the Kondo lattice model is believed to be a Fermi liquid with an

extremely heavy band, which is the characteristic feature of the heavy fermion sys-

tems. Thus the low energy charge excitations in the Kondo model behave very

differently from the Hubbard case. In this chapter we study a Kondo lattice model

with an additional Hubbard interaction for the conduction electrons (UKLM) with

an emphasize on single hole dynamics. Due to the constraint of achieving a sign

free simulation, we can only investigate the model at half filling. Even in weak
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coupling both the Kondo and the Hubbard model on the square lattice will be

insulating antiferromagnets. The Hubbard model has a spin-density-wave ground

state and the Kondo model is antiferromagnetic due to the RKKY interaction. But

the single hole spectral functions are very different. An important point of the

dispersion is the energy minimum which sets the charge gap. For the Hubbard

model this happens at k = (π/2, π/2) but in the Kondo lattice model we observe

the charge gap at k = (π, π). In the UKLM both interactions are present and it is

not obvious how the different hole dispersions of the Hubbard and Kondo model

can be reconciled. The results we obtain indicate the formation of a two “band”

dispersion, one following the shape of a Kondo and the other that of a Hubbard

dispersion. The weight of these two structures at k = (π, π) is roughly proportional

to the relative weight of the interactions J and U. But this implies that the charge

gap for any finite exchange J is set by the Kondo branch of the dispersion. In

addition our Kondo lattice model shows a quantum critical point, arising from a

competition between long range order induced by the RKKY interaction and the

formation of local Kondo singlets for large J. The phase diagram as a function U

and J is determined.

• Finally, in the third chapter we investigate a Hubbard model on the simple square

lattice topology. To the local Hubbard interaction we add nearest neighbor spin-spin

and charge-charge interaction terms. The spin part is in the form of a Heisenberg

term whereas for the charge part we consider pair hopping and density-density in-

teractions. With three tunable interaction parameters the model has a rich phase

diagram and we choose to concentrate on two particular quantum phase transitions.

First, we find a point with coexisting antiferromagnetic and superconducting or-

der. Upon variation of the Hubbard U this point is linked to a first order transition

between the two respective phases. Recently, a first order transition between an-

tiferromagnetism and superconductivity has been observed in the organic layered

superconductor κ-(BEDT-TTF)-Cl [61]. We speculate, that our model describes

these low temperature phases while the nearest neighbor spin and charge inter-

actions are generated by a Su-Schrieffer-Heeger [98] electron-phonon interaction.

Second, we study a transition between a charge density wave and superconducting
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state. In spin language, the analogy is provided by the transition from an easy axis

to an easy plane order. Going across the isotropic Heisenberg point we observe

typical behavior of a second order phase transition although the orientation of the

order parameter jumps discontinuously from the plane to the axis.
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Chapter 1

Auxiliary field Quantum Monte

Carlo

1.1 Introduction

A number of well known Quantum Monte Carlo (QMC) techniques, such as stochastic

series expansion (SSE), worldline QMC (with loop update) [26, 25] and auxiliary field

QMC [14, 64], may be understood as direct implementations of different path integral

representations. The common starting point is the thermal average for an observable O

〈O〉 =

〈
e−βHO

〉

Z
=

Tr e−βHO
Tr e−βH

, (1.1)

where H is a Hamiltonian for a finite size system.

In a second step we introduce a path integral representation, which approximates the

density matrix e−βH with a sum of ρi

e−βH ∼
∑

i

ρi. (1.2)

We are only interested in path integrals which allow to calculate the individual “weights”

Tr ρi and “observables” Tr ρiO in a simple numerical way. In auxiliary field QMC this is

achieved via a Trotter decomposition of

exp [−β (H0 +HI)] , (1.3)

and a subsequent Hubbard-Stratonovich decoupling of the interaction terms as explained

in section 1.2. In the SSE procedure, the density matrix (1.3) is expanded in β (similar to
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a high temperature expansion), and both H0 and HI are broken into a sum of elementary

“ladder” operators.

In order to approximate a given observable O we now have to evaluate

〈
e−βHO

〉

Z
∼
∑

i Tr ρiO
∑

i Tr ρi

=
∑

i

Tr ρi
∑

i Tr ρi

Tr ρiO
Tr ρi

. (1.4)

The approximation 〈O〉 is non-perturbative and converges for all values of interaction

strength. But evaluating the approximation (1.4) poses a fundamental challenge. In

order to answer questions about low temperature behavior, long range order and finite

size scaling we need to calculate observables with a small error. Unfortunately, sums of

type

∑

i

Tr ρi (1.5)

can not be evaluated term by term since the sum grows exponentially with system size

and inverse temperature β. Monte Carlo techniques can provide an estimate for Eq. (1.4)

based on a small, random subset of the sum
∑

i ρi. Obviously, for such an estimate to

work we need additional knowledge about the behavior of Tr ρi. First and foremost QMC

relies on the positivity

Tr ρi > 0, (1.6)

otherwise the cancellation of positive and negative contributions in
∑

i Tr ρi would pro-

hibit a stochastic estimate of Eq. (1.5). Given this positivity, a probability

pi = Tr ρi/
∑

i

Tr ρi (1.7)

for every configuration i is introduced. If the observable

〈O〉i =
Tr ρiO
Tr ρi

(1.8)

is well behaved we can evaluate stochastically

〈O〉 =
∑

i

pi 〈O〉i , (1.9)

using importance sampling of the probability distribution pi. Importance sampling of

this distribution yields a stream of data for every observable 〈O〉i and the average of
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these data is usually taken as an estimator for the observable 〈O〉 in Eq. (1.1). Some

statistical analysis, as the rebinning technique, will be necessary to estimate an error

bar. In the present text, we will not discuss the necessary concepts of sampling and data

analysis. A good account of relevant topics in probability theory, such as Markov chains

and autocorrelation time of the stochastic process is given in the review by Sokal [94] As

the primary tool to measure autocorrelation time, we use the rebinning technique and

variations, as the Jackknife and bootstrap methods [24].

1.2 Auxiliary field algorithm

Our aim is to give a short, but self contained introduction into the various technical

aspects of auxiliary field QMC. Other reviews are available from Loh and Gubernatis [64]

and Assaad [6].

For sake of clarity the method is first illustrated for an explicit model system, namely

the attractive Hubbard model with the Hamiltonian H

H = H0 +HI (1.10)

where H0 is the usual hopping Hamiltonian and HI the attractive Hubbard term with

U < 0

H0 = −t
∑

〈i,j〉,σ
c†i,σcj,σ +H.c, (1.11)

HI = U
∑

i

(ni,↑ − 1/2) (ni,↓ − 1/2) . (1.12)

The sum in the hopping term runs over bonds 〈i, j〉 and the bandwidth is given by 2tD2

where D is the dimension.

In the finite temperature version of the auxiliary field Monte Carlo (FTQMC) observ-

able averages are taken with respect to the statistical operator

〈O〉 =
Tr e−β(H−µN)O
Tr e−β(H−µN)

, (1.13)

where the trace runs over the Fock space, β = 1/kBT and µ is the chemical potential.

The evaluation of the finite temperature observable (1.13) sets the stage for FTQMC.

Projector quantum Monte Carlo (PQMC) may be viewed as a small modification of

FTQMC which was introduced in order to speed up the convergence of FTQMC in the
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zero temperature limit β →∞. The only modification to the average 1.13 is the reduction

of the Fock space trace to a specific trial state projector

Tr→ Tr |ψT 〉 〈ψT | , (1.14)

and Eq. 1.13 reduces to the canonical average

〈O〉 =
〈ψT | e−θ(H−µN)Oe−θ(H−µN) |ψT 〉

〈ψT | e−2θ(H−µN) |ψT 〉
, (1.15)

which only has a meaning as an approximation of the zero temperature result. The ground

state |GS〉 is projected from |ψT 〉 as

|GS〉 = e−θ(H−µN) |ψT 〉 , (1.16)

thus we require

〈ψT |GS〉 6= 0. (1.17)

It is exactly this non-orthogonality requirement which allows to restrict the projection to a

given symmetry sector of the operator exp [−θ (H − µN)] . This is achieved by choosing

the symmetry of |ψT 〉 as the ground state symmetry. Low lying excitations in other

symmetry sectors can then no longer interfere with the projection.

The difference of the two algorithms for β = 2θ →∞ is illustrated in Fig. 1.1, where

the repulsive Hubbard model was considered. Since we know that the ground state is

a total spin singlet [62], we choose as trial state |ψT 〉 a filled Fermi sea, which is a spin

singlet. Due to long range order we also expect a Goldstone mode of spin one magnons.

These low lying excitations need not be filtered out in PQMC which explains the dramatic

improvement.

In the following we will concentrate on the finite temperature algorithm since the

projection step (1.14) may be applied later.

Trotter product formula

Non-commutativity of [H0, HI ] , which essentially prevents the solution of the many-body

problem is the subject of the Trotter product expansion. The Lie-Trotter formula [102]

has been used by Nelson [81,91] to recover the Feynman-Kac path integral and was first
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Figure 1.1: A comparison of zero temperature convergence in the case of a half-filled

repulsive Hubbard model. •: PQMC algorithm. 4: FTQMC algorithm at β = 2Θ

Panel a) Fourier transform of the spin-spin correlation functions at ~Q = (π, π)

Panel b) Ground state energy. (from [6]).

used by Suzuki [100] to introduce the world-line algorithm. The origin of the formula is

a statement about Lie groups

e−βH = lim
m→∞

f (β/m)m (1.18)

where f is any approximation of the short time behavior of the Lee group

lim
λ→0

∂f (λ)

∂λ
= −H, (1.19)

lim
λ→0

f (λ) = 1, (1.20)

which just states that up to first order exp (−λH) and f (λ) agree.

For the Trotter product formula1 we choose

f (λ) = e−λH0e−λHI (1.21)

1Choosing another approximation f (λ) = 1+λH, we recover the formula exp x = limn→∞ (1 + x/n)
n

.
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which has the same derivative as the full exp [−βH] . This transforms the initial “prop-

agation” exp [−βH] into a product of short ∆τ = β/m propagations

e−β(H0+HI) = lim
m→∞

(
e−∆τH0e−∆τHI

)m
(1.22)

and becomes exact in the limit ∆τ → 0. Convergence is guaranteed for bounded operators

[91].

Let us look at the error we make at a single time step. Expanding exponentials in

∆τ we have up to second order

e−∆τ(H0+HI) − e−∆τH0e−∆τHI = −∆τ 2

2
[H0, HI ] +O

(
∆τ 3

)
. (1.23)

Let us plug this into the product
(

e−∆τ(H0+HI) +
∆τ 2

2
[H0, HI ] +O

(
∆τ 3

)
)m

=
(
e−∆τH0e−∆τHI

)m
(1.24)

and expand the left side to lowest order in ∆τ

e−βH +
∆τ

2

∫ β

0

dλe−(β−λ)H [H0, HI ] e
−λH +O

(
∆τ 2

)
=
(
e−∆τH0e−∆τHI

)m
(1.25)

where the integral is a convenient abbreviation for the sum over m parts. For convergence

we should require that the correction of order ∆τ is a bounded operator

∥
∥e−(β−λ)H [H0, HI ] e

−λH
∥
∥ < C. (1.26)

In fact many Trotter decompositions do better with a leading correction of order

O (∆τ 2) . There are two independent ways to ensure zero contribution in order O (∆τ)

[34]:

1. The commutator of two Hermitian operators is antihermitian

[H0, HI ]
† = − [H0, HI ] . (1.27)

The ∆τ -coefficient is also antihermitian
[∫ β

0

dλe−(β−λ)H [H0, HI ] e
−λH

]†

= −
∫ β

0

dλe−λH [H0, HI ] e
−(β−λ)H (1.28)

= −
∫ β

0

dλe−(β−λ)H [H0, HI ] e
−λH , (1.29)

where the second line is just a rearrangement of the integrand. Let us assume

that both H0 and HI are real representable. Then the ∆τ -coefficient is also real

representable. But the trace of a real, antihermitian operator vanishes!
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2. Using a symmetrized Trotter decomposition the O (∆τ) vanishes

e−βH ∼
(

e−
∆τ
2

H0e−∆τHIe−
∆τ
2

H0

)m

+O
(
∆τ 2

)
, (1.30)

which is easily verified comparing orders. For implementation we may continue

using the simpler Trotter decomposition (1.22) but measure shifted observables

O → e−
∆τ
2

H0Oe∆τ
2

H0 . (1.31)

The different convergence behavior is illustrated in Fig. 1.2 where PQMC results for

the repulsive Hubbard model are shown. As apparent the symmetric decomposition (1.30)

is much more accurate than the simple decomposition (1.22). In addition and due to the

variational principle, the symmetric decomposition also provides an upper bound to the

exact energy.
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Figure 1.2: Ground state energy of the Half-filled Hubbard model on a 4 × 4 lattice,

U/t = 4, 〈n〉 = 1 and BL2/Φ0 = 1 as a function of ∆τ as obtained with the PQMC.

The Trotter decompositions of Eqn. (1.22) (5) and (1.30) (©) are considered. Note

that due to the variational principle the Trotter decomposition of Eq. (1.30) yields an

upper bound to the energy. The solid lines correspond to least square fits to the form

a+ b∆τ 2.(taken from [6])

Hubbard-Stratonovich

The Trotter decomposition was only the first step towards a path integral. In a second

step we will further simplify the interaction term exp [−∆τHI ] . For instance one could
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use the very reasonable approximation

e−∆τHI ∼ 1−∆τHI (1.32)

which will generate all Feynman diagrams up to orderm (disconnected as well). This close

relation between the Trotter product and the diagrammatic expansion raises the question

how the first can converge when the latter does not. This is discussed in appendix A.

Auxiliary field QMC is instead based on a Hubbard-Stratonovich (HS) transforma-

tion [46] which reduces the interacting term exp [−∆τHI ] to a sum of free Fermion prop-

agators. There exists a variety of HS transformations for different interaction terms. In

particular the auxiliary field may take discrete or continuous values. In this work we shall

only consider some discrete variants and we start with the decoupling of the attractive

Hubbard term with U < 0 which was introduced by Hirsch [41].

Considering first a single site we can rewrite the Hubbard term into a square form

which is the common starting point for all HS transformations

(n↑ − 1/2) (n↓ − 1/2) =
1

2
(n↑ + n↓ − 1)2 − 1/4 (1.33)

and

e−∆τU(n↑−1/2)(n↓−1/2) = e−∆τU/2(n↑+n↓−1)
2

e∆τU/4. (1.34)

We propose the following decoupling to a sum of two single electron terms

e−∆τU/2(n↑+n↓−1)
2

=
eα(n↑+n↓−1) + e−α(n↑+n↓−1)

2
(1.35)

and verify for the four local states:

e−∆τU/2(n↑+n↓−1)
2

?
= e

α(n↑+n↓−1)+e
−α(n↑+n↓−1)

2

|0〉 e−∆τU/2 = coshα

|↑↓〉 e−∆τU/2 = coshα

|↑〉 1 = 1

|↓〉 1 = 1

(1.36)

These four equations are solved simultaneously by setting

e−∆τU/2 = coshα, (1.37)
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which has a real and positive solution for α when U < 0. Thus on a lattice with N sites

the HS transformation reads

exp[−∆τU
∑

i (ni,↑ − 1/2) (ni,↓ − 1/2)] = C
∑

si=±1

exp [
∑

isiα (ni,↑ + ni,↓ − 1)] , (1.38)

where the prefactor C is

C = eN∆τU/4/2N . (1.39)

The auxiliary HS variables si are restricted to the Ising values ±1. The HS transforma-

tion (1.38) is sometimes referred to as charge decoupling since the auxiliarty Ising spin

si couples to the local charge operator.

Using the Trotter decomposition (1.22) the finite temperature observable (1.13)

〈O〉 =
Tr e−β(H−µN)O
Tr e−β(H−µN)

= lim
m→∞

Tr
(

e−∆τH̃0e−∆τHI

)m

O

Tr e(e−∆τH̃0e−∆τHI )
m (1.40)

where the chemical potential term µN was absorbed into H̃0

H̃0 = H0 − µN. (1.41)

Decoupling all interaction terms in (1.40) we find the path integral

〈O〉 ∼
∑

s(i,τ) Tr
[
∏m

τ=1 e
−∆τH̃0e

P

i
s(i,τ)α(ni,↑+ni,↓−1)O

]

∑

s(i,τ) Tr
[
∏m

τ=1 e
−∆τH̃0e

P

i
s(i,τ)α(ni,↑+ni,↓−1)

] , (1.42)

where we introduced the auxiliary Ising field s (i, τ) in space-time and the sum
∑

s(i,τ)

runs over all such Ising configurations. Let us further analyze the weight of a single

configuration p [s]

p [s] = Tr

[
m∏

τ=1

e−∆τH̃0e
P

i
s(i,τ)α(ni,↑+ni,↓−1)

]

. (1.43)

This weight has three important properties:

1. the complexity of the interacting problem is reduced to the problem of independent

electrons moving through a time dependent field, i.e. the auxiliary field s (i, τ) . Of

course we traded the complex many-body problem for a sum of simple problems.

The computational cost of integrating the weight (1.43) involves m multiplications

of 2N × 2N matrices (for two spin states).
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2. since there is no mixing of spin, the propagation is the direct product of an up spin

propagation and one for the down spin. Therefore the trace factorizes into up and

down components

p [s, ↑] = Tr↑

m∏

τ=1

e−∆τH̃0,↑e
P

i
s(i,τ)α(ni,↑−1/2), (1.44)

p [s, ↓] = Tr↓

m∏

τ=1

e−∆τH̃0,↓e
P

i
s(i,τ)α(ni,↓−1/2), (1.45)

and the weight is the product

p [s] = p [s, ↑]× p [s, ↓] . (1.46)

3. in our particular HS decoupling the up and down factor are equal and real. Thus

the total weight p [s] is positive

p [s] ≥ 0 (1.47)

and a good weight function for MC sampling. As already mentioned one has enough

freedom to construct a variety of fermionic path integrals. But only the auxiliary

field algorithm gives positive weights in more than one dimension.

4. All possible observables may be constructed from elementary Green’s functions

using a Wick theorem generally available for all non-interacting Fermion problems.

Repulsive Hubbard model

It is well known that at half filling (or µ = 0) the attractive Hubbard model (1.12) maps

onto the repulsive model by a unitary particle-hole transformation. To this end, let us

introduce the canonical transformation P (with P2 = 1)

Pci,↓P = (−1)i c†i,↓, (1.48)

which satisfies

P2 = 1, (1.49)

and transforms spin down holes to electrons. The hopping Hamiltonian is invariant

Pci,↓c†j,↓P = (−1)i (−1)j
︸ ︷︷ ︸

−1:for bipartite NN hop

ci,↓c
†
j,↓ = c†j,↓ci,↓, (1.50)
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which holds for bipartite nearest neighbor hopping terms. A density term picks up a

minus sign

P
(

c†i,↓ci,↓ − 1/2
)

P = −
(

c†i,↓ci,↓ − 1/2
)

, (1.51)

which implies the sign change for the Hubbard term. Yet there is the µ = 0 restriction

because

Pµ (ni,↑ + ni,↓ − 1)P = µ (ni,↑ − ni,↓) = 2µSz
i , (1.52)

and the chemical potential gets mapped to a magnetic field.

Since a canonical transformation leaves the trace invariant we know that energies of

the half-filled repulsive and attractive Hubbard model are identical

Tr e−βH(U)H(U)

Tr e−βH(U)
=

TrPe−βH(U)H(U)P
TrPe−βH(U)P =

Tr e−βH(−U)H(−U)

Tr e−βH(−U)
. (1.53)

More generally any observable in the attractive model maps to a “conjugate” observable

in the repulsive model. Thus solving the attractive case we implicitly also solved the

repulsive model at half filling.

Next we apply the particle-hole transformation to the path integral (1.42) where we

continue to set µ = 0. The single weight p [s, ↓] transforms

Tr↓ P
m∏

τ=1

e−∆τH̃0,↓e
P

i
s(i,τ)α(ni,↓−1/2)P = Tr↓

m∏

τ=1

e−∆τH̃0,↓e
P

i
−s(i,τ)α(ni,↓−1/2) !

= p [s, ↓] .

(1.54)

We observe that the transformation P induced a flipping of the entire HS configuration.

Yet the weight remains invariant

p [s, ↓] = p [−s, ↓] , (1.55)

and the positivity property (1.47) is conserved. Applying the transformation P to the

HS transformation itself we find the Hirsch decoupling ( [41]) for the repulsive case U > 0

exp[−∆τU
∑

i (ni,↑ − 1/2) (ni,↓ − 1/2)] = C
∑

si=±1

exp [
∑

isiα (ni,↑ − ni,↓)] , (1.56)

where α takes the same numerical value as in (1.37) and is given by

e∆τU/2 = coshα. (1.57)

In this HS transformation the field couples to the z-component of the spin Sz
i = (ni,↑ − ni,↓) /2.
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Complex HS

The spin decoupling scheme obviously breaks the full spin symmetry of the Hubbard

model which eventually will be restored by summing over all HS fields. In practice

summing enough contributions for this symmetry restoration may be difficult and a spin

symmetric decoupling scheme would be favorable. The charge HS transformation (1.38)

is trivially spin symmetric but solving for α when U > 0 we find an imaginary solution

α = iα̃ (α̃ ∈ R)

e−∆τU/2 = cosh iα̃ = cos α̃. (1.58)

The complex decoupling for the repulsive case reads

exp[−∆τU
∑

i (ni,↑ − 1/2) (ni,↓ − 1/2)] = C
∑

si=±1

exp [
∑

iiα̃si (ni,↑ + ni,↓ − 1)] , (1.59)

and we should be worried about the positivity of p [s] . But the particle-hole transforma-

tion P ensures that p [s, ↓] is real! Under the action of P the external field propagation

changes into the conjugate. All other propagations are pure real, so the effect of the P
transformation on p [s, ↓]

p [s, ↓] = Tr↓ P
m∏

τ=1

e−∆τH̃0,↓e
P

i
iα̃s(i,τ)(ni,↓−1/2)P = Tr↓

m∏

τ=1

e−∆τH̃0,↓e
P

i
−iα̃s(i,τ)(ni,↓−1/2)

(1.60)

= p [s, ↓], (1.61)

is to enforce p [s, ↓] ∈ R through p [s, ↓] = p [s, ↓].
The complex decoupling in the attractive case

exp[−∆τU
∑

i (ni,↑ − 1/2) (ni,↓ − 1/2)] = C
∑

si=±1

exp [
∑

iiα̃si (ni,↑ − ni,↓)] , (1.62)

leads to complex conjugate weights

p [s, ↑] = p [s, ↓], (1.63)

and a positive weight p [s] ≥ 0.

As long as we insist on sign free simulations for the repulsive Hubbard model it is a

matter of taste whether we use the above mentioned decouplings for U > 0 or transform
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first to an attractive model. However we will have to choose between the inequivalent

real and complex decoupling.

In PQMC the “P-invariance” of the trace has to be substituted by “P-invariant” trial

wave functions

P |ψT 〉 = |ψT 〉 . (1.64)

Then the above proofs of positive weights may be repeated accordingly. A particle hole

invariant Slater determinant |ψT 〉 is naturally generated as the ground state of the hop-

ping Hamiltonian. Of course we have to fill the free Fermi sea with Ne = N electrons.

General HS

We now consider interaction terms of “perfect square” form:

HI = −W
∑

i

(
O(i)

)2
(1.65)

where O(i) is a one-body operator. In general,
[
O(i), O(j)

]
6= 0 so that the sum in the

above equation has to be split into sums of commuting terms: HI =
∑

r H
r
I , H

r
I =

−W∑

iεSr

(
O(i)

)2
. For i and j in the set Sr one requires

[
O(i), O(j)

]
= 0. The imaginary

time evolution may be written as e−∆τHt ≈∏r e
−∆τHr

t . Thus we are left with the problem

of decoupling e∆τWO2
where we have omitted the index i. In principle, one can decouple

a perfect square with the canonical HS transformation:

e∆τWO2

=
1√
2π

∫

dΦe−
Φ2

2
+
√

2∆τWΦO (1.66)

However, this involves a continuous field which renders the sampling hard. An alternative

formulation is given by [9]:

e∆τWO2

=
∑

l=±1,±2

γ(l)e
√

∆τWη(l)O +O(∆τ 4) (1.67)

where the fields η and γ take the values:

γ(±1) = 1 +
√

6/3, γ(±2) = 1−
√

6/3

η(±1) = ±
√

2
(

3−
√

6
)

, η(±2) = ±
√

2
(

3 +
√

6
)

.
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This transformation is not exact and produces an overall systematic error proportional

to ∆τ 3. However, since we already have a systematic error proportional to ∆τ 2 from

the Trotter decomposition, the transformation is as good as exact. It also has the great

advantage of being discrete thus allowing efficient sampling.

1.3 Single particle Formalism

So far we have used the Trotter decomposition together with a HS transformation to

convert the interacting many body problem to a sum of independent electron problems.

Consequently, we now have to demonstrate, how the latter may be solved on a computer.

The central quantity which we need to calculate is the one particle Green’s function.

We will review the formalism associated with independent electrons moving in an

external time-dependent field. The goal is to numerically evaluate formulas like

Z↑ = Tr e−c
†
↑Hmc↑ . . . e−c

†
↑H1c↑ = det (1 + Bm . . .B1) (1.68)

where Hτ represents the time-dependent single particle Hamiltonian from Eq. (1.22).

An important result is that all relevant quantities such as the partition function and

all correlation functions are readily expressed in terms of the single particle propagation

matrices

Bτ = e−Hτ , (1.69)

and are thus easily evaluated numerically.

Determinants

From here on we suppress the spin index since it is sufficient to consider a single spin

sector. The following formulas may be verified using either operator methods [64,6] or a

coherent state representation for the fermi partition function [10]. Here we rely only on

operator methods, for the coherent state formalism see appendix C.

We start with the definition of the Ne electron state

|R〉 =
Ne∏

i=1

(
∑

x

c†xRx,i

)

|0〉 =
Ne∏

i=1

(
c†ri

)
|0〉 , (1.70)
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where R is a Ne × N matrix. The columns of R denoted by ri are the single electron

state vectors. The scalar product of two states |R〉 and |L〉 evaluates to the determinant

〈L|R〉 = detL†R , (1.71)

where a proof is found in appendix A. In first quantization the meaning is evident

considering the 2 electron case

|R〉 =
1√
2

(|r1〉 |r2〉 − |r2〉 |r1〉) , (1.72)

|L〉 =
1√
2

(|l1〉 |l2〉 − |l2〉 |l1〉) (1.73)

and the scalar product is

〈L|R〉 = det




〈l1|r1〉 〈l1|r2〉
〈l2|r1〉 〈l2|r2〉



 . (1.74)

Further on we will often need to commute c†x with the propagation exp[−c†Hc] and we

get

exp[−c†Hc]c† = c†B exp[−c†Hc], (1.75)

c†x exp[−c†Hc] =
∑

i

exp[−c†Hc]c†i
(
B−1

)

ix
(1.76)

with the propagation matrix B = exp[−H]. We proof this by integrating the equation of

motion

d

dτ
e−τc†Hc c†l e

τc†Hc = −e−τc†Hc
[

c†Hc, c†l

]

eτc†Hc

= −e−τc†Hc
∑

i,j

Hij

(

c†i{cj, c†l} − {c†i , c†l}cj
)

eτc†Hc (1.77)

= −e−τc†Hc
∑

i

c†iHile
τc†Hc, (1.78)

which has the solution

e−τc†Hc c†l e
τc†Hc =

∑

i

c†iBil qed. (1.79)

We make a first use of Eq. (1.75) when we proof

〈L|e−c†Hmc . . . e−c†H1c|R〉 = detL†BR, (1.80)
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where B abbreviates the product of single propagations

B = Bm . . .B1. (1.81)

We simply commute all the creation operators to the left

〈L|e−c†Hmc . . . e−c†H1c|R〉 = 〈L|e−c†Hmc . . . e−c†H1c

Ne∏

i=1

(c†ri) |0〉

= 〈L|e−c†Hmc . . .
Ne∏

i=1

(c†B1ri)e
−c†H1c |0〉
︸ ︷︷ ︸

=|0〉

=

= 〈L|
Ne∏

i=1

(c†Bm . . .B1ri) |0〉 = detL† (BR) qed. (1.82)

For the finite temperature grand canonical partition sum we need to perform a trace

in the Fock space of zero to N particles

Z = Tr e−c†Hmc . . . e−c†H1c = det (1 + B) . (1.83)

The proof is deferred to appendix A. But we may understand Eq. (1.83) from applying

it to a two site system,

det




1 +B11 B12

B21 1 +B22



 = 1 +B11 +B22 + det




B11 B12

B21 B22



 (1.84)

= Tr
N=2

e−c†Hmc . . . e−c†H1c,

where the determinant is expanded using the multilinear property. But the right side of

Eq. 1.84 traces over a complete set of states in Fock space. For instance there are only

two one particle basis states |P1〉 and |P2〉

P
†
1 = (1, 0) ,

P
†
2 = (0, 1) (1.85)

and both

detP†
1BP1 = B11,

detP†
2BP2 = B22, (1.86)

appear in Eq. (1.84). Finally, in our example the expectation values of the vacuum and

the totally filled state are given by one and the determinant which completes the Fock

space trace.
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Here we want to remark on an interesting interpretation of all these determinants.

While the determinant in the scalar product (1.71) is a manifestation of fermionic an-

tisymmetrization, the trace formula (1.83) has another simple interpretation. Assume,

that we can diagonalize the entire propagation by a canonical transformation

Tr
fermi

e−c†Hmc . . . e−c†H1c = Tr
fermi

exp

(

−
∑

k

εkc
†
kck

)

=
∏

k

(
1 + e−εk

)
= det (1 + B) . (1.87)

Now the determinant is a basis invariant form of the product. For bosons b† the analogous

result also involves a determinant (and is also correct for arbitrary propagation)

Tr
bose

e−b†Hmb . . . e−b†H1b = Tr
bose

exp

(

−
∑

k

εkb
†
kbk

)

=
∏

k

(
1 + e−εk + e−2εk + . . .

)
= det

(
1

1−B

)

. (1.88)

In this way one may adapt the auxiliary field QMC to a grand canonical simulation for

bosons.2 Within the coherent state formalism (see appendix C) we can evaluate Fermi

and Bose traces on the same level.

Using cyclic rotation under the trace (1.83) (for alternative proof see appendix A) we

conclude that

det (1 + B2B1) = det (1 + B1B2) . (1.89)

At the end of this introduction to the determinantal formalism we present the following

summary

c, c† ←→ matrix

|R〉 R

〈L| L

〈L|R〉 detLR

U B

Z = 〈L|U |R〉 detLBR

TrU det(1 + B).

(1.90)

2Canonical simulation for bosons as in PQMC is not possible. A zero temperature limit as in 1.3 is

not well defined. And a direct implementation for N bosons would involve the calculation of permanents

instead of determinants and they have much worse properties.



28 CHAPTER 1. AUXILIARY FIELD QUANTUM MONTE CARLO

Green’s function

The single particle Green’s function is the central quantity in the QMC algorithm. For

the updating of the HS fields we need the equal time Green’s function G (τ) . Dynamical

information, as the spectral function, is contained in the time displaced Green’s function

G< (τ1, τ2) where a particle is added at time τ1 and removed at a later time τ2. In the

next section on the Wick theorem we shall learn how any observable is constructed from

Green’s functions.

In a preliminary step we introduce the notation (with τ1 > τ2)

U (τ1, τ2) =

τ1∏

τ=τ2+1

U (τ, τ − 1) (1.91)

U (τ, τ − 1) = e−c†Hτc (1.92)

U (τ1, τ2)
−1 ≡ U (τ2, τ1) (1.93)

and accordingly for the matrices

B (τ1, τ2) =

τ1∏

τ=τ2+1

B (τ, τ − 1) (1.94)

B (τ, τ − 1) = Bτ . (1.95)

Since we started with m different propagation matrices Bτ the τ slots can only take

discrete values and may be indexed from τ ∈ 0 . . .m. In order to simplify some notation

we introduce “time-dependent” operators

cl = cl (τl) ≡ U (0, τl) clU (τl, 0) , (1.96)

c†l = c†l (τl) ≡ U (0, τl) c
†
lU (τl, 0) . (1.97)

With these abbreviations the commutation rule (1.75) reads

U (τ1, τ2) c
† = c†B (τ1, τ2)U (τ1, τ2) . (1.98)

The time displaced Green’s function is defined as

Gxy (τ1, τ2) = 〈T cx (τ1) c
†
y (τ2)〉. (1.99)

Thus for τ1 ≥ τ2 the Green’s function is

G>
xy (τ1, τ2) =

TrU (β, τ1) cxU (τ1, τ2) c
†
yU (τ2, 0)

Z
, (1.100)
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and for τ1 < τ2

G<
xy (τ1, τ2) = −TrU (β, τ1) c

†
yU (τ1, τ2) cxU (τ2, 0)

Z
. (1.101)

It is notationally more convenient to first calculate

G>
xy =

Tr e−c†H3ccxe
−c†H2cc†ye

−c†H1c

Z
, (1.102)

where we make use of the commutation rule 1.75

Cxy = Tr e−c†H3ccxe
−c†H2cc†ye

−c†H1c =
∑

k

Tr e−c†H3ccxc
†
kB2,kye

−c†H2ce−c†H1c

= −
∑

k

Tr e−c†H3cc†kcxB2,kye
−c†H2ce−c†H1c +B2,xy Tr e−c†H3ce−c†H2ce−c†H1c

= −
∑

k,l,m

Tr e−c†H3ccxe
−c†H2cc†me

−c†H1cB1,mlB3,lkB2,ky +B2,xyZ. (1.103)

In matrix form this is more transparent

C = −CB1B3B2 + B2Z (1.104)

or

G>=
C

Z
=

1

B−1
2 + B1B3

. (1.105)

In a similar way we obtain the electron removal Green’s function G<

G<
xy = −Tr e−c†H3cc†ye

−c†H2ccxe
−c†H1c

Z
. (1.106)

The result from cyclically commuting c†y to the left is

G<= − 1

(B1B3)
−1 + B2

. (1.107)

Without ambiguity we may translate Eqs. 1.101 and 1.100

G> (τ1, τ2) =
1

B−1 (τ1, τ2) + B (τ2, 0)B (β, τ1)
(1.108)

and

G< (τ1, τ2) = − 1

(B (τ1, 0)B (β, τ2))
−1 + B (τ2, τ1)

. (1.109)
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Wrapping equal time Green’s function

At equal time τ1 = τ2 we need an additional definition for G

Gxy (τ) ≡ TrU (β, τ) cxc
†
yU (τ, 0)

Z
(1.110)

G (τ) =
1

1 + B (τ, 0)B (β, τ)
. (1.111)

We will see that the Monte Carlo algorithm provides at every step the equal time G (τ).

In order to obtain the general time displaced G>
xy (τ1, τ2) for τ1 > τ2 we may “wrap” with

the correct propagation matrix

G> (τ1, τ2) = B (τ1, τ)G (τ)B (τ, τ2) . (1.112)

The electron removal Green’s function τ1 < τ2 may equally be obtained from the equal

time G (τ)

G< (τ, τ) = G (τ)− 1,

G< (τ1, τ2) = B−1 (τ, τ1)G
< (τ, τ)B−1 (τ2, τ)

= B−1 (τ, τ1) (G (τ)− 1)B−1 (τ2, τ) . (1.113)

Wick theorem

We also need to calculate spin-spin or density-density correlations which are four fermion

observables. On the level of a free electron time evolution we can always build up many

electron correlations from products of the Green’s functions Gxy (τ1, τ2) . Using operator

methods the proof relies on the ability to commute U and c as in Eq. (1.98). In the

coherent state path integral it is a statement about Gaussian integrals.

We follow the strategy described for instance in [29]. A arbitrary many particle

correlation function may take the form

TrU (β, 0) . . . clc
†
kc

†
jci . . .

Z
. (1.114)

Time order is not an issue here, since we already start with an ordered sequence τl > τk >

. . .. The reduction to two point Green’s functions is achieved by picking some c†j creation

operator and commuting it to the left, cycling through the trace and commuting to the
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original position. This is the exact same procedure already employed in the evaluation of

G< in Eq. (1.103). The only difference is that here we need more than one commutation

of type
{

cx, c
†
j

}

which generates the Green’s functions. After a complete rotation of c†j

one obtains a relation between the original expression and a sum of correlation functions

with two operators less

TrU (β, 0) . . . clc
†
kc

†
jci . . .

Z
= (−1)1 TrU (β, 0) clc

†
j

Z
× TrU (β, 0) . . . c†kci . . .

Z
+ . . .+

(1.115)

+ (−1)2 TrU (β, 0) c†jci

Z
× TrU (β, 0) . . . clc

†
k . . .

Z
. (1.116)

The “contraction” we pulled in front is just the Green’s function we would calculate if

all other operators were missing. For instance on line (1.115) TrU (β, 0) clc
†
j/Z arises

from the commutator
{

cl, c
†
j

}

and the same steps used to complete (1.103). In addition

a factor (−1)c accounts for the number of fermion commutations necessary to pair the

operators before they are contracted. As promised the recursive application of the pro-

cedure (1.116) reduces the original correlation function to products of Green’s functions.

Space-time matrix g

An elegant way to compute the full matrix g

gx′x = Gx′,x (τ ′, τ) (1.117)

which contains all possible time dependent Green’s functions was used by Hirsch [43] in

order to stabilize the calculation of time displaced Green’s functions.

Evidently x = xi,τ and g is a space time matrix of dimension (N m)× (N m), where

we will only display the time part. The inverse g−1 is directly calculated in the coherent

state formalism (appendix C)

g−1 =














I 0 0 . . . B1

−B2 I 0 . . . 0

0 −B3 I 0
...

...
. . . . . . 0

0 . . . 0 −Bm I














.
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It may be shown by direct multiplication g−1g = gg−1 = I, that it really is the inverse

of the matrix

g =











G> (1, 1) G< (1, 2) . . . G< (1,m)

G> (2, 1) G> (2, 2) . . . G< (2,m)
...

...
. . .

...

G> (m, 1) G> (m, 2) . . . G> (m,m)











, (1.118)

where the definition of the Green’s functions follows Eqs. (1.101) and (1.100). The

partition function Z is conveniently expressed in terms of g in (1.118)

Z = det (1 + B) = detg−1. (1.119)

Zero temperature limit

Sofar we did not cite results in the PQMC “zero temperature” limit (1.14), where the

trace is systematically replaced by a scalar product

TrX → Tr |R〉 〈L|X = 〈L|X |R〉 . (1.120)

In particular we need again the equal-time Green’s function which is readily calculated

[64]

G (τ) = G> (τ, τ) = 1−B (τ, 0)R
1

L†B(β, 0)R
LB (β, τ) (1.121)

G< (τ, τ) = −B (τ, 0)R
1

L†B(β, 0)R
LB (β, τ) . (1.122)

But in the zero temperature limit we can no longer rotate cyclically under the trace which

necessitates entirely new proofs for the Wick theorem and so forth.

But instead of repeating the derivation for the zero temperature formalism, we may

obtain every single result by taking the proper limit of the finite temperature version. [6]

Additionally, this point of view guarantees a proper zero temperature algorithm whenever

we already have a finite temperature version. In appendix C we define an operator U (E)

which in the limit E →∞ satisfies

lim
E→∞

U (E) = |R〉 〈L| . (1.123)
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Using this method we recover in app. C the Eq. (1.121) for the Green’s function and

〈L|U (β, 0) |R〉 = lim
E→∞

TrU (E)U (β, 0) = lim
E→∞

det [1 + B (E)B(β,0)] (1.124)

= detL†B(β,0)R (1.125)

for the scalar product.

Time displaced Green’s functions are again obtained by “wrapping” the equal-time

G.

1.4 MC algorithm

MC scheme

We use the Monte Carlo scheme proposed by Blankenbecler, Sugar and Scalapino [14] to

update the HS field and calculate observables. Here we introduce the necessary compu-

tational steps and provide a schematic outline of the algorithm.

Let us assume that we have already chosen a particular HS transformation and in-

troduced an approximate path integral as in Eq. (1.42) with m Trotter steps. The path

integral is

〈O〉 =
∑

s(i,τ)

p [s (i, τ)]

Z

Tr [U (β, 0)O]

p [s (i, τ)]
. (1.126)

The weight function

p [s (i, τ)]

Z
(1.127)

is naturally normalized to unity and will be sampled with a Metropolis algorithm. The

decision to accept or reject the proposed spin flip is based on the weight ratio

R =
p [s′ (i, τ)]

p [s (i, τ)]
. (1.128)

We will see that the ratio R is easily calculated form the equal time Green’s function

Gσ (τ) . The observable part in

Tr [U (β, 0)O]

p [s (i, τ)]
(1.129)

can be calculated using the Wick theorem. Thus for the moment the only observable we

are interested in is the Green’s function.
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For updating the auxiliary field s (i, τ) we propose sequential single spin flips which

are accepted by Metropolis rules. The obvious choice for the sequential sweep through

the field s (i, τ) is to first visit all sites at a given time slice τ , then change over to

the adjacent time slice and so forth. At the last time slice m we change direction and

propagate back to τ = 1.

On every time slice we need the two matrices Bσ
s (β, τ) and Bσ

s (τ, 0) which allow

immediate calculation of the equal time Greens’ function

Gσ
s (τ) =

1

1 + Bσ
s (τ, 0)Bσ

s (β, τ)
. (1.130)

Moving on from one time slice to the next involves matrix multiplications for the Bs (τ, 0)

which we have to do m times for a full sweep. Successive multiplication of Bs matrices

has to be stabilized and inverse propagation like

B−1
s (τ, τ − 1)Bs (τ, 0) = Bs (τ − 1, 0) . (1.131)

is only possible over a few time slices. Extensive recalculations are avoided by storing

matrices Bs (β, τ) for all τ. In the next sweep we propagate Bs (τ, 0) as we increase τ but

take the matrix Bs (β, τ) from storage.

Weight ratio

The Monte Carlo decision to accept or reject a new HS configuration s′ is based on the

weight ratio

R↑R↓ =
p [s′, ↑]
p [s, ↑]

p [s′, ↓]
p [s, ↓] . (1.132)

It is sufficient to consider the ratio for a single spin sector

R =
TrUs′ (β, 0)

TrUs (β, 0)
. (1.133)

Let us assume a propagation matrix Bn

Bn = eVne−∆τh0 (1.134)

where Vn depends on the given HS configuration sn. We further introduce V′
n for a

different HS configuration s
′

n.
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It is convenient to introduce the abbreviation ∆

∆ = eV
′
ne−Vn − 1, (1.135)

such that upon updating

B (τ, 0) −→ eV
′
τ e−Vτ B (τ, 0) = (1 + ∆)B (τ, 0) . (1.136)

For the case that we make a single HS spin flip, the matrix ∆ will be zero almost

everywhere. Then we may define a small ∆s which contains only the nonzero part of ∆

∆ = p∆sq, (1.137)

where p and q are rectangular shaped matrices with only one and zero entries.

The weight ratio

R = det [1 + (1 + ∆)B (τ, 0)B (β, τ)] det
1

1 + B (τ, 0)B (β, τ)

= detG′ (τ)−1
G (τ) , (1.138)

is thus related to the ratio of the Green’s functions G′/G. In the next section we obtain

a simple expression for the ratio G′/G (Eq. 1.142) and R depends only on the local part

of the Green’s function q (1−G (τ))p

R = det (1 + ∆ (G (τ)− 1)) = det (1s + ∆sq (1−G (τ))p) . (1.139)

Green’s function update

We already indicated that for spin flips on a given time slice it is enough to know the

Green’s function G (τ). Yet G (τ) itself changes when a HS spin is flipped. Recalculating

G (τ) using Eq. (1.130) would be extremely expensive. Fortunately there exists an efficient

method for the Green’s function update.

Again we consider only a single spin sector. Now we calculate the new Green’s function

G′ from the old G. The defining equations are best written for G−1

G−1 (τ) = 1 + B (τ, 0)B (β, τ) ,

[G′ (τ)]
−1

= 1 + (1 + ∆)B (τ, 0)B (β, τ) . (1.140)
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The updated inverse G−1 is recast by adding 0 = ∆−∆

[G′]
−1

= (1 + ∆)G−1−∆, (1.141)

and it is safe to omit the τ index from here on. Taking the inverse we obtain an expression

for the ratio G′/G

G′ = G [1 + ∆ (1−G)]−1 , (1.142)

which is a simple rearrangement of the following Dyson equation

G′ = G−G′∆ (1−G) . (1.143)

In order to obtain the new Green’s function we apply the Woodbury-Sherman-Morrison

[86] formula 3

1

(A−BC)
=

1

A
+

1

A
B

1

1−CA−1B
C

1

A
(1.144)

to the ratio equation 1.142, using definitions

B = p, (1.145)

C = ∆sq (1−G). (1.146)

The updated Green’s function is then obtained as

G′ (τ) = G (τ)−G (τ)p
1

1 + ∆sq (1−G (τ))p
∆sq (1−G (τ)) . (1.147)

Dyson equation

First we would like to generalize the updating to the full space-time Green’s function g

(1.118). In order to obtain equations that define the updating and are similar to (1.140)

3The Woodbury formula may be viewed as a simple series rearrangment

1

(A−BC)
=

1

A

(
1 + BCA

−1 + BCA
−1

BCA
−1 + . . .

)

=
1

A
+

1

A
B

(
1 + CA

−1
B + . . .

)
C

1

A

=
1

A
+

1

A
B

1

1−CA
−1

B
C

1

A
.
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we introduce b as the space-time generalization of the B matrix

b =














0 0 0 . . . B1

−B2 0 0 . . . 0

0 −B3 0 0
...

...
. . . . . . 0

0 . . . 0 −Bm 0














(1.148)

and accordingly for the interaction with the space-time HS field, we generalize V to a

space-time matrix v

ev=














eV1 0 0 . . . 0

0 eV2 0 . . . 0

0 0 eV3 0
...

...
. . . . . . 0

0 . . . 0 0 eVm














. (1.149)

We emphasize, that with this notation we reproduce the matrix Eqs. (1.140) for g−1

g−1 = 1 + b,

[g′]
−1

= 1 + ev
′

e−vb. (1.150)

We already encountered two different ways to present the solution of these equations

which both must apply again. Either the Dyson form

g′ = g − g′δ (1− g) , (1.151)

or in the update form

g′ = g + gp
1

1 + δsq (1− g)p
δsq (1− g) , (1.152)

with δ and δs = pδq also defined on space and time. Using this updating equation for

g, Hirsch [43] was able to stabilize the computation of time displaced Green’s functions

because the inverse (1 + b)−1 is a numerically stable operation4. Using the updating

scheme (1.152) results in a very elegant formulation which is much easier to implement

than the BSS scheme. Yet, there is a major drawback. Solving space-time equation

directly for updating g scales like (Nβ)3 which compares unfavorably with the N 3β

4We will see below that wrapping of the equal-time Green’s function (1.112) is very unstable.
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behavior of the BSS algorithm. But here all possible time displaced Green’s functions

are calculated. This accounts for the difference of β2 in two algorithms.

An interesting aspect of Eqs. (1.151) and (1.152) is that they allow to update the

Green’s function on a restricted set of space-time points. Let us assume that the HS

field s (i, τ) fluctuates only on a given subset (i, τ) ∈ S and is frozen everywhere else.

Then the difference δs is also restricted to S and Eqs. (1.151) and (1.152) become closed

again if we are only interested in g′, restricted to the same set of points where the HS

field fluctuates. Applying this point of view we immediately think of two interesting

restrictions S:

1. Restricting HS fluctuations to a single time slice, we come to the BSS algorithm

with sequential updating which is what we use. As long as we stay on a given time

slice τ , updating the local HS field, we only need to know G (τ) (see Eq. 1.147).

The Green’s function on other time slices does not enter explicitly!

2. The Hirsch-Fye algorithm [44] for the single impurity problem is based on another

restriction of the general Dyson equation (1.151). The impurity is located at site

f and we have to update a local HS field s (f, τ) . Accordingly, we obtain closed

equations for the impurity Green’s function

g̃ = Gff (τ1, τ2) . (1.153)

Updating (LR)−1

The version of PQMC we use is based on updating the denominator

1

LτRτ

. (1.154)

We introduced another useful abbreviation

Lτ = LB (β, τ) , (1.155)

Rτ = B (τ, 0)R. (1.156)

Updating B (τ, 0) implies

Rτ −→ (1 + ∆)Rτ . (1.157)
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Finally the PQMC updates

(LτRτ )
−1 −→ (Lτ (1 + ∆)Rτ )

−1 , (1.158)

not the Green’s function. Starting with Eqs. (1.147) and (1.122) we obtain after some

manipulations

(LτRτ )
−1 −→ (LτRτ )

−1 (1.159)

− (LτRτ )
−1

Lτp
1

1 + ∆sqB (τ, 0)B (β, τ)G (τ)p
∆sqRτ (LτRτ )

−1 .

(1.160)

MC summary

In principle, we now have all elements required to carry out the simulations. The equal

time Green’s function is the central quantity. On one hand it is used to compute all

observables. On the other hand, it determines the Monte Carlo dynamics. As already

mentioned it is convenient to adopt a sequential upgrading scheme. Given the Green’s

function at imaginary time τ , one upgrades the HS fields on this time slice determinis-

tically or randomly. In case of acceptance, the Green’s function is upgraded after each

single spin flip. To reach the next time slice, the relation:

Gs(τ + ∆τ) = Bs(τ + ∆τ, τ)Gs(τ) (Bs(τ + ∆τ, τ))−1 (1.161)

is used and the procedure is repeated till τ = β (FTQMC) or τ = 2θ (PQMC). Having

reached τ = β or τ = 2θ we propagate the Green’s function back to τ = 0 and on the

way upgrade the HS fields. The whole procedure may then be repeated. We note that for

interactions of the form (1.65) the propagation of the Green’s function from time slice τ

to time slice τ + ∆τ is split into intermediate steps so as to upgrade the HS fields in the

sets Sr successively. The above corresponds precisely to the procedure adopted in the

case of the FTQMC. For the PQMC, it is more efficient to keep track of (LτRτ )
−1 since

(i) it is of dimension Ne×Ne in contrast to the Green’s function which is a N×N matrix

and (ii) it is τ independent. When Green’s functions are required - to compute either

the ratio R, or observables - the matrix elements needed are calculated from scratch.
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1.5 Numerical stabilization

In the previous section, we have assumed that we are able to compute the Green functions.

On finite precision machines this is unfortunately not the case. To understand the sources

of numerical instabilities, it is convenient to consider the PQMC. Instabilities in FTQMC

will not be discussed but we refer the reader to [6] and references therein.

The rectangular matrix R is just a set of column orthonormal vectors. Typically

for a Hubbard model, at weak couplings, the extremal scales in the matrix Bs(2θ, 0) are

determined by the kinetic energy and range from e4tθ to e−4tθ in the two-dimensional case.

When the set of orthonormal vectors in R are propagated, the large scales will wash out

the small scales yielding a numerically ill defined inversion of the matrix LBs(2θ, 0)R.

To be more precise consider a two electron problem. The matrix R then consists of two

column orthonormal vectors, r(0)1 and r(0)2. After propagation along the imaginary time

axis, they will be dominated by the largest scales in Bs(2θ, 0) so that r(2θ)1 = r(2θ)2 + ε,

where r(2θ)1 = Bs(2Θ, 0)r(0)1. It is the information contained in ε which renders the

matrix LBs(2θ, 0)R non-singular. For large values of θ this information is lost in round-

off errors. To circumvent this problem a set of matrix decomposition techniques were

developed [95,96,107].

In practice one has to address three separate problems, all originating in the afore-

mentioned mixing of large and small scales.

1. The product of many B matrices is decomposed into UDV form

B . . .BR = UrDrVr,

LB . . .B = VlDlUl (1.162)

where Ur (Ul) is a N×Ne (Ne×N) column (row) orthogonal matrix, Dr,l (Ne×Ne)

is diagonal and Vr,l (Ne×Ne) is a well conditioned upper triangular matrix.5 Shapes

of the respective matrices are given in brackets and correspond to the PQMC. The

main information about the propagated Slater determinant is contained in Ur which

needs to be known with high precision. The scales Dr and the matrix Vr together

only represent a single numerical prefactor detDrVr to the orthogonalized Slater

5Alternatively, one can use the singular value decomposition. [86]
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determinant given by Ur. This is illustrated by calculating the overlap

detLτRτ = detLB (β, τ)B (τ, 0)R (1.163)

= c detUlUr, (1.164)

where the prefactor c is given by

c = detDrVr × detDlVl. (1.165)

The calculation of the overlap (1.163) is only possible when Ur,l are known with

high accuracy. This is reached by successive UDV decomposition (typically on

every 5 or 10 Trotter time slices).

2. The inverse B−1 is ill defined. We can certainly obtain a reasonable representation

of matrix elements (B−1)ij through

B−1 = V−1D−1U−1, (1.166)

but as an inverse to B satisfying

B−1B = 1, (1.167)

this will nevertheless fail. Numerically, even the simple multiplication

D
(
VV−1

)
D−1 6= 1 (1.168)

does not give unity! Although Green’s functions by definition involve some matrix

inversion they eventually do not suffer from such instabilities. For the equal-time

Green’s function (1.122) this is easily verified

G< (τ, τ) = −Rτ
1

LτRτ

Lτ = −UrDrVr
1

VlDlUlUrDrVr

VlDlUl (1.169)

= −Ur
1

UlUr

Ul, (1.170)

without explicit multiplications of type (1.168).

3. In order to obtain the time-displaced Green’s function through wrapping the equal

time G< (τ, τ)

G< (τ1, τ) = B−1 (τ, τ1)G
< (τ, τ) (1.171)

= B−1 (τ, τ1)B (τ, 0)R
1

LτRτ

Lτ (1.172)
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we should do some “backpropagation” as in

B−1 (τ, τ ′)B (τ, 0)R = B (τ ′, 0)R. (1.173)

But this is again ill defined! However G< (τ1, τ) is a stable quantity which is

apparent after rewriting G< (τ1, τ) as

G< (τ1, τ) = Ur (τ1, 0)
1

Ul (β, τ)B (τ, τ1)Ur (τ1, 0)
Ul (β, τ)

= Ur (τ1, 0)v
−1d−1u−1Ul (β, τ) , (1.174)

where d will contain only large scales.

Efficient calculation of G< (τ1, τ)

We conclude this introduction on auxiliary field methods with a detailed review of a stable

and efficient way of calculating the time-displaced Green’s function G< (τ1, τ) . [27] We

first introduce another way of thinking about the mentioned instability by considering

free electrons on a two-dimensional square lattice.

H = −t
∑

<i,j>

c†i cj . (1.175)

For this Hamiltonian one has:

〈Ψ0|c†k(τ)ck|Ψ0〉 = 〈Ψ0|c†kck|Ψ0〉 exp (τ(εk − µ)) , (1.176)

where εk = −2t(cos(kax) + cos(kay)), ax, ay being the lattice constants. We will assume

|Ψ0〉 to be non-degenerate. In a numerical calculation the eigenvalues and eigenvectors of

the above Hamiltonian will be known up to machine precision, ε. In the case εk− µ > 0,

〈Ψ0|c†kck|Ψ0〉 ≡ 0. However, on a finite precision machine the later quantity will take

a value of the order of ε. When calculating 〈Ψ0|c†k(τ)ck|Ψ0〉 this roundoff error will be

blown up exponentially and the result for large values of τ will be unreliable.

The Bs matrix plays the role of the exponential factors, and contains exponentially

large and small scales whereas G<
s (θ, θ) contains scales bounded by order unity. Since we

equally expect the result G<
s (θ, θ + τ) to be bounded by order unity, we will eventually

run into numerical problems when τ becomes large.
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In order to circumvent this problem, Assaad and Imada [8] proposed to do the calcu-

lation at finite temperatures and then take the limit to vanishingly small temperatures.

For the example of free electrons this amounts in doing calculation via:

〈Ψ0|c†k (τ) ck|Ψ0〉 = lim
β→∞

exp (τ(εk − µ))

1 + exp (β(εk − µ))
.

Even if the eigenvalues are known only up to machine precision, the right hand side of

the above equation for large but finite values of β is a numerically stable operation. To

implement this idea in the QMC method, Assaad and Imada considered a single particle

Hamilton H0 which has the trial wave function, |ΨT 〉 as non-degenerate ground state and

then compute:

G<
s (θ, θ + τ) ≡ (1.177)

lim
β→∞

Tr
(
e−βH0Us(2θ, θ + τ)c†yUs(θ + τ, θ)cxUs(θ, 0)

)

Tr (e−βH0Us(2θ, 0))
.

Although the rhs of the above equation may be computed in a numerically stable way, the

approach is cumbersome and numerically expensive. In particular, for each measurement,

all quantities have to be computed from scratch since the ad-hoc inverse temperature β

has to be taken into account.

The alternative, efficient method may be introduced in a similar intuitive way. We

start again with the example of free electrons. Since, 〈Ψ0|c†k (τ) ck|Ψ0〉 = 1, 0, we can

rewrite Eq. (1.176) as:

〈Ψ0|c†k (τ) ck|Ψ0〉 =
(

〈Ψ0|c†kck|Ψ0〉 exp ((εk − µ))
)τ

(1.178)

which involves only well defined numerical manipulations even in the large τ limit.

The implementation of this idea in the QMC algorithm is as follows. First, one has

to notice that the Green function G<
s (θ, θ) is a projector:

G<
s (θ, θ)2 = G<

s (θ, θ). (1.179)

Let G<
s (θ, θ) be given by

G<
s (θ, θ) = R(LR)−1L, (1.180)

and Eq. (1.179) follows from:

G<
s (θ, θ)2 = R(LR)−1LR(LR)−1L

= G<
s (θ, θ). (1.181)
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This in turn implies that G<
s (τ1, τ3) obeys a simple composition identity

G<
s (τ1, τ2)G

<
s (τ2, τ3) = G<

s (τ1, τ3) (1.182)

since

G<
s (τ1, τ3) = G<

s (τ1, τ1)B
−1
s (τ3, τ1) =

[G<
s (τ1, τ1)]

2
B−1

s (τ3, τ1) = G<
s (τ1, τ1)G

<
s (τ1, τ3)

= G<
s (τ1, τ2)G

<
s (τ2, τ3).

Using this composition property (1.182) we can break up a large τ interval into a set

of smaller intervals of length τ = Nτ1 so that

G<
s (θ, θ + τ) =

N−1∏

n=0

G<
s (θ + [n+ 1] τ1, θ + nτ1) (1.183)

The above equation is the generalization of Eq. (1.178). If τ1 is small enough each

Green’s function in the above product is accurate and has matrix elements bounded by

order unity. The matrix multiplication is then numerically well defined.

We conclude this section by comparing both presented approaches for the calculation

of time displaced correlation functions in the PQMC. We consider the special case of the

Kondo lattice model (see Fig. 1.3). Both methods based on Eq. (1.183) and Eq. (1.177)

produce identical results within the error-bars. (Had we used the same series of random

numbers, we would have obtained exactly the same values up to roundoff errors which

are of the order 10−8)

The important point however, is that the method based on Eq. (1.183) is for the

considered case an order of magnitude faster in CPU time than the calculation based on

Eq. (1.177).

1.6 The Sign Problem

Although the sign problem is the major restriction in QMC, surprisingly little is known

why and when a Hamiltonian may in principle have a sign free representation.

Obviously, the first ingredient involved is the spin ↑⇔↓ symmetry of the Hamiltonian.

This is not very restrictive. Second, we regard the attractive Hubbard model as generic
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Figure 1.3: Imaginary time displaced on-site spin-spin correlation function (a) and

Green’s function (b). We consider a 6 × 6 lattice at half-filling and J/t = 1.2. In

both (a) and (b) results obtained from Eq. (1.183) (4) and (1.177) (5) are plotted.

prototype for systems where we can find a sign free simulation. From the PQMC path

integral we may immediately deduce the following representation of the ground state |Ψ0〉

|Ψ0〉 =
∑

i

ci |ψi,↑〉 ⊗ |ψi,↓〉 , (1.184)

with positive ci ≥ 0 and real Slater determinants |ψi,↑〉 = |ψi,↓〉 . Of course, this satisfies

the spin ↑⇔↓ symmetry, but conversely not every symmetric Hamiltonian will have a

positive real representation (1.184). An alternative representation of |Ψ0〉 is illustrated

by the complex decoupling of the attractive U model with complex |ψi,↑〉 = |ψi,↓〉.
The HS decoupling of the repulsive Hubbard model apparently violates condition (1.184).

But the repulsive U simulations are only possible due to the accidental particle-hole sym-

metry that maps U ↔ −U.
When a sign-free simulation is not possible we have to sample the average sign

〈sign〉 =

∑

s p [s]
∑

s |p [s]| , (1.185)

in order to calculate observables. For the repulsive U model away from half-filling, the

average sign decays quickly as shown in Fig. 1.4. This is most severe at low dopings. In

general, when the average sign drops below 0.1 accurate simulations become prohibitively

expensive.
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Figure 1.4: Average sign versus band filling 〈n〉 on a 6 × 6 lattice at U/t = 4. Filled

shells are present at 〈n〉 = 26/36 and 〈n〉 = 18/36. As apparent for those band fillings,

the decay of the average sign is slow.



Chapter 2

Kondo-Hubbard model

2.1 Introduction

In this chapter we will discuss the single-hole dynamics in the half-filled two-dimensional

Kondo-Hubbard model. [28] It is appropriate to start the discussion of Kondo physics

with a brief account of the single impurity Kondo effect. At first sight the Kondo

Hamiltonian may look simple: free conduction electrons c†i,σ interact with the impurity

spin ~Sl,f via the local antiferromagnetic interaction J

HK = −t
∑

〈i,j〉,σ

(

c†i,σcj,σ +H.c.
)

+ J ~Sl,c
~Sl,f . (2.1)

The electron spin is given by ~Sl,c = 1/2
∑

s,s′ c
†
l,s~σs,s′cl,s′ with Pauli matrices σ̃. The

longitudinal scattering from Sz
l,cS

z
l,f is a simple potential scattering that leaves electrons

independent. But the impurity has two states and spin flip scattering may change them.

This is enough to create effective electron-electron interactions as illustrated in Fig. 2.1.

Consider two electrons with spin-up which subsequently scatter from the impurity. If the

first electron spin-flip scatters the impurity is left in spin-up state and the second up-

electron cannot spin-flip scatter. On the other hand the first electron could do a potential

scattering that conserves the spin of the impurity thus giving the second electron a chance

for spin-flip scattering. In this way electrons interact exchanging information through the

impurity spin state and a many-body problem results. In the Kondo problem [57], [3]

two interesting things happen upon cooling the system. First one observes a crossover

from the high temperature free spin behavior (Fig. 2.2a) to a new low temperature

state where conduction electrons screen the magnetic impurity by singlet formation. At
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~p

~k

~p1

~p conserves spin

~p spin-flip scat
ters

to ~p1

~k
~p1

~k cannot spin-flip scatter

a)

b)

~k can spin-flip scatter

~k

Figure 2.1: In the Kondo problem the magnetic impurity with its two states mediates

an effective interaction between the electrons. We consider two up-electrons that subse-

quently scatter from a down-spin impurity. In case a) the first electron p spin-flip scatters

which leaves the impurity in the up state. Then the k electron cannot spin-flip scatter.

In case b) the first electron scatters and conserves spins. Then the second electron can

spin-flip scatter. The second scattering process depends on the first which amounts to

an effective electron-electron interaction mediated by the magnetic impurity (adapted

from [108]).

the same time the impurity resistivity increases and a resistivity minimum is measured

(Fig.2.2b). It turns out that this crossover happens for arbitrary small couplings J at a

temperature TK . In weak coupling the Kondo temperature is exponentially small

TK = We−1/Jρ0 (2.2)

where the bandwidth W and density of states at the Fermi level ρ0 are used. The second

important question involves the T → 0 behavior. Wilson [108] found a finite impurity

susceptibility χimp (T = 0) which indicates that the impurity spin is fully compensated

and a large singlet object is formed.1 Approaching zero temperature the gradual buildup

of the perfect singlet is linked to criticality. The diverging length scale is the lifetime of

the singlet or the inverse spin-flip scattering rate. This results in universal behavior for

1The easiest way to understand the formation of a bound singlet object, is the variational calculation

due to [112].
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a) b)

Figure 2.2: Panel a) The resistance as a function of temperature for Cu with Fe as

impurity. The resistance minimum is evident. (From [33])

Panel b) The inverse susceptibility follows a Curie-Weiss law at high temperatures. At

low T the impurity χ′
imp saturates at a finite value. (Reproduced from [48])

T < TK . The Kondo screening cloud is exponentially large

ξK = ae1/Jρ0 (2.3)

where a is the lattice spacing.

In the Kondo model the valence of the impurity site is naturally restricted to one

(integral valence). This corresponds to the large U limit in the more general Anderson

impurity model which can also describe valence mixing between f 0 and f 1 impurity levels.

Further on we restrict our attention to the integral valence regime.

Next, we want to switch attention to lattice models with a periodic arrangement of

“impurity” sites. It is interesting to see what happens when we go from the dilute limit of

Kondo impurities to a periodic lattice arrangement of the impurity sites. This is realized

in CexLa1−xCu6 where the nonmagnetic Lanthanum is gradually substituted by the rare

earth Cerium and single impurity Kondo behavior changes to a heavy fermion system

(HFS). In Fig.2.3 the molar magnetic resistivity is plotted. Enhancement of electron

mass and specific heat coefficient in the HFS CeCu6 is of order 1000 which sets in at a

temperature comparable to the single impurity TK .2 Mass enhancement is due to the

formation of a narrow f -band contributing to the Fermi sea. In pure CeCu6 the resistivity

at much lower temperatures T ∼ 0.1K follows the Landau Fermi liquid form ρ = ρ0+AT 2

2In CeCu6 the specific heat coefficient γ = 1550 mJ/molK
2
. Pure metallic Cu: γ = 0.695mJ/molK

2
.
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Figure 2.3: Temperature dependence of the magnetic resistivity ρm per mole Ce: ρm =

ρCexLa1−xCu6 − ρLaCu6 . Taken from [99]. The Kondo temperature TK ∼ 10K is robust up

to pure CeCu6. This is also the temperature where the mass enhancement sets in. On

a much lower temperature scale T ∼ 0.1K Fermi liquid behaviour is restored and the

resisitivity obeys the Landau form ρ = ρ0 + AT 2.

which is interpreted as coherent Kondo singlets forming the narrow band. The CeCu6 is

a prototype heavy-fermion system with a large enhancement factor

A∗

A
∝ γ∗

γ
∝ m∗

m
∝ 1000. (2.4)

It is only fair to say that on the theoretical side, HFS need further understanding. Yet a

common ingredient in theories for HFS is the integral valence of the rare earth f -orbital.

This has lead to the study of the Kondo lattice model, where only the f -spin degree of

freedom is retained.

In the Kondo lattice model (KLM)

HKLM = −t
∑

〈i,j〉,σ

(

c†i,σcj,σ +H.c.
)

+ J
∑

i

~Si,c
~Si,f (2.5)

the singly occupied f -electron interacts with the conduction electrons via a local anti-

ferromagnetic Heisenberg term. Here we only want to list some fundamental questions

regarding the KLM 2.5:
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1. it is only conjectured that the fixed point of the KLM in more than one dimension

is a Fermi liquid3 (FL).

2. when we have a FL, Luttinger’s theorem [66, 69, 55] states that the volume of the

Fermi surface (i.e. the volume enclosed by the surface) does not change when

an interaction is turned on. Since Luttinger’s theorem is proven perturbatively,

it is only valid as long we do not go through a non-analytic point in the phase

diagram. What is the Fermi surface volume in the KLM? In particular, do the f -

spins contribute such that we have a “large Fermi surface” [83], or does the Fermi

sea contain only conduction electrons.

3. we could easily answer the question about the Fermi surface volume if we can

connect the weak coupling periodic Anderson model (PAM) to the KLM on a

analytic path in the phase diagram. In the PAM we may choose V → ∞ and

U →∞ requiring

V 2

U
→ const. (2.6)

which generates a formal Kondo limit [93] for the PAM. Assuming analyticity along

such a path, the KLM is a FL with a large Fermi surface volume.

Exactly at half filling a Kondo insulator emerges (in accordance with a band picture)

with a small gap of the order of TK in Eq. (2.2). For instance Ce3Bi4Pt3 belongs to this

class of insulators [1].

Finally the Kondo lattice model contains an additional magnetic interaction which

acts between f -spins, namely the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.

A localized spin will polarize the sea of conduction electrons. This polarization is of

oscillating, long range nature and will couple to f -spins in the vicinity of the original

polarizing spin. The effective spin-spin interaction is

Jeff (q) ∝ −J2 Reχ (q,ω = 0) , (2.7)

with χ (q, ω) being the spin susceptibility of the electrons. But with increasing Kondo

coupling J the f -spins are screened and become nonmagnetic. In this sense there is

3In one dimension the FL has to be replaced by a Luttinger liquid but questions regarding the volume

of the Fermi sea remain [110].
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competition between RKKY magnetism and Kondo singlet formation leading to a quan-

tum phase transition. [7] RKKY interaction and singlet formation are visualized4 in the

caricature plot 2.4. The Doniach phase diagram summarizes this competition in the

a) RKKY b) Kondo

Figure 2.4: Panel a) Polarized conduction electrons mediate an effective interaction be-

tween f -spins. The sketch is for ferromagnetic interaction. Panel b) For large J a cloud of

localized conduction electrons forms singlets with the f -spin. Singlet formation obviously

competes with the magnetic state.
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Figure 2.5: The different J dependence of TRKKY ∼ J2 and TK ∼ We−
W
J is summarized

in the Doniach diagram where the region of dominant RKKY interaction is identified

with the region of the magnetic state.

following way: In the weak coupling regime, the singlet formation is preempted by the

4Looking at plot 2.4 b) the problem of exhaustion becomes apparent. In a system with equal number of

f -spins and conduction electrons complete localization of the electrons is necessary in order to compensate

each f -spin. For weak coupling such a state is prohibited by the large kinectic energy.
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larger RKKY scale responsible for a magnetic state. At some critical value Jc the Kondo

energy scale starts to dominate and the nonmagnetic heavy fermion state forms. Do-

niach’s Kondo necklace model [20] [113] substantiates this view of a quantum critical

point. In the two HFS CePd2Si2 [71] and CeCu6−xAux [65] it is possible to observe

this magnetic-paramagnetic transition by tuning pressure or by the chemical substitu-

tion with the larger Au atoms, thereby increasing the hybridization and J . Both HFS

have a metallic RKKY phase with incommensurate antiferromagnetism.

Figure 2.6: The Néel temperature of CePd2Si2 decreases when pressure is applied and

serves as direct evidence of the Doniach phase diagram. Taken from [71].

Heavy fermion systems give rise to a large variety of questions. In the following we

concentrate on a model with a Doniach phase diagram.

2.2 Model

We consider the Kondo lattice model in two dimensions at half filling. The phases of this

model are dominated by the competition of the RKKY and Kondo interaction and the

general picture of the Doniach phase diagram is realized. A peculiarity of our model are

the dominant AF fluctuations in the half filled conduction band. Therefore the RKKY

interaction is antiferromagnetic and stabilizes a commensurate insulating AF phase.
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In addition to the antiferromagnetic exchange coupling J we investigate the role of

a Coulomb repulsion U in the conduction band. Starting from the seminal work of

Brinkman and Rice [15] the single-hole dynamics in correlated insulators has remained

an intriguing issue with many open questions yet to be clarified. In this respect our

Kondo model with the additional Hubbard interaction provides for a case in which the

single particle dynamics can be studied continuously across genuinely distinct correlation

induced insulating phases, i.e., Mott-Hubbard insulators with long range antiferromag-

netic order, magnetic insulators and Kondo insulators. Of particular interest in this

situation is to understand i) which properties of the correlated insulator, i.e., long range

magnetic order or local effects determine the functional form of the quasiparticle disper-

sion relation and more specifically ii) if it is possible to continuously deform the spectral

function of the Mott Hubbard insulator to that of the Kondo insulator.

In order to answer these questions, we consider a Kondo lattice model with an addi-

tional local Coulomb repulsion U between the conduction electrons (UKLM) on a two-

dimensional square lattice

H =
∑

k,σ

ε(k)c†k,σck,σ + J
∑

i

~Sc
i · ~Sf

i

+U
∑

i

(
nc

i,↑ − 1/2
) (
nc

i,↓ − 1/2
)
. (2.8)

The unit cell, i, contains a localized orbital and an extended conduction band state. In

the Kondo limit, charge fluctuations on the localized orbital are suppressed with only

the spin degrees of freedom remaining, ~Sf
i =

∑

s,s′ f
†
is~σs,s′fi,s′/2, where ~σ are Pauli spin-

1/2 matrices and f †
i,s are fermionic operators which satisfy the constraint

∑

s f
†
i,sfi,s = 1.

Conduction band electrons of spin z-component σ are created by c†i,σ where ni,σ = c†i,σci,σ

is the conduction band density for spin z-component σ. The extended orbitals overlap to

form a band with a dispersion ε(k) = −2t(cos(kx)+cos(ky)) assuming a nearest-neighbor

(NN) hopping integral t. The Coulomb repulsion U is taken into account by the Hubbard

interaction term. Geometry and interactions of the UKLM are visualized in Fig. 2.7.

At half-filling and for the particular conduction band structure chosen the UKLM is

an insulator for all values of U and J [49,103,7,18]. The phase diagram 2.8 summarizes

what is known from strong coupling and previous work. Specifically, as J = 0 the UKLM

maps onto the Hubbard model5. The latter is in a Mott insulating phase, which however

5Note however, that U = 0 is a singular point with complete degeneracy of the f -spins.
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Figure 2.7: We consider a Kondo lattice problem on a the square lattice. In addition to

the Kondo interaction, conduction electrons experience a Coulomb repulsion U .

due to nesting on the square lattice is masked by an antiferromagnetic spin density wave

with no spin gap. In the strong coupling limit a charge gap ∝ U opens, and the Hubbard

model maps on the Heisenberg model.

For the KLM at U = 0 Assaad [7] finds a continuous transition between the ordered

AF and disordered Kondo phase with a quantum critical point at Jc = 1.45t. The pure

Kondo model in the strong coupling limit J/t À 1 has a ground state |ΨK〉 given by a

product of Kondo singlets on the f -c bonds of the unit cell

|ΨK〉 =
∏

i

(

c†i,↑f
†
i,↓ − c†i,↓f †

i,↑

)

|0〉 . (2.9)

In lowest order the spin gap is due to a singlet-triplet excitation and ∆s = J +O (t2/J)

[103]. A charge excitation is only possible by breaking two singlets with a charge gap

∆c = 3/2J + O (t) (see Fig2.9). Therefore ∆c > ∆s which is characteristic for Kondo

insulators.

The limiting ground state for both lines U → ∞, J > 0 and J → ∞, U ≥ 0 is again

|ΨK〉: As J/U → ∞ the Hubbard repulsion can be neglected relative to the exchange

scattering and the model maps onto the pure Kondo lattice model. The whole line U

→∞, J > 0 belongs also to the Kondo phase. Starting at J = 0 the effective Heisenberg
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U

JJc

Kondo strong

coupling

RKKY Kondo

Figure 2.8: The phase diagram of the UKLM Kondo model. Along the line J = 0 the

Hubbard model is responsible for charge dynamics. The groundstate for the two strong

coupling lines is given by the Kondo singlet groundstate |ΨK〉 as in Eq. 2.9. In the shaded

area the UKLM maps on an effective spin model. For U = 0 QMC calculations [7] indicate

a critical value Jc = 1.45t. This point belongs to a critical line Jc (U) that separates a

magnetically ordered RKKY and disordered Kondo singlet phase.

coupling JHeis ∝ 1/U and is irrelevant against any finite Kondo J. The only effect of U

is to suppress any RKKY phase which needs itinerant electrons to mediate the magnetic

interaction. Regions with a pure spin like ground state are shaded in Fig. 2.8.

=⇒=⇒

∆c = 3J
4 + 3J

4 = 3J
2∆s = J

b)a)

Figure 2.9: Panel a) the Kondo strong coupling groundstate is a product of local singlets.

In lowest order the spin gap ∆s = J the singlet-triplett excitation energy.

Panel b) the charge gap ∆c = 3/2J twice the singlet breaking.

In both of the aforementioned limiting cases, the single particle spectral function
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displays very different behavior. For the Kondo ground state |ΨK〉, adding a hole into

the conduction band will break a singlet. This leads to a hole dispersion relation

ε̃(k) = 3J/4 + t(cos(kx) + cos(ky)) (2.10)

in first order perturbation theory in t/J [103]. Hence the low energy hole dynamics is

governed by the wave vectors k = (±π,±π) ≡ ±Q. At present the precise form of

the single particle spectral function for the Mott insulating state is still unknown. Yet,

various numerical and analytical approaches confirm that the low energy hole dynamics

is governed by k-points on the boundary of the magnetic Brillouin zone, i.e., at k =

(0,±π), (±π, 0) and k = (±π/2,±π/2). In order to shed light onto this situation we can

fix U and, as a function of J/t, drive the system through a magnetic quantum phase

transition at J = Jc(U) from the Kondo insulator for J/t À 1 into the Mott insulating

state for J → 0. Along this path we compute the spectral function A(~k, ω), both, exactly

by using quantum Monte Carlo methods and approximately using a bond-operator mean

field theory. Based on our findings we argue that the low energy features of the spectral

function are insensitive to the quantum phase transition. In other words, the low energy

hole-states are found at ~k = (±π,±π) for all values of J > 0. It is only at J = 0

that the spectral weight of the low energy feature at ~k = (±π,±π) vanishes to produce

the single-hole dispersion relation of the Hubbard model. Thus our main results are (i)

that the local screening of the f -spins dominates the low energy features of the spectral

function and (ii) that there is no continuous path from the Kondo to the Mott-Hubbard

insulator with AFLRO in this specific model.

2.3 QMC

We have used the projector auxiliary field quantum Monte Carlo (PQMC) method to in-

vestigate the UKLM model. In order to find a suitable Hubbard-Stratonovich decoupling

for the Kondo interaction we use the perfect square [7]

−
(
∑

σ

c†i,σfi,σ +H.c.

)2

= 4~Sc
i
~Sf
i − 2

(

∆†
i,c∆i,f +H.c.

)

+ nc
in

f
i − nc

i − nf
i , (2.11)

with pair operators ∆†
i,c = c†i,↑c

†
i,↓ (∆†

i,f = f †
i,↑f

†
i,↓) and the total charge nα

i = nα
i,↑+n

α
i,↓. The

general symmetries of the perfect square term (2.11) are discussed in detail in chapter
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3.4. In order to use the term (2.11) for the simulation of the KLM we need to enforce a

constraint of single occupancy on the f -electrons (which should only represent the Kondo

spins)

(nf
i − 1)2 = 0. (2.12)

The pair-pair and charge-charge interactions in (2.11) give no contribution for the spin

sector. We choose to enforce this constraint (2.12) with an additional Hubbard repulsion

Uf for the f -electrons. The simulated Hamiltonian thus is

Hsim =
∑

k,σ

ε(k)c†k,σck,σ −
J

4

∑

i

[
∑

σ

c†i,σfi,σ +H.c.

]2

+U
∑

i

(
nc

i,↑ − 1/2
) (
nc

i,↓ − 1/2
)

+ Uf

∑

i

(
nc

i,↑ − 1/2
) (
nc

i,↓ − 1/2
)
. (2.13)

The Hamiltonian Hsim has the property to conserve the total number of pairs and holes

on the f -layer

[

Hsim,
∑

i

(

nf
i − 1

)2
]

= 0. (2.14)

Thus we might start a projection from a trial wave |ΨT 〉 which contains the particle-hole

symmetric Néel state for the f -spins and choose the real spin decoupling for the Hubbard

terms. Due to the symmetry (2.14) the constraint (2.12) is always fulfilled and projection

with Uf no longer necessary. Such an approach has the severe disadvantage [18] that we

start with a trial wave |ΨT 〉 which is not a singlet.

2.4 Mean-field approach

A variety of mean-field schemes [114,51,103] have been used for the KLM. In particular

the approaches by [114, 51] provide order parameters for both the singlet formation and

spin order. They give approximately the same value for Jc which agrees well with the

QMC result.

Yu [114] uses a decoupling scheme with a hybridization strength V

V =
〈

c†i,↑fi,↑ + f †
i,↓ci,↓

〉

(2.15)
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to describe screening and staggered moments mf and mc for the AF order

〈

f †
i,↑fi,↑ − f †

i,↓fi,↓

〉

= mf (−1)i (2.16)
〈

c†i,↑ci,↑ − c†i,↓ci,↓
〉

= −mc (−1) .i (2.17)

In the particle-hole symmetric KLM the averaged Kondo constraint
〈

f †
i,↑fi,↑ + f †

i,↓fi,↓

〉

=

1 is naturally satisfied. The ground state in the Kondo phase is obtained from hybridized

bands which can not suppress charge fluctuations on the f -site but on the other hand

ensure that the local moment is fully screened. The ordered ground state is a SDW state

with f -spins aligned in a Néel state with full moment. Only in a narrow region close to the

phase transition both V and mc,f are nonzero simultaneously. This describes a situation

where the localized spins are partially screened and at the same time a remnant magnetic

moment orders due to the RKKY interaction. In QMC calculations this coexistence

extends to the whole RKKY phase.

For an approximate description of the UKLM we apply a mean field theory similar to

the one proposed for the pure KLM in [51], where further details can be found. Essentially

we construct a model of fermionic fluctuations on a mean field spin background. The

description of the spin background can interpolate between two states: A Néel ordered

state for the RKKY and Hubbard ground state and a Kondo singlet state for the Kondo

phase.

We represent the local Hilbert space consisting of one f electron and additionally up

to two itinerant electrons by applying the following operators onto the local vacuum |0〉

s†|0〉 =
1√
2
(c†↑f

†
↓ + f †

↑c
†
↓)|0〉

t†x|0〉 =
−1√

2
(c†↑f

†
↑ − c†↓f †

↓)|0〉

t†y|0〉 =
i√
2
(c†↑f

†
↑ + c†↓f

†
↓)|0〉

t†z|0〉 =
1√
2
(c†↑f

†
↓ + c†↓f

†
↑)|0〉

a†σ|0〉 = f †
σ|0〉

b†σ|0〉 = c†↑c
†
↓f

†
σ|0〉. (2.18)

The s and t operators are equivalent to the so-called bond operators of [89] and obey

bosonic commutation relations. The fermionic operators a and b have been introduced
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first in [23,22] and label states with one or three electrons per site. In order to suppress

unphysical states a constraint of no double occupancy

s†jsj +
∑

α

t†α,jtα,j +
∑

σ

a†σ,jaσ,j +
∑

σ

b†σ,jbσ,j = 1 (2.19)

has to be fulfilled. The original Hamiltonian may be rewritten using the following iden-

tities for the conduction electron

c†j,σ ≡ pσ
1√
2

[(

s†j + pσt
†
z,j

)

a−σ,j −
(

t†x,j + pσit
†
y,j

)

aσ,j

]

− 1√
2

[

b†σ,j

(

sj − pσtz,j

)

− b†−σ,j

(

tx,j + pσity,j

)]

, (2.20)

for the Kondo term

~Si,c
~Si,f ≡ −

3

4
s†isi +

1

4

∑

α

t†αitαi, (2.21)

and for the Hubbard term (at half filling)

(ni,↑ − 1/2) (ni,↓ − 1/2) = ni,↑ni,↓ − 1/4 (2.22)

≡
∑

σ

b†σ,jbσ,j −
1

4
(2.23)

=
1

4
− 1

2

(

s†jsj +
∑

α

t†α,jtα,j

)

. (2.24)

Rewriting the UKLM in terms of (2.18) leads to a strongly correlated boson-fermion

model. To proceed we use a mean-field approach for the bosons which encompasses two

local states, namely the antiferromagnetic and the singlet state.

We want to trace out the boson states and find an effective Hamiltonian in terms of

the a and b Fermions. In order to accomplish this, we first assume that the tx, ty bosons

never occur.6 Second, the remaining si and tz,i bosons shall be completely uncorrelated.

In addition bosons and fermions shall also be uncorrelated. Thus we propose a mean-field

ground state of the form

|ΨMF〉 = |Ψs〉 ⊗ |Ψtz〉 ⊗ |Ψa,b〉 . (2.25)

Furthermore we allow condensation of the bosons. This leads to the following simple

decoupling scheme: in order to find the effective Hamiltonian, replace the remaining

6Disregarding the transverse tx, ty bosons, we neglect the whole spin dynamics around the ordered

state.
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Bose operators si and ti,z with c numbers

si → s,

ti,z → (−1)im, (2.26)

where s2 (m2) is the probability to find site i in state |si〉 , (|tz,i〉). The alternating sign

for the triplet ensures that the magnetic order is staggered. Occupation of the effective

fermionic Hamiltonian turns out to be small.

Inserting (2.18) into the UKLM and using the mean field approximation (2.26) we

obtain

H = − t
2

∑

{i,j},σ
(−spσ +mi)(−spσ +mj)×

× (aσ,ia
†
σ,j + b†σ,ibσ,j) + h.c.

− t

2

∑

{i,j},σ
(−spσ +mi)(spσ +mj)×

× (−pσaσ,ib−σ,j + pσb
†
σ,ia

†
−σ,j) + h.c.

− 3

4
JNs2 +

1

4
JNm2

i

+
∑

i,σ

µi(s
2 +m2

i + a†σ,iai,σ + b†σ,ibσ,i − 1)

+ λ
∑

i,σ

(b†σ,ibσ,i − a†σ,iaσ,i)

+
UN

4
− UN

2
(s2 +m2

i ) (2.27)

where p↑(↓) = 1(−1) and we have introduced a chemical potential λ to set the global

particle density and a local Lagrange multiplier µi in order to enforce the constraint

(2.19). In the remainder of this work we assume µi to be site independent, i.e. µi = µ.

The mean-field hopping terms describe the hybridization of a hole band a and a particle

band b with renormalized hopping amplitude

− t
2
(−spσ +mi)(−spσ +mj) = − t

2

(
s2 −m2

)
, (2.28)

and the hybridization strength

− t
2
(−spσ +mi)(spσ +mj) = − t

2

[

2pσsm (−1)i −
(
s2 +m2

)]

. (2.29)
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where the alternating sign leads to couplings of type akbk+Q across the Brillouin zone.

This makes it necessary to diagonalize eight bands in the magnetic BZ instead of the

original four bands aσ, bσ. The k-diagonal MF hamiltonian is

(

a†↑,k a†↑,k+Q a†↓,k a†↓,k+Q b↑,k b↑,k+Q b↓,k b↓,k+Q

)























a↑,k

a↑,k+Q

a↓,k

a↓,k+Q

b†↑,k

b†↑,k+Q

b†↓,k

b†↓,k+Q













































ek − µ 0 0 0 0 0 −vk −xk

0 −ek − µ 0 0 0 0 xk vk

0 0 ek − µ 0 vk xk 0 0

0 0 0 −ek − µ −xk −vk 0 0

0 0 vk −xk ek + µ 0 0 0

0 0 xk −vk 0 −ek + µ 0 0

−vk xk 0 0 0 0 ek + µ 0

−xk vk 0 0 0 0 0 −ek + µ























(2.30)

where only non-zero components are shown. The band ek

ek =
εk
2

(
s2 −m2

)
, (2.31)

is the renormalized free εk = −2t
∑D

d=1 cos kd and mixing amplitudes are given by xk and

vk

xk = −εk
2

(
s2 +m2

)
, (2.32)

vk = εkpσsm. (2.33)

The 8× 8 matrix 2.30 has four doubly degenerate eigenvalues

E = ±
√

e2 + ∆2 ± 2
√
e2∆2

= ± (e±∆) , (2.34)

where ∆2 = µ2 + x2 + v2. The difference between (2.27) and the mean-field Hamiltonian

for the pure KLM [51] resides in the last line of (2.27) which accounts for a suppression

of doubly occupied conduction electron orbitals.

The four doubly degenerate bands in the magnetic BZ follow the dispersion ω1,2(k) =

λ± E1(k) and ω3,4(k) = λ± E2(k)

E1
2,k

=
1

2

[

εk
(
m2 − s2

)
∓
√

ε2k (m4 + 6m2s2 + s4) + 4µ2

]

(2.35)
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Note, that the dispersions in (2.35) do depend on U , as the order parameters s, m and

µ are functions of U . At half filling the lower(upper) two bands, i.e. ω2,4 (ω1,3), are

completely filled(empty). The structure 2.35 follows the generic mean-field theories [103]

for the KLM. In the Hubbard limit of a Néel spin background s = m and the first term

in the dispersion (2.35) vanishes.

Evaluating the ground state energy and using the stationarity conditions ∂E/∂s = 0,

∂E/∂m = 0, and ∂E/∂µ = 0 the mean-field equations in the magnetic phase (m 6= 0)

read

0 = 2J +
1

2N

∑

k

ε2kµ
2(s2 −m2)

Wk

E−
k

0 = s2 +m2 + 1− 1

2N

∑

k

[

µE+
k +

ε2kµ(s2 −m2)2

4Wk

E−
k

]

0 = −J + 4µ− 2U

− 1

2N

∑

k

[

2ε2k(m
2 + s2)E+

k +
ε4k(m

2 + s2)3

2Wk

E−
k

]

(2.36)

where E±
k = 2(E−1

2,k ± E−1
1,k). For the disordered Kondo-singlet phase (m = 0) we get

0 = −3

2
J + 2µ− U − 1

N

∑

k

2ε2ks
2

√

4µ2 + ε2ks
4

0 = s2 + 1− 1

N

∑

k

4µ
√

4µ2 + ε2ks
4
. (2.37)

Fig. 2.10 shows numerical solutions of (2.36) and (2.37) as a function of J and U .

In both cases we find a second order phase transition between the antiferromagnetically

ordered and the Kondo phase. Fig. 1 also shows the staggered magnetizations [51] mst
c(f)

of the c(f) electron

mst
c =

2

N

∑

n

(−1)n〈Sc
z,n〉 = 2ms

mst
f =

2

N

∑

n

(−1)n〈Sf
z,n〉 =

= 2ms+
1

N

∑

k

2ε2kµms(s
2 +m2)

E1,kE2,k(E1,k + E2,k)
. (2.38)

Using (2.18) we may express the spectral function Ac(k, ω) of the conduction electron

ck via a multi-particle correlation function of the s, t, a and b operators. On the mean-

field level however, this simplifies into a linear combination of one-particle propagators of
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Figure 2.10: Mean-field order parameters s,m and the staggered magnetization Mc and

Mf as function of (a) J/t for U/t = 4 and (b) U/t for J/t = 1.

the a and b fermions only, involving both, diagonal as well as off-diagonal contributions.

After some algebra we get

Ac(k, z) =

− 1

π
Im

(m2 + s2)(z2 − µ2)z + εk(z2(s2 + m2)2 − 4m2s2µ2)

µ4 + 4ε2
km2µ2s2 − z2(2µ2 + ε2

k(s2 + m2)2) + z4
. (2.39)

where z = ω + iδ.

It is a remarkable feature of this mean-field approach to be correct in the entire strong

coupling region from a Hubbard-like dispersion to the Kondo behavior (2.10) where we

use µ = 3J/4b. Since the local spin background can also represent a mixed RKKY/Kondo

phase a continuous phase transition is possible. Thus, the f -spins play a dual role in the

RKKY phase. They are partially screened by conduction electrons. At the same time,

the remnant magnetic moment orders due to RKKY. In this sense RKKY and screening

coexist.

On the downside, this theory does not handle properly the weak coupling regime.

The problem is that the phase space associated with singlets and triplets is reduced to a

classical problem represented by the two numbers s and m. Since the kinetic energy of the

conduction electrons is encoded in the phase factors a coherent hopping of spin states is

impossible. The remaining electron motion of double occupied sites and holes is reduced,

as seen from the renormalization factors (2.28) and (2.29). In addition, spin dynamics
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are completely neglected in this mean field approach. One should also mention that the

charge gap is overestimated which is a notorious shortcoming of mean field theories.

2.5 Magnetic Phase Diagram
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Figure 2.11: Phase diagram of the Kondo-Hubbard model. Solid line: QMC, dot-dashed

line: MF, dashed line: Spin HamiltonianHspin Eq. (2.40). Circles show parameter values,

where the spectral function has been evaluated. Long range magnetic order is detected

by size scaling of Sf (Q)/L2 (inset U = 8).

We start the discussion of our results with the magnetic phase diagram. At U = 0

the UKLM maps onto the KLM. In the latter, the competition between the RKKY

interaction and the Kondo screening leads to a quantum phase transition between an

ordered magnetic state and the disordered singlet phase at Jc/t ∼ 1.5 [20, 7, 18]. For

U/t→∞ double occupancy of the conduction electron sites is suppressed and the model

maps onto a pure spin Hamiltonian of the form:

Hspin = J‖
∑

〈~i,~j〉

~Sc
~i
~Sc

~j
+ J

∑

~i

~Sc
~i
~Sf
~i

(2.40)

with J‖ = 4t2/U . Hence in the limit U → ∞, Jc vanishes and the ground state is a

product of singlets on the f -c bonds.
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We have determined Jc as a function of the Hubbard repulsion U both, on the mean-

field (MF) level and with the QMC method. Within MF theory the staggered magne-

tization is given by Eq. (2.38), while from the QMC method it is determined using the

static spin-spin correlation function

Sα(j) =
〈

~Sα
j
~Sα
0

〉

Sα(q) =
∑

j

eiqjSα(j), (2.41)

α = c(f) labels conduction (f) electron spins S
c(f)
~j

and the total spin Stot
~j

is given by

Stot
~j

= Sc
~j

+ Sf
~j
. The staggered moment is extracted from finite size extrapolation

mα =
√

lim
N→∞

Sα (Q) /N

where Q = (π, π) and N is the number of unit cells.

Fig. 2.11 depicts the phase diagram as a function of J/t for finite U/t. The solid line

refers to QMC results, the dashed-dotted line shows the mean-field results. As anticipated

already by the preceding discussion of the limiting points U →∞ and U = 0, the critical

value J is a monotonically decreasing function of U . This can be understood as the

Hubbard interaction tends to localize the conduction electrons leading to an effective

reduction of the hopping amplitude. Hence, the formation of local singlets is favored.

The above spin Hamiltonian (2.40) has been analyzed by Matsuhita and collaborators [72]

who find a phase transition between a spin liquid and antiferromagnetically ordered phase

at (J‖/J)c = 0.71. This leads to Uc = 4t2

0.71J
, the dashed line in Fig. 2.11, in consistence

with the results for the Kondo-Hubbard model in the large U/t limit.

Finally Fig. 2.12 plots the staggered magnetization from a QMC scan at fixed J . The

broken symmetry ground state satisfies mtot = mf − mc. In QMC mtot was calculated

independently and up to U ≤ 4 the above relation is fulfilled within the error bars. With

increasing U conduction electrons get more and more localized and their local moment

grows until it reaches the maximum of
〈

(~Sc
j )

2
〉

= 3/4 in the strong coupling region

U > 8. The staggered moments in the small U ≤ 4 region are well understood within a

Néel picture of almost fully ordered f -spins where the small local moment of a conduction

electron is anti-parallel to the impurity spin. For larger values of U dimerization becomes

important which suppresses both mc,f .
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Figure 2.12: Staggered magnetization for a fixed J = 0.6.

2.6 Single particle spectral function.

To study the single-hole dynamics we analyze the spectral function A(k, ω), both using

the MF expression (2.39) as well as results from the QMC. Within the QMC approach

we first evaluate the imaginary time Green’s function

Gk (τ) =
〈Ψ0| c†k (τ) ck |Ψ0〉
〈Ψ0| Ψ0〉

=
1

π

∫ ∞

0

dωe−τωA (k,−ω) . (2.42)

from which A(k, ω) is extracted using the maximum entropy (ME) method [50].

We begin with the pure Hubbard model. In Fig. 2.13 we plot A(k, ω) as obtained

from QMC as well as the MF dispersion as a function of U/t. While the comparison of

the QMC with the MF dispersion is favorable one has to realize that the MF approach

overestimates the quasiparticle gap. Therefore the MF band structure in these figures

results from taking only s and m as obtained from the self-consistency equations (2.36)

however adjusting µ such as to obtain the QMC gap at k = ( π
2
, π

2
). At weak coupling

U/t ¿ 1 we find that the overall form of the low-energy dispersion is well reproduced

by a functional form ±
√

∆2 + ε2(k) which is consistent with that in a spin density wave

(SDW) state. Exactly this dispersion emerges also from the bond-operator MF theory at

J = 0 where E1,k reduces to the SDW dispersion and the spectral weight of excitations

with the dispersion E2,k vanishes. In the limit J → 0+ the condensate densities for the

triplet and singlet are identical, i.e. m = s, which is equivalent to a Néel state of the
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Figure 2.13: Single-particle spectral function for pure Hubbard model at U = 4, U = 6,

and U = 8. For the QMC data (solid lines) we have normalized the maximum peak

heights to unity. The numbers on the left-hand side of the figures correspond to the

single-particle occupation number 〈nk〉 . The integrated weight under each line shape is

π 〈nk〉 . The vertical bars show the MF dispersion relation.

f -spins.

At strong coupling U/t À 1 the Hubbard model maps approximately onto the t-J‖

model with J‖ = 4t2/U . Monte Carlo results for the latter model at J‖/t < 1 show

the existence of a quasiparticle band of width ∼ J‖ [16]. This should be compared to

an identical spectral feature which can be observed in our QMC data for the Hubbard

model upon enhancing U/t in Fig. 2.13b,c) (see also [87]). Especially along the line from

k = (0, π) to k = (0, 0), this narrow quasi particle band is clearly visible. In principle one

should observe a similar band along (0, π)–(π, π), however, due to small spectral weight

in this region, we are unable to resolve this feature. Of particular importance is, that

for the parameters we have investigated, the momenta of the dominant lowest energy

hole-states for the Hubbard model are found on the boundary of the magnetic Brillouin

zone. For the calculations presented in this work we have been unable to resolve an

energy difference between the (π/2, π/2) and (0, π) points.

Next we turn to the UKLM at finite J . In Fig. 2.14 we show a scan of QMC

spectral functions and the MF dispersion ranging from the Kondo phase for J/t = 1.5

and U/t = 4 to the antiferromagnetic phase at J/t = 0.4, 0.6 and U/t = 4. As for

the pure Hubbard model the QMC and MF results are reasonably consistent. From

the perturbative argument for J/t >> 1, given in section 2.2, we expect the momenta
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Figure 2.14: Single-particle spectra for the Kondo phase (a), at the transition (d) and in

the antiferromagnetic phase (b) and (c). Vertical bars show the MF dispersion.

of the dominant lowest energy hole-states to occur at k = (±π,±π). As can be seen

from Fig. 2.14a) this is consistent, both with the QMC as well as with the MF results.

Moreover the QMC and MF dispersions agree very well.

Lowering J as in Figs. 2.14a)-c) reveals the evolution of the spectral density on going

from the Kondo to the antiferromagnetically ordered phase. In fact, as J approaches zero

additional bands with a dispersion similar to the pure Hubbard case, i.e. Fig. 2.13a),

develop. Yet, in the antiferromagnetically ordered phase, but for a finite J the lowest

energy hole-states are still Kondo-like, i.e. they occur at k = (±π,±π) as can be seen

in Figs. 2.14b),c). However, the weight of this excitation decreases continuously with

decreasing J and vanishes at J = 0. The weight of the Hubbard-like band at k = (π, π)

increases from zero in the spin singlet phase to its maximum value at J = 0. Therefore

we can interpret the change in the spectral function with decreasing J as a continuous

transfer of weight from Kondo-like to Hubbard-like bands. This shift of spectral weight
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renders the J = 0 point singular since there is a sudden change of the wave vector which

dominates the low energy hole dynamics.
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Figure 2.15: Relative spectral weight of Hubbard band vs. Kondo band. Thick lines:

MF. Thin lines: QMC.

These findings are corroborated by our MF results. In Fig. 2.15 the relative weight

rH(K) = ZH(K)/(ZH +ZK) of the lower(upper) Hubbard(Kondo)-like band at momentum

k = (π, π) as obtained from integrating Ac(k, ω) is depicted. In the QMC approach ZK

results from fitting the long-time tail of the Greens function at k = (π, π) to the form

ZKe
−∆qpτ where ∆qp corresponds to the quasiparticle gap. In turn ZH is obtained from

the sum rule ZK + ZH = πn(k) assuming a two-pole structure. Both, the QMC and the

MF approximation display the same overall trend: at J/t = 0 the total weight is in the

Hubbard-like band while with increasing J it becomes distributed into both bands. In

the Kondo phase the Hubbard band disappears completely. In addition Fig. 2.15 shows,

that the MF approximation underestimates the spectral weight in the Hubbard-like band.

Nevertheless, this bond operator mean-field approximation captures the relevant physics

of the model. This is not the case of other mean-field approximations which attempt to

combine magnetism and local Kondo screening [114]. This latter approach yields a finite

value of J below which the dispersion relation is pure Hubbard-like.

To compare the momentum dependence of the spectral weight as obtained from the

MF theory with that of the QMC Fig. 2.16 depicts Ac(k, ω) from (2.39) for U/t = 4

and J/t = 0.4. For visualization purpose, we have smeared the delta-function like MF-
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Figure 2.16: Mean-field spectral function Eq. (2.39) in the antiferromagnetic phase.

spectrum by a finite imaginary part δ = 0.03. The weight of these delta-peaks strongly

varies as a function of k having its maximum around (0, 0) and a very small value in

the vicinity of (π, π). Again, this is consistent with the QMC data of Fig. 2.14c).

Obviously, since the imaginary part of the self energy vanishes in the MF approximation,

the broadening of the QMC spectral function is not reproduced. Note however, that on

the QMC side pinning down the details of the line shape is extremely challenging.

2.7 Conclusion

We have considered the single-hole dynamics in the Kondo-Hubbard model using both,

QMC methods and a bond-operator mean-field approximation. Both approaches allow

for similar conclusions. The UKLM shows a magnetic order-disorder transition. At U = 0

this transition is triggered by the competition between the RKKY interaction and the

Kondo screening and occurs at Jc/t ∼ 1.5. In the large U/t limit the model maps onto a

bilayer spin-model and Jc scales to zero. Our results show that both limiting cases are

linked continuously and that Jc is a monotonically decreasing function of U . Hence, as

far as Jc is concerned the dominant effect of the Hubbard interaction U is to localize the

conduction electrons which favors screening of the f -spins.
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The single particle spectral function was shown to be insensitive to the magnetic

phase transition. Irrespective of U and J > 0 the dominant low energy hole-states are

found at the momenta k = (±π,±π). These excitations originate from the screening of

the magnetic impurities and hence are local. In the ordered phase pronounced shadow

features can be observed. As J → 0, the spectral weight in the Kondo-like low en-

ergy band in the vicinity of k = (±π,±π) vanishes and is transferred to higher energy

Hubbard-like bands. In the (U, J)-plane the Hubbard-line, i.e. J = 0, is singular since

the localized spins decouple and lead to a macroscopically degenerate ground state. In

turn, the evolution of the spectral function is discontinuous such that at J = 0 there is

a sudden change of the wave vector which dominates the low energy hole dynamics. In

this sense the model shows no continuous path from the Kondo insulator to the Mott

insulator.

The singularity of the UKLM at J = 0 may be alleviated by including an antifer-

romagnetic coupling between the localized f -spins. In the large U/t limit this leads to

a bilayer spin model which has been considered by Vojta and Becker [106]. The au-

thors arrive at a similar conclusion namely that hole dynamics are governed by local spin

environment.

Given our results it is very tempting to speculate on the effects of doping with a

finite density of holes nh away from half filling. In the limit J/t → ∞ the Kondo

lattice model can be mapped onto an effective Hubbard model with a Coulomb repulsion

Ueff → ∞ and a particle density nh [58]. In this low-density limit single particle

renormalizations [29] may be neglected which suggests that doping the UKLM can be

understood approximately within a rigid-band picture. From this we would conclude that

off half filling the UKLM displays a Fermi surface centered around k = (±π,±π) for all

values of U and J > 0.



Chapter 3

Coexistence of s-wave SC and

Antiferromagnetism

3.1 Introduction

3.2 Organic Superconductors

Let us start with an experimental motivation. The quasi-two-dimensional salts κ-(BEDT-

TTF)2X, with X = Cu [N (CN)2] Cl, Cu [N (CN)2] Br and Cu (NCS)2, have a rich phase

diagram. At low temperatures chemical or hydrostatic pressure drives a first order tran-

sition between an insulating antiferromagnetic phase and a superconducting phase. The

generic phase diagram is shown in figure 3.1. Lefebvre et al. [61] report a phase diagram

3.2 for κ-Cl which changes from an AFI under ambient pressure to a superconductor at

300 bar. Comparing the two phase diagrams 3.1 and 3.2 we note that the pressure change

of the latter is very small.

A review on the current status of organic superconductors is given by Lang and

Müller. [60] In these compounds metallic behavior and chemical bonding is due to the

π-hole on the donor BEDT-TTF molecule in contrast to van der Waals-bond organic

molecules.

At temperatures of Tc ∼ 10 K the superconducting phase undergoes a second order

transition to a paramagnetic metal. Müller et al. [79] recently proposed a metallic state

with a density wave on the one dimensional part of the Fermi surface.
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Figure 3.1: The generic phase diagram for the κ-(ET)2X compounds (from [79]). Chem-

ical or hydrostatic pressure drives the phase transition between a magnetically ordered

AF phase and the superconducting phase. Our interest is in this low temperature first

order transition.
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Figure 3.2: The phase diagram for κ-(BEDT-TTF)2Cu[N(CN)2]Cl [61]. A first order

transition separates AF and SC phases. Above the ordering temperature a Mott-Hubbard

first order transition is found between an insulating (PI) and metallic (PM) phase.

The nature of the superconducting state, in particular the pairing mechanism and the

symmetry of the superconducting order parameter remain a controversial issue. Many

experimental studies are rather consistent with s-wave, phonon mediated superconduc-
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tivity. In particular, Kini et al. could demonstrate a BCS-like mass isotope effect in

κ-S. [53] They show that the relevant mass entity is the whole ET molecule which is a

clear indication that electron-lattice phonon interaction is involved in the pairing. At

the same time this rules out that intramolecular electron-phonon coupling is responsible

for the electron attraction. The same material κ-S exhibits a strong superconductivity

induced (acoustic) phonon renormalization. [85] Nodes in the pair order parameter are

also incompatible with specific heat measurements. [78] Conversely Kanoda et al. [52]

argue that the absence of a Hebel-Slichter peak in the 1/T1 NMR spin relaxation rate is

consistent with an unconventional superconducting gap and nodal lines.

On the theoretical side electron-lattice phonon interaction has been studied as the

dominant pairing mechanism. [36] The dimensionless Eliashberg parameter λ was deter-

mined both experimentally [82] and theoretically [36] around λ ∼ 1. When the elec-

tron system is mapped to an effective lattice model the interaction between electrons

and acoustic phonons is appropriately modeled with a Su-Schrieffer-Heeger interaction

term. [98]

The κ-Cl and deuterated κ-Br compounds [75] are the only systems which show an-

tiferromagnetism at ambient pressure. Resistivity remains activated to temperatures

above 70 K in κ-Cl. [101] NMR studies by Miyagawa et al. suggest a commensurate

antiferromagnetism with a large magnetic moment of 0.45µB/dimer below a Néel tem-

perature TN ∼ 27 K. [76] [75]. Two interpretations exist for the nature of the AF state:

(i) Antiferromagnetism results from a Mott-Hubbard transition to a regime with strong

electron localization supported by the large magnetic moment and direct evidence of a

metal-insulator transition in κ-Cl. [61] (ii) Tanatar et al. [101] argue that SDW antifer-

romagnetism linked to the good nesting properties of the 1d part of the Fermi surface

could be responsible for the formation of a charge gap.

The normal-state is metallic due to the overlap of π-holes. De Haas-van Alphen [109]

and Shubnikov-van Alphen [84] experiments reveal a closed hole-like Fermi-surface (FS)

pocket and two FS sheets. After magnetic breakdown electrons may tunnel between the

sheets and the closed FS resulting in a second large orbit. Experiments thus support a

Fermi-liquid normal-state and the FS volume is that of half-filled conduction bands but

cyclotron masses are strongly enhanced mc ∼ 3.5 and 6.9me for the two orbits.

Band structure calculations are based on molecular orbits (MO) for the single ET
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molecule. In a second step approximate tight-binding calculations are performed for a

single MO per molecule. [54] [104] Figure 3.2 shows the unit cell of the κ-phase compounds

which contains four ET molecules which are strongly dimerized. Intradimer hopping ṫ0

is strong and splits the four bands into a pair of bonding and antibonding bands with

an approximate splitting ∆ = 2t0. Neglecting the bonding bands one arrives at a half

filled model with two bands. Kino and Fukuyama [54] introduced a further simplifica-

tion, namely the dimer model: in this model one considers only the antibonding MO

representing the dimer. In addition the two dimer sites are treated as equivalent sites,

reducing the unit cell by half. Hopping t is between nearest-neighbor dimer orbitals and

t/ is the diagonal hopping (frustration).

t0 ct
′

t

a

t

The unit cell of κ-(ET)2Cu[N(CN)2]Cl contains 4 ET molecules grouped into 2 dimers.

The intradimer hopping t0 is almost twice as large then the hopping t1,2. This results in

a clear separation of the four orbitals into bonding and antibonding bands. In the

dimer approximatin we may drop the bonding bands and treat all hoppings as between

dimers. In this approximation hoppings t1 and t2 are equal. This results in a further

simplication to a 45◦ rotated unit cell containing only one dimer.

Approximate values for the parameters1 from molecular ab initio calculations [104] [31]

are

t0 t t′ Ueff a b c

0.27 eV 0.17/2 eV 0.085/2 eV 0.4 eV 13 Å 30 Å 8.5 Å

which yields two bands in the original Brillouin zone (BZ)

ε (k) = 2t′ cos (kcc) + 4t cos
kcc

2
cos

kaa

2
.

1The one half accounts for taking effective hoppings from one pair to another pair of ET molecules

t = (p− q)/2.
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The bandwidth at the Γ point is 4t and the bandwidth from X−M is given by 2t/. Such

a simplified one band model still gives an accurate FS (Fig. 3.2) only the gap between

the 1D sheet and the closed orbit is missing.

Kino and Fukuyama [54] introduce an effective Hubbard repulsion per dimer Ueff ∼
0.28 eV and within mean-field calculation find a first order transition between a para-

magnetic metal and an AF insulator. The transition is driven by a change in t//t and

t/Ueff both modified by the pressure change responsible for the observed transition. [45]

To summarize, experiment and theory is still controversially discussed for the κ-

(ET)2X compounds. The proximity of AF and SC phases naturally leads to an interpre-

tation where spin fluctuations mediate d-wave pairing and strongly correlated electrons

are mainly responsible for the whole phase diagram. On the other hand it is not ruled out

that superconductivity is ordinary phonon mediated BCS superconductivity with s-wave

symmetry. Our interest here is to demonstrate that a first order transition between AF

and s-wave superconductivity is possible.

3.3 Model

In order to model the scenario of a phase transition between an AFI and an s-wave SC

on a half-filled two dimensional lattice we add to the standard Hubbard model a pair

hopping term:
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H = −t
∑

〈i,j〉,σ

(

c†i,σcj,σ +H.c.
)

+ U
∑

i

(ni,↑ − 1/2) (nj,↓ − 1/2)

− tp
∑

〈i,j〉

(
∑

σ

c†i,σcj,σ +H.c.

)2

− 2V
∑

〈i,j〉
(ni − 1) (nj − 1) (3.1)

where i labels the sites of a square lattice and the sum 〈i, j〉 runs over nearest neighbor

bonds. The pair hopping term arises exactly when we assume a Su-Schrieffer-Heeger

(SSH) electron-phonon interaction [98] and integrate out the phonon in the antiadiabatic

limit. For systems with well localized electrons the SSH mechanism describes the electron-

lattice phonon coupling via a modulation of the electron hopping amplitude t

t→ t+ ~λ
(

~Qi − ~Qj

)

. (3.2)

The full SSH hamiltonian is then given as [42] [9]

H = Hel +
∑

〈i,j〉,σ

~λi,j

(

~Qi − ~Qj

)(

c†i,σcj,σ +H.c.
)

+
∑

i

~P 2
i

2M
+

1

2
K
∑

〈i,j〉

(

~Qi − ~Qj

)2

. (3.3)

The effective electron-electron interaction may be considered instantaneous when Tc <

ωph. Formally this corresponds to the antiadiabatic limit with either M → 0 or ωph →∞
which allows to drop the phonon kinetic energy. Integrating out the phonons we find the

pair hopping term

Htp = −tp
∑

〈i,j〉

(
∑

σ

c†i,σcj,σ +H.c.

)2

(3.4)

with an effective coupling tp

tp = ~λ
1

K
~λ. (3.5)

Such an effective term has already been discussed as a means to simulate the Kondo

lattice [7] and Hirsch [42] studied exactly the Hamiltonian (3.1) away from half-filling in

the context of high Tc superconductors.

The fermionic spin is given by ~Si = 1
2

∑

s,t c
†
i,s~σs,tci,t and ~σ denotes the Pauli matrices.

The local pair creation operator is ∆†
i = c†i,↑c

†
i,↓ and the total charge ni = ni,↑ + ni,↓. The
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pair hopping term may be recast [18] [42] as

−
(
∑

σ

c†i,σcj,σ +H.c.

)2

= 4~Si
~Sj − 2

(

∆†
i∆j +H.c.

)

+ ninj − ni − nj. (3.6)

Using spin language the minus sign in front of the pair hopping ∆†
i∆j favors “ferromag-

netic” in-plane order for the pairing and no frustration in the pair sector can be realized

with the term (3.4). Spin and pair terms in Eq. (3.6) are obviously competing since a

local energy gain on neighboring sites is only possible when both sites are either spin

or pair/hole like. In addition the Fermion hopping will interfere with both spin and

superconducting order.

3.4 Symmetries

We introduce a particle-hole transformation P 2 which transforms down electrons into

down holes

Pc†i,↓P = (−1)ici,↓, (3.7)

leaves up electron invariant Pci,↑P = ci,↑, and has the property P2 = P . The discrete

symmetry group with elements {1,P} is denoted by Z2,PH . It is convenient to introduce

a set of eta-operators [111] as the particle hole transformed spin operators

~ηi ≡ P ~SiP , (3.8)

η†i = (−1)ic†i,↑c
†
i,↓, (3.9)

ηz
i = (ni,↑ + ni,↓ − 1)/2, (3.10)

such that η†i is the pair creation operator ∆†
i and ηz

i is the total charge.

The total spin operators

~S =
∑

i

~Si (3.11)

are the generators of a spin SU (2) group. Accordingly the η-operators

~η =
∑

i

~ηi (3.12)

2The same transformation was used to establish the sign free Hubbard-Stratonovich decoupling for

the repulsive Hubbard model (see Eq. 1.48).
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define a η-SU (2) group. For the commutation between spin and eta consider

~ηi |spin〉 = 0, (3.13)

which implies that the product and commutators are zero

ηα
i S

β
i = 0, (3.14)

[

ηα
i , S

β
i

]

= 0. (3.15)

Both the SU (2) × SU (2) product group and the SO (4) group have such commutation

relations but property (3.14) is incompatible with an irreducible SO (4) representation.

Using spin and η operators we may rewrite the Hamiltonian (3.1) into a manifestly

symmetric form

H = −t
∑

〈i,j〉,σ

(

c†i,σcj,σ +H.c.
)

+
U

3

∑

i

[

(~ηi)
2 −

(

~Si

)2
]

+ 4tp
∑

〈i,j〉

(

~Si
~Sj + ~ηi~ηj −

1

4

)

− 8V
∑

〈i,j〉
ηz
i η

z
j . (3.16)

In order to analyze the symmetry we look at each term:

1. To see the spin and η invariance of the hopping term we use the spinor representation

Ht = −t
∑

〈i,j〉
Ψ†

i,αhα,βΨj,β +H.c. (3.17)

with the spinor Ψ†
i,α =

(

c†i,↑, c
†
i,↓

)

and hα,β = δα,β. The infinitesimal spin rotation

is given by

[

Si
i ,Ψ

†
i,γ

]

=
1

2
Ψ†

i,βσ
i
βγ, (3.18)

which may verified using the anticommutator in

[AB,C] = A [B,C]± − [C,A]±B. (3.19)

Thus the hopping term Ψ†
i,αhα,βΨj,β is a scalar

[(
Si

i + Si
j

)
,Ψ†

i,αhα,βΨj,β

]

=
1

2
Ψ†

i,α [σ,h]α,β Ψj,β = 0, (3.20)

and

[

~S,Ht

]

= 0. (3.21)
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Hopping is also invariant under the particle-hole transformation P

[P , Ht] = 0. (3.22)

The two commutators (3.22) and (3.22) imply the invariance under η-rotation

[~η,Ht] =
[

P ~SP , Ht

]

= 0. (3.23)

Thus the full SU(2)S ⊗ SU(2)η ⊗ Z2,PH symmetry has been established.3

2. The perfect square term in the form

Htp = 4tp
∑

〈i,j〉

(

~Si
~Sj + ~ηi~ηj −

1

4

)

(3.24)

is clearly invariant under SU(2)S ⊗ SU(2)η ⊗ Z2,PH .4

3. The Hubbard term can be rewritten into the manifestly SU(2)S⊗SU(2)η invariant

form

HU =
U

3

∑

i

[

(~ηi)
2 −

(

~Si

)2
]

. (3.25)

Under P-transformation the half-filled attractive Hubbard model maps onto the

repulsive model

PHUP = −HU . (3.26)

4. Finally the density-density interaction

HDD = −8V
∑

〈i,j〉
ηz
i η

z
j (3.27)

is spin symmetric and invariant under ηz rotation.

3In fact the simple perfect nesting Ht has an even higher SO (6) symmetry. [70] [92]
4Although the pair hopping is simply the square of single particle hopping it does not have the full

SO (6) symmetry.
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3.5 QMC

Due to the sign problem we can only simulate the Hamiltonian (3.1) for attractive (neg-

ative) U values. The Hubbard term is decoupled with the Hirsch discrete and real HS

transformation (1.38). The pair hopping interaction is already in perfect square form

and may be decoupled using a HS field with four discrete values (1.67). Finally the

density-density interaction is implemented via the perfect square

−
∣
∣
∣Ṽ
∣
∣
∣

∑

〈i,j〉
((ni − 1) + p (nj − 1))2 = −2

∣
∣
∣Ṽ
∣
∣
∣N − 2V

∑

〈i,j〉
(ni − 1) (nj − 1) (3.28)

− 8
∣
∣
∣Ṽ
∣
∣
∣

∑

i

(ni,↑ − 1/2) (ni,↓ − 1/2) (3.29)

where p = ±1 and V = p
∣
∣
∣Ṽ
∣
∣
∣. This includes the term HDD we want to represent. But

it also includes an additional attractive Hubbard term which restricts the effective U to

values

U ≤ −8|V |. (3.30)

This is the shaded region in Fig. 3.3. Using particle-hole symmetry the region of repulsive

U

V

Figure 3.3: The shaded region is accesible to sign free QMC simulation. Simulation of the

density-density interaction implicitly includes additional atteractive terms which results

in the constraint U < −8 |V | . Using particle-hole symmetry the repulsive U at V = 0 is

also accessible.

U at V = 0 is also accessible. The chemical potential is kept at µ = 0.
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Figure 3.4: For every region in the phase diagram the full symmetry of the Hamiltonian

is indicated. Broken symmetries are marked by bars.

3.6 Results

In Fig. 3.4 the various symmetries for different parameter regions are displayed. Bars

denote symmetries which we numerically find to be spontaneously broken in the thermo-

dynamic limit. The point U = V = 0 has the full symmetry: SU(2)S ⊗ SU(2)η ⊗ Z2,PH .

Here two scenarios are possible: i) Long range order (LRO) for both AF and SC correla-

tions since one implies the other through Z2,PH symmetry or ii) The competition between

the two broken symmetry states leads to a disordered state. We find that the system real-

izes the first possibility of coexistence of s-wave SC and AF and spontaneous breaking of

all the symmetries. Switching on U breaks the particle-hole symmetry and only SU(2)η

symmetry is broken for U < 0 and V = 0. A finite V reduces the SU(2)η → U(1)⊗ Z2,η

and for positive (negative) V we find a SC (CDW) phase. Finally in the region of repulsive

U and V = 0 the SU(2)S symmetry is broken.

In the following, we will first discuss numerical results for the point of high symmetry

at U = V = 0 (Fig a), continue with the phase transition as U (Fig. b) and finally

consider the transition varying V → ±0 (Fig c).
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U

AF + SC
AF

CDW

CDW + SC

V

SC

Figure 3.5: We concentrate our attention on three regions in the phase diagram: (a) The

point of high symmetry. (b) The phase transition as U → 0 and (c) The transition upon

varying V .

Coexistence

Precisely at U = 0 particle-hole symmetry implies that boson correlation functions are

equal to their spin counterparts

〈
Sα

kS
α
−k

〉
=
〈
ηα
kη

α
−k

〉
. (3.31)

Thus the existence of LRO for spin implies LRO for the pairs and vice-versa. Both orders

are competing in phase space and reduced by single particle hopping. For strong coupling

in the pair hopping tp/t→∞ the remaining Hamiltonian (3.24) has a degenerate ground

state which is the solution of the spin or the η Heisenberg model. Thus we expect LRO

for large values of tp/t with a staggered moment ms = mHeisb/
√

2. The staggered moment

of the Heisenberg model mHeisb is reduced because the simulated ground state is

|Ψ〉 =
1√
2

(∣
∣ΨHeisb

S

〉
+
∣
∣ΨHeisb

η

〉)
. (3.32)

After finite size extrapolation the results of Fig. 3.6 are consistent with a finite value

of the magnetization ms up to weak coupling (tp/t << 1). However hopping strongly

suppresses the order parameter. At the same time the superconducting order parameter

∆ is also nonzero and the measured value ∆ =
√

2ms agrees with Eq. 3.31. The weak

coupling situation deserves closer attention. Assuming a superconducting BCS ground

state particle-hole excitations will be gapped. But this is in contradiction with the
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Figure 3.6: The staggered moment ms which coexists with the superconducting order

parameter ∆ = ms

√
2 plotted as a function of tp (U/t = V/t = 0). The inset shows finite

size extrapolation for tp = 4 and tp = 0.5.

observed spin LRO. Thus the question arises how the observed coexistence can be realized:

i) Coexistence of orders can be the result of a continuous symmetry we missed to identify

in section 3.4.5 In particular we searched for a SO(5) symmetry which rotates AF order

into extended s-wave SC. We found no sign of extended pair condensation or softening

of the associated π-modes. ii) The system gains energy via phase separation into one

patch with ordered spins and another patch with pair order. In case of phase separation

the long wave-length correlations between spin and η occupation should diverge with the

volume

PS = lim
q→0

〈(
2Sz

q

)2 (
2ηz

q

)2
〉

∝ N. (3.33)

Figure 3.7 plots PS for tp = 0.5. A weak long wavelength divergence is visible but finite

size scaling reveals that it does not grow with system size. A similar plot for tp = 0.25

shows no divergence at all. The probability to find two η-sites at random separation

Pηη =
1

N

∑

j

〈

(2ηz
i )

2 (2ηz
j

)2
〉

(3.34)

5This is exactly what happens in transition (c).
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Figure 3.7: Phase separation would be signalled by strong divergence of PS =

limq→0

〈(
2Sz

q

)2 (
2ηz

q

)2
〉

∝ N.
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Figure 3.8: For tp = 0.25 we find no divergence at all.

is plotted in Fig. 3.9

iii) Similar to the strong coupling situation (Eq. 3.32) the ground state remains a

coherent superposition of two ordered states only with suppressed order parameters. In

the next section we find that transition (a) is of first order. This supports the idea that

at U = 0 the ground-state is formed as the superposition of the two crossing eigenstates.
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tp

1 N

∑
i〈
(η

z i
)2

(η
z j
)2
〉

43.532.521.510.50
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0.55

0.45

0.35
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Figure 3.9: For large tp/t the probability to find two η-sites approaches 0.5. In weak

coupling Pηη approaches 0.25 the uncorrelated value for the non-interacting system.

A first order transition

It proofed difficult in the above section to characterize the observed coexistence of LRO’s

in the simulated ground state. We find that a simple picture emerges when we study the

phase transition across the U = 0 point.

Following the V = 0 line as U → 0 we find η LRO decreasing only slightly with a finite

limit at U = 0+. This is shown in Fig. 3.10 where the pair-pair correlation at maximum

distance is plotted. Fig. 3.12.c) plots the quasi particle gap ∆qp. Electrons remain gapped

due to LRO even for small U. Crossing the U = 0 point we encounter a phase transition

which is linked to a higher symmetry: the discrete particle-hole symmetry. In Fig. 3.10

the η order parameter jumps by a factor two from the extrapolated U → 0 value to

the coexistence value at U = 0. This is well explained when we assume a ground state

|Ψη (U → 0−)〉 which jumps to a particle-hole symmetrized form

|Ψ〉 =
1√
2

(|Ψη〉+ |ΨS〉) . (3.35)

Thus we propose that the transition is a first order level crossing transition. This poses

severe constraints on the behavior of all correlation functions across the transition. Most

important it excludes continuous behavior with a diverging correlation length and in

particular precludes the existence of a hidden continuous symmetry. The additional

Goldstone modes which exist at U = 0 disappear immediately for a finite value of U .
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Figure 3.10: (the plot is really for nn = 2∆†∆.) The pair-pair correlation function

1/N
〈
∆† (L/2) ∆ (0)

〉
at maximum separation (L/2, L/2) . The correlation function jumps

by a factor two once a finite Hubbard U term breaks the Z2,PH symmetry.

In Fig. 3.11 we compute the equal time correlation 〈Sz
QS

z
−Q〉 and the uniform spin

susceptibility ReχSzSz (ω = 0,k = Q) where Q = (π, π) and

Sz
Q = (1/

√
N)
∑

r

eiQrnr. (3.36)

The susceptibility is obtained from integration of the time displaced correlation function

χ
/
SzSz (ω = 0,k = Q) =

∫ ∞

0

〈Sz
Q (τ)Sz

−Q (0)〉dτ. (3.37)

We assume that close to the transition the correlation function has the form

S (r, t) = 〈Sz
r (τ)Sz

0 (0)〉 ∼ e−
|x|
ξ e−

τ
ξτ (3.38)

and U only changes the correlation lengths. Then by a simple change of variables in the

integration the structure factor and the susceptibility are proportional to the correlation

length

〈Sz
QS

z
−Q〉 ∼ ξ2 (3.39)

χ
/
SzSz (0,Q) ∼ ξ2ξτ . (3.40)

Fig. 3.11 shows no sign of a diverging correlation length at the phase transition. Note

that χ
/
SzSz (0,Q) appears to be further suppressed by the integration of an exponentially

decaying time correlation controlled by a finite gap ∆S ∼ 1/ξτ .

It is also interesting to look at the free energy F (U) which is the proper thermody-

namic potential for this transition. At zero temperature the free energy reduces to the
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Figure 3.11: Values for the uniform susceptibility χ′
Sz ,Sz(~k = ~Q, ω = 0) ∝ ξ2ξτ (lower

curve) are well below the correlation function 〈Sz
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〉(~k = ~Q) ∝ ξ2

ground state energy

F (U) = −kT ln Tr exp−β
[

H0 + U/4
∑

i

Di

]

, (3.41)

=
T→0

〈Ψ0|H0 + U/4
∑

iDi |Ψ0〉
〈Ψ0| Ψ0〉

, (3.42)

where H0 contains hopping and pair hopping

H0 = Ht +Htp , (3.43)

and the Hubbard interaction is normalized to ±1

Di = 4 (ni,↑ − 1/2) (ni,↓ − 1/2) . (3.44)

It is a general principle in statistical mechanics that a free energy as in Eq. (3.41) is a

convex down function in an arbitrary intensive parameter (here the Hubbard U). The

proof is given in appendix D. This allows to apply the usual concepts of thermodynamics

to quantum phase transitions driven by an interaction parameter. Here the relevant pair

of conjugate variables is the Hubbard U (intensive) and double occupancy D (extensive).

The ground state energy E (U) in Fig. 3.12 has a kink and the derivative with respect

to U

∂E

∂U
=
N

4
〈Di〉 = N

(

〈ni,↑ni,↓〉 −
1

4

)

(3.45)
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is discontinuous. Our initial identification of the phase transition as first order is thus

verified. Performing a Legendre transform to a new free energy F̃ (〈ni,↑ni,↓〉)

F̃ (〈ni,↑ni,↓〉) = E (U)−N U 〈ni,↑ni,↓〉 , (3.46)

a plateau marks the region of phase coexistence (Fig. 3.13). The two states at the

endpoints of the plateau (〈ni,↑ni,↓〉 = 0.15, 0.35) correspond to states for U → 0+, 0−.

Intermediate values of the double occupancy somewhere on the plateau can only be real-

ized by a mixture of the phases. Such states will have a higher energy due to the domain

wall and will not be realized on small lattice sizes. Thus the particle-hole symmetric

simulation at U = 0 must be a superposition of the two extremal states.
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Figure 3.12: a) The free energy E (U) shows a kink at U = 0. b) The ”Hubbard”

correlation 〈n↑n↓〉 = 1/N(∂F/∂U) has a jump at the transition point U = 0. The first

order transition is signaled by a discontinuity of the first derivative of the free energy.

The dashed line is the numerical derivative of the energy E (U) c) The quasi-particle gap

∆qp.

In order to understand how the SU(2)S ⊗SU(2)η symmetries are spontaneously bro-

ken at U = 0 we also need to discuss whether the discrete particle-hole symmetry is
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〈ni,↑ ni,↓〉 − 1/4

F̃

0.150.05-0.05-0.15

-3.3

-3.32

-3.34

-3.36

-3.38

Figure 3.13: Legendre transformation to F̃ (〈ni,↑ni,↓〉) reveals a plateau which marks the

region of phase coexistence..

broken and how this affects the spontaneous breaking of the continuous symmetries. We

introduce the double occupancy D as a pseudo-spin order parameter

Di =
(
(2Sz

i )
2 − (2ηz

i )
2
)







+1 : |↑〉 , |↓〉
−1 : |↑↓〉 , |0〉

, (3.47)

〈D〉 = 〈PDP〉 = −〈D〉 (3.48)

which has to be zero as long as the Z2,PH symmetry is not broken as assumed in Eq. (3.48).

A positive (negative) value for 〈D〉 indicates a majority of spins (pairs) in the system.

Using particle-hole symmetry the double occupancy correlation functions simplifies to

〈DiDj〉 =
P

4
〈
(2Sz

i )
2(2Sz

j )
2
〉
− 1. (3.49)

Plotting the uniform correlations 1/N 〈DkDk〉 (k = 0) as a function of temperature, one

sees in Fig. 3.14 that below a temperature Tc ∼ 1.8t particle-hole symmetry is indeed

broken (tp = 2t). Hence below Tc and in the thermodynamic limit the Z2,PH particle-hole

symmetry is broken and depending on the orientation of the pseudo-spin, D~i, the SC or

AF ground state will be chosen.

A continuous transition

In the following, we will discuss the phase transition at constant negative U = 1.6t and

tp = 0.5t as a function of V . For V = 0 the system has a higher SU (2) symmetry and
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Figure 3.14: The 1/N 〈DkDk〉 (k = 0) correlations show that at least up to T ≤ 1.8t

particle-hole symmetry is broken (tp = 2t).

we already know that η LRO exists. A finite V lowers the symmetry and some Goldstone

modes at V = 0 must acquire a gap proportional to V. Thus we can expect to find a

continuous transition.

In the U → −∞ limit the model is equivalent to hard-core bosons with repulsive

nearest neighbor interactions. In this strong coupling limit the Hamiltonian (3.16) reduces

to those terms which involve only η operators and the hard-core boson operators are

b†i = η+
i (3.50)

b†i bi = η+
i ηi = ηz

i +
1

2
=

1

2
(ni,↑ + ni,↓) . (3.51)

At half-filling this system experiences a transition from SC to charge-density wave states

(CDW) going across V = 0. [40] [90] The transition point is marked by the higher sym-

metry SU(2)η and broken symmetry states may be labeled according to the direction

of the magnetization. Therefore it is possible to find broken symmetry states which

show a coexistence of CDW and SC order parameters. One can view this as a conse-

quence of merging the Ising and the U(1) symmetries into a continuous group. The finite

temperature behavior is also dictated by symmetries. [40] The CDW has a finite Néel

temperature TN and the two-dimensional U (1) breaking SC phase is characterized by a

Kosterlitz-Thouless transition with a finite temperature TKT. But at the SU (2) symmet-

ric point LRO at finite temperature is forbidden by the Mermin-Wagner theorem. Thus



3.6. RESULTS 93

the ordering temperatures TKT and TN drop to zero in the vicinity of the symmetric

point.

The same behavior is still present for finite attractive U . In particular our simulations

show (see Figs. 3.12c) and 3.16c) that single particle excitations are always gapped so

we can argue that the system still renormalizes to the bosonic model. As we will see,

crossing the V = 0 line at T = 0, we observe a divergence of the correlation length (Fig.

3.15) which points to a second order phase transition. Furthermore, we find no sign of

a discontinuity in the first derivative of the free energy (1/N)∂F/∂V = −2〈nini+x〉 (see

Fig. 3.16b). At the same time we observe a jump for the CDW and SC order parameters

at V = 0. To understand this transition, we split it up into three parts: a) V → 0−,

b) V = 0− → 0+ and c) V → 0+. Part b) is responsible for the jump in the order

parameters. Let us introduce the two limiting ground states via

ΨIsing = lim
V →0−

lim
N→∞

Ψ(V ) (3.52)

ΨXY = lim
V →0+

lim
N→∞

Ψ(V ). (3.53)

The ground state in the Ising regime ΨIsing has CDW order and the SC order parameter is

zero. Jumping to positive V and ΨXY the situation reverses. Thus the observed jump in

the order parameters is the simple consequence of forcing the transition from one broken

symmetry state to the other: ΨIsing → ΨXY. Next we look at the critical behavior as we

approach the phase transition from either side. Linear spin wave theory (LSWT) predicts

for both transitions a) and c) the same square root divergence for the respective transverse

correlation function. Dispersion relation and structure factors for the purely bosonic case

are worked out in Appendix E. In case c) the equal time transverse correlation function is

〈nQn−Q〉 where nQ = (1/
√
N)
∑

r e
iQrnr, nr = nr,↑ + nr,↓ and Q = (π, π). According to

LSWT this density-density correlation diverges like 〈nQn−Q〉 = 8S/
√

V/tp as V → 0+.

The real part of the uniform susceptibility

χ′
n,n(k = Q, ω = 0) =

∫ ∞

0

dτ 〈nQn−Q〉 (τ) (3.54)

picks up the inverse of the gap ∆ = 8
√

2V tp and in LSWT diverges like χ′
n,n(Q, 0) =

√

1/2S/V . Asymptotically the correlation function 〈nin0〉 (τ) decays exponentially in

space and time thus the integrated correlation functions are proportional to the correla-



94 CHAPTER 3. COEXISTENCE OF S-WAVE SC AND ANTIFERROMAGNETISM

tion length and gap

〈nQn−Q〉 ∝ ξ2 (3.55)

χ′
n,n(k = Q, ω = 0) ∝ ξ2∆−1. (3.56)

Data for both χ′
n,n(Q, 0) and 〈nz

Qn
z
−Q〉(τ = 0) are shown in Fig. 3.15 where the dotted

line plots the LSWT result multiplied with a single constant to account for the reduced

moment.

The ordered state in the XY regime has one Goldstone mode and the transverse

correlations 〈nQn−Q〉 are gapped. Approaching the critical point the gap closes and the

〈nQn−Q〉 correlation length diverges. Thus critical behavior reflects the softening of the

observed mode which turns into a Goldstone mode at the point with higher symmetry.

Ultimately it is the softening of the transverse mode which is responsible for the observed

critical behavior.
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Figure 3.15: a) Uniform susceptibility χ′
n,n(Q, 0) ∝ ξ2∆−1 b) 〈nQn−Q〉 ∝ ξ2. The dotted

line is proportional to results from LSWT.

The critical behavior is also apparent from the mode dispersions. Figures 3.6, 3.6 and

3.6 plot the spectral functions 〈nkn−k〉 (ω) and 〈∆†
k∆k〉 (ω) .
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Figure 3.16: a) The energy E (V ) . The dashed line is a fit which is used to take numerical

derivatives on both sides of the transition. b) Density-density correlations 2 〈nini+x〉 =

−1/N(∂F/∂V ) where ni = ni,↑ + ni,↓. The derivative of the free energy is continuous.

Dashed and dotted lines indicate the numerical derivative c) The quasi-particle gap ∆qp

was obtained by fitting the tail of the imaginary time correlation function G(τ).
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CDW phase at V = −0.2t: a) the density-density mode condenses at momentum

Q = (π, π) . At momentum k = 0 density is conserved but the mode has zero weight. b)

the transverse pair-pair excitations are always gapped.
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a) b)

SU (2) symmetric phase at V = 0: a) the density-density mode condenses (Goldstone)

at k = Q. The dispersion approaches zero continuously. Particle number is conserved

but the density mode at k = 0 is weightless b) Pairs condense at k = 0 and due to

symmetry the pair mode has zero weight at k = Q.
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a) b)

SC phase: a) the density-density mode opens a gap at k = Q. Particle number

conservation leads to a gapless branch at k = 0 but with vanishing weight. b) the pair

mode condenses at k = 0 but opens a gap at k = Q.

3.7 Conclusion

Organic superconductors have a rich phase diagram. In particular we are interested

in the ordered superconducting and antiferromagnetic low temperature phases. Upon

pressure a first order transition is observed. The nature of the superconducting order

parameter remains controversial but we show that a transition between AF and s-wave

superconducting states can be represented by a simple toy model. We argue that the

pair hopping term which is responsible for the ordering may arise from electron-phonon

interaction via a Su-Schrieffer-Heeger term.



Conclusion

We will first make some general statements on Quantum Monte Carlo as applied to

fermionic lattice problems and then summarize the research subjects carried out in this

thesis. Apart from exactly solvable models in one dimension, Quantum Monte Carlo is

one of the few methods which give exact results for interacting many body systems. But

when applied to Fermions, there are also severe limitations:

• The method scales like N 3β, which makes only small systems of up to 500 sites

accessible. This restriction of small system sizes is especially problematic in the

study of critical behavior which is characterized by a diverging length scale.

• The notorious sign problem limits the applicability of determinant QMC either

to the study of high temperature behavior or a special set of known Hamiltonian

which can be decoupled in a sign free way. The class of sign-free Hamiltonians is

restricted to some systems with attractive interaction and a few equivalent systems

such as the repulsive Hubbard model at half filling. A common feature of all sign

free simulations is a gapped single particle spectrum. This is maybe less dramatic

then it appears at first sight, as the “normal” Fermi liquid state is also unstable

towards some ordered low temperature phase.

• A big advantage of determinantal QMC is that almost any time displaced correla-

tion function can be measured. For example, this is not at all trivial in the so called

cluster algorithms such as stochastic series expansion. But charge and spin dynam-

ics are initially obtained for imaginary times. The analytic continuation to real

frequencies still poses a mayor challenge. As the QMC results for a time displaced

correlation is always blurred by statistical error the inverse Laplace transformation

is ill defined and a statistical procedure known as Maximum Entropy method has

to be used.
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• Non-equilibrium thermodynamics as found in a quantum dot with persistent cur-

rent, can not be studied. In fact the path integral for such a problem is inflicted

again by a sign problem.

Typically, one has to resort to some approximation, when studying many-body prob-

lems. A minimal requirement to cope with the uncontrolled nature of these approxima-

tions, is a check against well established results. Here, QMC provides benchmark results,

albeit for special points in the phase diagram. In this thesis we provide such results

for two canonical models in the field of strongly correlated electron systems, namely the

Hubbard and the Kondo model.

Now we would like to discuss in more detail the main results of this thesis:

Auxiliary field Quantum Monte Carlo

In the first chapter we give a detailed account of determinantal quantum Monte Carlo and

the BSS algorithm [14]. A number of models which allow sign free simulations is reviewed.

In principle the method is well suited to calculate imaginary-time-displaced correlations

functions but a straight forward evaluation of the time-displaced Green’s function suffers

from numerical instabilities. Sofar, numerically stable methods to compute the zero

temperature Green’s function were based on a stabilization scheme developed for the

finite temperature algorithm [8]. Although precise, this method is expensive in CPU

time. We developed an alternative approach [28] for the zero temperature algorithm,

based on the observation that for a given auxiliary field the equal-time Green’s function

matrix G is a projector G2 = G. The new method is easy to implement and an order

of magnitude faster than the previously used stabilization. We made extensive use of

this method when we calculated the single hole dynamics in the Kondo-Hubbard model.

We also discuss the Dyson equation of the full lattice Green’s function that allows a

conceptual unification of the Hirsch-Fye impurity algorithm and the BSS algorithm.

Kondo-Hubbard model

The second chapter introduces the Kondo lattice model, which was only recently studied

with determinantal QMC after a sign free formulation was found [7]. The low energy
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charge excitations in this Kondo model behave very differently from the Hubbard case.

Due to the constraint of achieving a sign free simulation, we can only investigate the

insulating phase at half filling. But we can identify the k-points of the charge gap, i.e.

the minimum of the hole dispersion. For the Hubbard model this minimum is observed

at (π/2, π/2) but pronounced shadow features due to the antiferromagnetism are found

out to the corner of the Brillouin zone. On the other hand in the Kondo model the

minimum is at (π, π) which originates from the screening of the magnetic impurities.

Apparently, these two behaviors can not be easily reconciled when we study a combined

model with both a Kondo interaction and an additional Hubbard interaction for the

conduction electrons (UKLM). In such a UKLM we find, that the position of the charge

gap is always dictated by the Kondo behavior (i.e. k = (π, π)), even when the Kondo

coupling is weak compared to the Hubbard interaction. As J → 0, the spectral weight in

the Kondo-like low-energy band in the vicinity of k = (π, π) vanishes and is transferred

to higher energy Hubbard like bands. In the (U, J) plane the Hubbard line, i.e. J = 0,

is singular since the localized spins decouple and the ground state is macroscopically

degenerate. The evolution of the spectral function at J = 0 is discontinuous regarding

the wave vector that dominates the low energy hole dynamics which jumps from (π, π) to

(π/2, π/2) . In this sense the model shows no continuous path from the Kondo insulator

to the Mott insulator. Given our results, it is very tempting to speculate on the effects of

doping with a finite density of holes. Assuming a rigid band picture we would conclude

that off half filling the UKLM displays a Fermi surface centered around (π, π) for all values

of U and J > 0. In addition the Kondo lattice model shows a quantum critical point,

arising from a competition of the magnetic phases. For small J the RKKY interaction

leads to a antiferromagnetic ordered state whereas at large J the formation of local Kondo

singlets is favored. The magnetic phase diagram of the UKLM has then been determined.

Coexistence of s-wave SC and Antiferromagnetism

Finally, in the third chapter we study a complicated Hubbard model on a square lattice.

The simple Hubbard model with a local interaction U was augmented by nearest neighbor

spin-spin and charge-charge interaction terms. Both spin and charge nearest neighbor

interactions arise simultaneously from a pair hopping term (coupling tp) in the form of
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a squared kinetic energy on single bonds. In addition we consider a density-density cou-

pling V, in order to break the SU (2) η-symmetry in the charge sector. We study the

phase diagram at half filling for attractive U . For V = 0, particle hole symmetry makes

the repulsive U sector also accessible. In the regions we could study the phase diagram is

found to be completely determined by the various symmetries. Two points are of special

interest. First the line of attractive U and V = 0 which separates a superfluid phase for

V > 0 and a charge-density-wave phase for V < 0. We demonstrate that the phase tran-

sition V → 0 is a continuous phase transition. Second, the point U = V = 0 separates a

superconducting phase at U < 0 from a antiferromagnetic phase at U > 0. This transition

is observed to be of first order. The simulation at the symmetric point U = V = 0 displays

coexistence of superconducting and antiferromagnetic correlations. Recently, such a first

order transition between antiferromagnetism and superconductivity has been observed

in the organic layered superconductor κ-(BEDT-TTF)-Cl [61]. We speculate, that our

model describes these low temperature phases while the nearest neighbor spin and charge

interactions are generated by a Su-Schrieffer-Heeger [98] electron-phonon interaction.



Appendix A

QMC: Proofs

A.1 Scalar Product

Let us show in more detail the matrix implementation of the scalar product

〈L|R〉 = detL†R . (A.1)

We insert the definition (1.70)

|R〉 =
Ne∏

i=1

(
∑

x

c†xRx,i

)

|0〉 =
∑

x1...xNe

c†x1
c†x2

. . . c†xNe
|0〉Rx1,1 . . . RxNe ,Ne

(A.2)

and obtain

〈L|R〉 =
∑

x1...xNe
y1...yNe

〈0| cyNe
. . . cy1

c†x1
. . . c†xNe

|0〉 L̄Ne,yNe
. . . L̄1,y1Rx1,1 . . . RxNe ,Ne

. (A.3)

The expectation value of 〈0| cyNe
. . . cy1

c†x1
. . . c†xNe

|0〉 can only be nonzero iff a permutation

π transforms the set of numbers (x1 . . . xNe
) into (y1 . . . yNe

) and all entries in (x1 . . . xNe
)

are mutually different. Then the expectation value is equal to the sign of the permutation

〈0| cyNe
. . . cy1

c†x1
. . . c†xNe

|0〉 = 〈0| cxπ(Ne)
. . . cxπ(1)

c†x1
. . . c†xNe

|0〉 = (−1)π . (A.4)

We now have

〈L|R〉 =
′∑

x1...xNe
π

(−1)π L̄Ne,xπ(Ne)
. . . L̄1,xπ(1)

Rx1,1 . . . RxNe ,Ne
, (A.5)

where the sum
∑′ is restricted to mutually different (x1 . . . xNe

). In fact this restriction

is not necessary. Summing instead over the unrestricted sum

〈L|R〉 =
∑

x1...xNe
π

(−1)π L̄Ne,xπ(Ne)
. . . L̄1,xπ(1)

Rx1,1 . . . RxNe ,Ne
(A.6)
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we encounter for instance a term x1 = x2. But there is also a transposition π0 that

exchanges

π0π (x1) = π (x2) ,

π0π (x2) = π (x1) , (A.7)

and has always a negative sign (−1)π0 = −1. Finally we pair rows of L and columns of R

〈L|R〉 =
∑

x1...xNe
π

(−1)π L̄π−1(1),x1
Rx1,1 . . . L̄π−1(Ne),xNe

RxNe ,Ne
(A.8)

= detL†R, (A.9)

which completes the proof.

A.2 Grand canonical Trace

A formal proof of Eq. (1.83) follows the simple example for a two particle system. We

want to show

Tr e−c†Hmc . . . e−c†H1c = det (1 + B) . (A.10)

First we define a basis in Fock space

|P(x1, . . . , xNe
)〉 : P(x1, . . . , xNe

) = ex1 ⊕ ex2 ⊕ . . .⊕ exNe
(A.11)

where the particle number Ne runs from 0 to N, and the sequence of x1 through xNe

satisfies

x1 < x2 < . . . < xNe
. (A.12)

Vectors ex are unit vectors

ex,i = δx,i. (A.13)

We use the Fock basis (A.11) to evaluate the trace

Tr e−c†Hmc . . . e−c†H1c =
N∑

Ne=1

∑

x1<...<xNe

〈P(x1, . . . , xNe
)| e−c†Hmc . . . e−c†H1c |P(x1, . . . , xNe

)〉

=
N∑

Ne=1

∑

x1<...<xNe

detP†(x1, . . . , xNe
)BP(x1, . . . , xNe

)

=
N∑

Ne=1

∑

x1<...<xNe

detB(x1, . . . , xNe
). (A.14)
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Multiplying B from the right and left side with the rectangular matrix P(x1, . . . , xNe
)

results in a matrix of size Ne ×Ne

B(x1, . . . , xNe
) = P†(x1, . . . , xNe

)BP(x1, . . . , xNe
). (A.15)

Note that B(x1, . . . , xNe
) is the submatrix of B obtained by keeping rows and columns

running through the diagonal elements indexed by (x1, . . . , xNe
). We realize that the sum

used in Eq. (A.14) generates all possible submatrices of the above type which alternatively

may be generated from the row (or column) expansion of det (1 + B) using the multilinear

property of the determinant.

A.3 det (1 + AB) = det (1 +BA)

Let A be N ×M and B be M ×N matrices. Then the different size determinants satisfy

det (1N + AB) = det (1M + BA) .

This may be verified using a formal power series expansion of ln det (1N + λAB)

ln det (1N + λAB) = Tr ln (1N + λAB) = Tr
∞∑

n=1

(−λAB)n

n

!
= Tr

∞∑

n=1

(−λBA)n

n
= ln det (1M + λBA) ,

where we used

ln det = Tr ln . (A.16)
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Appendix B

QMC vs. Diagrams

We already mentioned that the Trotter decomposition is a valuable tool to introduce path

integrals. [81] Once we have the path integral we can always attempt a formal expansion

in the interaction coupling and obtain a diagrammatic representation for the coefficients

in the Taylor series. For a system

H = H0 + λHI , (B.1)

we obtain the following series for the partition sum Z (λ)

Z (λ) =
∞∑

i=0

diλ
i. (B.2a)

All connected and disconnected diagrams of order i are collected in the coefficient di.

This expansion will necessarily break down at a finite convergence radius r, since Z (λ)

is never an entire function (i.e. analytic for all λ ∈ C).

This should be compared to the Trotter formula, where we may safely approximate

(see Eq. 1.32)

e−∆τHI ∼ 1−∆τλHI , (B.3)

when ∆τ is small enough. Then we obtain an approximant for Z (λ)

Zm (λ) =
m∑

i=0

cmi λ
i, (B.4)

and the Trotter product formula guarantees

lim
m→∞

Zm (λ) = Z (λ) (B.5)
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for all λ ∈ R so that approximants Zm (λ) are not limited by the convergence radius r

of the Taylor series (B.2a). The cmi are a reasonable approximations for the di (although

converging slowly)

lim
m→∞

cmi = di (B.6)

and the approximant Zm (λ) converges term by term to the Taylor series. For λ ≤ r we

are allowed to rearrange limits1

lim
m→∞

m∑

i=0

cmi λ
i = lim

m→∞

m∑

i=0

(

lim
n→∞

cni

)

λi =
∞∑

i=0

diλ
i. (B.7)

For λ ≥ r the right hand side diverges but the approximants still converge!

In any case, the convergence of the Trotter approximant for the partition function is

not very good, but the corresponding rational function approximant for the energy

E (λ) =

∑m
i=0 e

m
i λ

i

∑m
i=0 c

m
i λ

i
(B.8)

is very stable.

Finally we should briefly discuss the analytic behavior we expect for finite systems

at finite temperature, which after all are the systems amenable to lattice QMC. All

thermodynamic quantities are analytic for λ ∈ R but for complex λ one must encounter

branchpoints. This is most easily seen for the eigenvalues Ei (λ) which have branchpoints.

For a 2× 2 matrix this is just the square root branchpoint V = |E2 − E1| /2



E1 V

V E2



 =⇒ E1,2 (λ) =
1

2
(E2 + E1)±

1

2

√

(E2 − E1)
2 + 4V 2. (B.9)

Thermodynamic functions at finite temperature inherit these branchpoints since the en-

ergy enters the Boltzmann weight. Hence a Taylor expansion of these functions will

converge only until this point.

1The rearrangement of limits is best understood when visualizing the coefficients cm
i (where i ≤ m)

in a triangular diagram.



Appendix C

Path integrals to Green’s function

We used the Hubbard-Stratonovich decoupling to reduce the interacting many body prob-

lem to a sum of non interacting single particle problems (i.e. Hamiltonians are quadratic

in fermion operators) in an external potential that varies with time. We proceed to solve

a single such problem exactly which amounts to ‘integrate out’ the fermionic degrees of

freedom. A very complete derivation of the final formulas using standard operator for-

malism may be found in [64]. The following proofs use the alternative coherent state basis

with the main advantage that one obtains a closed formula for the generating functional

Z [x∗, y] =
〈

T Û1e
x∗ctÛ2e

yc†
t′ Û3

〉

(C.1)

where x∗, y are Grassmann variables.

C.1 Grassmann variables

Let us first introduce Grassmann variables (see [10] appendix C, [80]). We introduce

conjugated pairs of Grassmann variables

z = (z1, . . . , zN ) , z∗ (z∗1 , . . . , z
∗
N) . (C.2)

These variables are operators which can be added and multiplied. They commute with

any scalar x, but anticommute with each other:

xz = zx,

zizj = −zjzi,

ziz
∗
j = −z∗j zi, (C.3)
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which implies

z2
i = 0. (C.4)

The ‘Grassmann integration’ is a counting operation which acts on a polynomial of

Grassmann variables as follows:

∫

dz1

N∏

i=1

zni

i

N∏

j=1

(
z∗j
)mj = n1

N∏

i=2

zni

i

N∏

j=1

(
z∗j
)mj , (C.5)

where ni = 0, 1. (Note: the Grassmann algebra is defined over complex numbers, but

the above ‘integration’ does not involve complex integration!) Since zi, z
∗
i are treated as

independent variables we define the integration over d2z as

∫

d2zO (z∗, z) =

∫

dz∗
(∫

dzO (z∗, z)

)

. (C.6)

Now it is easy to verify that

∫

d2z exp (−z∗z) zm (z∗)n = δn,m, n,m = 0, 1. (C.7)

With these definitions it is possible to proof the following identity for multidimensional

Grassmann Gaussian integrals

∫

d2z exp
(
−z∗G−1z + z∗az + z∗zb

)
= detG−1 exp (z∗aGzb) . (C.8)

Applied to any Grassmann polynomial we may verify the anticommutation relation

{
∂

∂z∗i
, z∗j

}

= δi,j. (C.9)

Above we have introduced Grassmann variables and further established that Grass-

mann integrals are an alternative way to handle determinants. Next we need to make

contact with the fermionic Fock space. To this end we define a generalized Fock space

over the Grassmann algebra instead of simple c numbers. It is further necessary to require

anticommutation between Grassmann generators and fermi operators

{c, z} = 0, (C.10)

and to define a conjugate of the following form

(zc)† = c†z∗.
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Using these definitions it is possible to introduce the fermion coherent state with the

usual coherent state properties

|z〉 = exp
(
−zc†

)
|0〉 ,

ci |z〉 = zi |z〉 ,

c†i |z〉 = − ∂

∂zi

|z〉 ,

〈z| c†i = 〈z| z∗i ,
〈
z|z′
〉

= ez
∗z′ ,

zi |0〉 = |0〉 zi. (C.11)

With the help of equation (C.7) we may define a completeness relation using Grassmann

integration

∫

d2ze−z∗z |z〉 〈z| = I. (C.12)

The trace of an operator A may also be stated in coherent state basis

TrA =
∑

x

〈x| A |x〉 =
∑

x

∫

d2z e−z∗z 〈x|z〉 〈z| A |x〉

=
∑

x

∫

d2z e−z∗z 〈z| A |x〉 〈x| − z〉

=

∫

d2z e−z∗z 〈z| A |−z〉 =

∫

d2z e−z∗z 〈−z| A |z〉 , (C.13)

where the minus arises from commuting two Grassmann polynomials in z∗ and z.

Finally we need matrix elements of an arbitrary operator between coherent states: let

us assume that the operator may be written as a normal ordered polynomial in a†, a

O
[
a†, a

]
=
∑

{ni,mi}
O{ni,mi}

[(

a†1

)n1

. . .
(

a†N

)nN

am1
1 . . . amN

N

]

, (C.14)

where ni,mi = 0, 1. Using (C.11), the matrix elements are

〈z| O
[
a†, a

]
|z′〉 = O (z∗, z′) ez

∗z′ , (C.15)

where

O (z∗, z′) =
∑

{ni,mi}
O{ni,mi}

[
(z∗1)

n1 . . . (z∗N)nN (z′1)
m1 . . . (z′N)

mN
]
. (C.16)
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We will also need coherent state matrix elements for the single particle evolution

〈z| ec†Hc |z′〉 = ez
∗eH z′ ,

〈z| ec†Hcey
∗c |z′〉 = ez

∗eH z′+y∗c ,

〈z| ec†xec†Hc |z′〉 = ez
∗x+z∗eH z′ , (C.17)

where x,y∗ are Grassmann variables. From this we obtain a very useful result for a

sequence of two single particle propagations

〈z3| e−∆τc†h2ce−∆τc†h1c |z1〉 =

∫

d2z 〈z3| e−∆τc†h2c |z2〉 e−z∗2z2 〈z2| e−∆τc†h1c |z1〉

=

∫

d2ze−z∗2z2+z
†
3B2z2+z

†
2B1z1

= ez
†
3B2B1z1 (C.18)

with

Bi = e−∆τhi . (C.19)

Of course this generalizes to an arbitrary sequence of propagations.

C.2 Finite temperature

We want the partition function and the generating functional for a given Hubbard-

Stratonovich field.

Z =
∑

i

〈i| e−c†hmc . . . e−c†h1c |i〉

Z [x∗,x] =
∑

i

〈i| ex∗
mcec

†xme−c†hmc. . .e−c†hτ+1cex
∗
τc ec

†xτ e−c†hτc . . . e−c†h1c |i〉 ,

(C.20)

where we introduced aN =m×L dimensional space-time vector of Grassmann variables x

= xi,τ and xτ is the vector of spatial coordinates at a given time τ. As usual a logarithmic

derivative of the generating functional yields the Green’s function in N ×N matrix form

∂2 lnZ [x∗,x]

∂x∂x∗

∣
∣
∣
∣
x∗=x=0

= G ((i∗, τ ∗) , (i, τ)) =

〈

T ci∗,τ∗c†i,τ

〉

Z
. (C.21)

Time ordering is natural in the path integral approach because it only says that cre-

ation and annihilation operators are embedded in a strictly directed time evolution. The
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fermionic sign associated with the symbol T may be traced back to the anticommutation

relation of the Grassmann derivatives

∂2

∂y∂x∗
= − ∂2

∂x∗∂y
. (C.22)

We emphasize that an equal time derivative τ = τ ′ results in

∂2 lnZ [x∗,x]

∂x∂x∗

∣
∣
∣
∣
x∗=x=0

=

〈

ci∗,τ∗c†i,τ

〉

Z
(C.23)

and there is no freedom to choose the other operator ordering because in (C.20) we can

not revert the order of ez
∗
τc ec

†zτ when we plan to insert m + 1 coherent state identities

in the following way:

Z [x∗,x] =

∫

d2z

∫

d2z0e
−z∗0z0 〈z0| ex

∗
mc |zm〉 e−z∗mzm×

× 〈zm| ec
†xme−c†hmc. . . e−c†hτ+1cex

∗
τc |zτ 〉 e−z∗τzτ 〈zτ | ec

†xτ e−c†hτc . . . e−c†h1c |−z0〉 .
(C.24)

It was useful to insert an additional basis for the trace operation. After integrating out

z0 we do not have to keep track of the minus sign in |−z0〉 and find a N fold Gaussian

Grassmann integral that defines the Green’s function

Z [x∗,x] =

∫

d2z e−z∗G−1z+x∗z+z∗x

= detG−1ex
∗Gx. (C.25)

The matrix G−1 is a N ×N space-time matrix where for the moment we show only the

time indices explicitly

G−1 =














I 0 0 . . . B1

−B2 I 0 . . . 0

0 −B3 I 0
...

...
. . . . . . 0

0 . . . 0 −Bm I














. (C.26)

The inverse is most easily stated in the general form

τ ∗ ≥ τ : Gτ∗,τ =
〈
U (β, τ ∗) cτ∗U (τ ∗, τ) c†τU (τ, 0)

〉
/Z

=
(
B−1 (τ ∗, τ) + B (τ, 0)B (β, τ ∗)

)−1
(C.27)

τ ∗ < τ : Gτ∗,τ = −
〈
U (β, τ) c†τU (τ, τ ∗) cτ∗U (τ ∗, 0)

〉
/Z

= −
(
[B (τ ∗, 0)B (β, τ)]−1 + B (τ, τ ∗)

)−1
, (C.28)
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which may be shown by direct multiplication G−1G = GG−1 = I.

The easiest way to obtain the partition function Z, given by Z = detG−1, is to

successively integrate out coherent states using Eq. (C.18) until there is only the trace

operation left

Z =

∫

d2z0e
−z∗0 (1+Bm...B1)z0 = det (1 + Bm . . .B1) . (C.29)

summarize

Z [x∗,x] = detG−1ex
∗Gx (C.30)

Gτ∗,τ =
(
B−1 (τ ∗, τ) + B (τ, τ ∗)

)−1 ×







+1 : τ ∗ ≥ τ

−1 : τ ∗ < τ.
(C.31)

C.3 Zero temperature limit

For the projector QMC version we want to restrict the trace to a single projector |PR〉 〈PL|
where |PR〉 and |PL〉 denote Slater determinants of Ne electrons used as trial wave func-

tions as in (1.70). Thus we are interested in the partition function and Green’s function

Z = 〈PL| Û |PR〉 (C.32)

G = 〈PL| T Û1ctÛ2c
†
t′Û3 |PR〉 /Z (C.33)

Gt,t′ =







〈PL| Û1ctÛ2c
†
t′Û3 |PR〉 /Z t ≥ t′

−〈PL| Û1c
†
t′Û2ctÛ3 |PR〉 /Z t < t′

. (C.34)

Unfortunately coherent states are not well suited to describe states with a fixed particle

number. To introduce Slater determinants of a fixed number of fermions into the coherent

state formalism, we need to represent them in an exponential form and find a suitable

limiting process that projects on the desired N–particle subspace. To this end let us

introduce some notation. Formally we will need to enlarge the projectors (rectangular

matrices) PL, PR to matrices UL, UR with nonzero determinants

U
†
L =




P

†
L

Q
†
L



 , UR = (PR,QR) . (C.35)

Without loss of generality we assume from now on that UL and UR have been chosen as

unitary matrices. Next we need the exponential operator which represents the projector
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|R〉 〈L|

|R〉 〈L| = lim
E→∞

e−NeE exp
[
ic†Xc

]
exp

[

−c†ULhU
†
Lc
]

(C.36)

eiXUL = UR =⇒ eiXPL = PR (C.37)

h =




−E 0

0 E



 . (C.38)

The idea behind this is to define a Hamiltonian with ground state |L〉 and a gap E to

the first excited state. Finally we rotate |L〉 → |R〉 with the use of a unitary operator in

exponential form exp
[
ic†Xc

]
where X exists and is uniquely defined through eiXUL =

UR.

Observe that by series expansion we may obtain

exp
[

−ULhU
†
L

]

= ULe
−hU

†
L . (C.39)

We may use these results to compute again the partition function Z = 〈L| Û |R〉 to

illustrate that the above limiting process indeed gives the correct result

Z = Tr |R〉 〈L| Û = lim
E→∞

e−NeE Tr exp
[
i~c†X~c

]
exp

[

−~c†ULhU
†
L ~c
]

Û

= lim
E→∞

e−NeE det
[

1 + eiXULe
−hU

†
LB
]

= lim
E→∞

e−NeE det
[

1 + URe
−hU

†
LB
]

= lim
E→∞

det








e−E 0

0 1



+




1 0

0 e−E



U
†
LBUR





= lim
E→∞

det








P

†
LBPR + e−E1 P

†
LBQR

e−EQ
†
LBPR e−EQ

†
LBQR + 1









= det








P

†
LBPR P

†
LBQR

0 1







 = det
(

P
†
LBPR

)

. (C.40)

C.4 Generating functional at zero temperature

Next we use the same procedure for the generating functional

Z (x∗,x) = lim
E→∞

e−NE Tr exp
[
ic†Xc

]
exp

[

−c†ULhU
†
L c

]

Û × lim
β→∞

exp [x∗Gx]

= det
(

P
†
LBPR

)

lim
E→∞

exp [x∗Gx] (C.41)
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and the Green’s function is given by the limit

G0
τ∗,τ = lim

E→∞
Gτ∗,τ = lim

E→∞
±
(
B−1 (τ ∗, τ) + B (τ, τ ∗)

)−1
(C.42)

where we note that the limit

lim
E→∞

(
B−1 (τ ∗, τ) + B (τ, τ ∗)

)
(C.43)

is not defined. The zero temperature limit is now calculated for τ ∗ ≥ τ. Results for

time displaced Green’s functions are found in the same way. First we rearrange the finite

temperature result to a suitable form

Gτ∗,τ =
(

B−1 (τ ∗, τ) + B (τ, 0)URe
−hU

†
LB (β, τ ∗)

)−1

= B (τ ∗, τ)−B (τ ∗, 0)UR

(

eh1 + U
†
L B (β, 0)UR

)−1

U
†
LB (β, τ) . (C.44)

Using the limiting formula

lim
x→∞








x−11 0

0 x1



+




a b

c d









−1

=




a−1 0

0 0



 . (C.45)

we calculate the limit

lim
E→∞

(

eh1 + U
†
LBUR

)−1

=





(

P
†
LBPR

)−1

0

0 0



 (C.46)

in this way giving the final result

Gτ∗,τ = B (τ ∗, τ) −B (τ ∗,0)PR

1

P
†
LB (β,0)PR

P
†
LB (β, τ) . (C.47)

Green’s functions for τ ∗ < τ may be computed in a similar way

Gτ∗,τ = −B (τ ∗,0)PR

1

P
†
LB (β,0)PR

P
†
LB (β, τ) . (C.48)

C.5 Wick theorem

Within the coherent state formalism the proof of Wick’s theorem is very elegant (see for

instance Negele, Orland [80]).
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Obviously all multi-point Green’s functions are derivatives of the generating functional

. Evaluating these derivatives must yield the familiar Wick theorem. We illustrate this

with two examples. First the Green’s function Gτ∗
2 ,τ1 itself is

∂2

∂x1∂x∗2

Z [x∗, x]

Z x1=x∗
2=0

=
∂2

∂x1∂x∗2
ex∗Gx

∣
∣
x1=x∗

2=0
= Gτ∗

2 ,τ1 . (C.49)

Second the four point function is

〈
T c† (4) c (3) c† (2) c (1)

〉
=

∂4

∂x1∂x∗2∂x3∂x∗4

Z [x∗, x]

Z
(C.50)

=
∂3

∂x1∂x∗2∂x3

Gx∗
4,ixie

x∗Gx (C.51)

=
∂2

∂x1∂x∗2

(
Gx∗

4,x3 −Gx∗
4,ixix

∗
jGj,x3

)
ex∗Gx (C.52)

= Gx∗
4,x3Gx∗

2,x1 −Gx∗
4,x1Gx∗

2,x3 . (C.53)

The sum over all contractions is generated by the simple chain rule. The fermionic sign

follows from the commutation of Grassmann variables.
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Appendix D

Thermodynamics

D.1 Introduction

In this thesis we consider several “quantum phase transitions”. These transitions are

controlled by some intensive thermodynamic parameter other than the temperature which

is fixed to T = 0. An example for such a parameter is the Hubbard U with double

occupancy D as the conjugate extensive variable as in Eq. (3.1). We thus want to

consider the function F (T, V,N, U)

F (T, V,N, U) = −kT ln Tr e−β(H0+UD) (D.1)

with a double occupancy D =
∑

i ni,↑ni,↓ as a free energy potential. Such an interpreta-

tion of U and D transfers the interaction energy HI = UD from the internal energy to

a work energy against the ‘external’ field U . Hence F (T, V,N, U) must be a Legendre

transform of the first free energy F̃ (T, V,N,D)

F = F̃ + UD, (D.2)

and it should be possible to construct an ensemble with fixed double occupancy to directly

compute F̃ . But how do we know that F (T, V,N, U) really behaves like a thermodynamic

potential? In particular does it obey the second law?

In the phenomenological theory of thermodynamics there are many equivalent ways

[97] to phrase the second law: i) the entropy S
(

~X
)

(Xi are the extensive variables

E, V,N . . .) can only grow in any thermodynamic process. In particular the entropy
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grows when two subsystems are joined ~X1 + ~X2 → ~X

S
(

~X
)

≥ S
(

~X1

)

+ S
(

~X2

)

. (D.3)

ii) the function S
(

~X
)

is convex up in all the Xi variables

S
(

t ~X1 + (1− t) ~X2

)

≥ tS
(

~X1

)

+ (1− t)S
(

~X2

)

. (D.4)

iii) the entropy obeys a maximum principle when a constraint is removed that had split

the system in subsystems ~X1, ~X2

S
(

~X
)

= sup
~X= ~X1+ ~X2

{

S
(

~X1

)

+ S
(

~X2

)}

. (D.5)

In classical statistical mechanics it is possible to proof convexity of F (T, V,N,H) in

intensive parameters using only the Hölder inequality (see Goldenfeld [37]p.39). In this

proof ∂2F/∂H2 need not be calculated!

The more conventional approach is to proof Gibbs’ inequality

∑

i

Pi lnPi ≥
∑

i

Pi lnP
′
i (D.6)

for arbitrary probability distributions P and P ′.

What does all this imply for our canditate thermodynamic potential F (T, V,N, U)?

It turns out that it is sufficient to proof that the free energy in Eq. (D.1) is convex down

in U . We will show this for finite β,N only. But the limit of convex functions is again

convex so F (T → 0, V,N →∞, U) must also be convex.

Our aim here is to give a direct proof for the following statement: Let H0 and H1 be

hermitian matrices. The free energy

F (α) = −kT ln Tr e−
1

kT
(H0+αH1) (D.7)

is then a convex down function for all T ≥ 0.

D.2 Convexity of a General Free Energy

The free energy F (α) (D.7) is analytic in α and the convex property may be tested by

taking a second derivative

∂2

∂α2
ln Tr e−β(H0+αH1) ≥ 0. (D.8)
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Singularities which indicate phase transitions show up only in the zero temperature or in

the thermodynamic limit.

In order to proof inequality (D.8) we establish two corollaries. First we introduce a

special version of the Cauchy-Schwarz inequality: Let us define a suitable scalar product

for matrices A,B using the statistical operator as a measure

(A,B) =
Tr ρA∗B

Z
=

Tr e−βH0A∗B

Tr e−βH0
. (D.9)

We use the Cauchy-Schwarz inequality with A = 1 and B = H1

(
Tr ρH1

Z

)2

≤ Tr ρH∗
1H1

Z
, (D.10)

in other terms the variance of H1 is always positive. Then we generalize the inequality

to the desired form

(
Tr ρH1

Z

)2

≤ Tr e−(β−∆)H0H∗
1e

−∆H0H1

Z
(D.11)

which is obtained from Eq. (D.10) through redefinition H1 → e−
∆
2

H0H1e
∆
2

H0 and making

use of the cyclical property of the trace. Second we will need to take derivatives of the

type

∂

∂α
e−β(H0+αH1). (D.12)

The noncommutativity of H0 and H1 is resolved by the usual Trotter decomposition

∂

∂α
e−β(H0+αH1) =

∂

∂α

m∏

1

e−
β

m
H0e−

βα

m
H1

=
m∑

i=1

m∏

k=1

(

e−
β

m
H0e−

βα

m
H1

)[

1 + δi,k
β

m
(H1 − 1)

]

. (D.13)

The continuous version reads

∂

∂α
e−β(H0+αH1) = −

∫ β

0

e−(β−t)(H0+αH1)H1e
−t(H0+αH1)dt (D.14)

and is related to the Kubo identity.

Now we have the prerequisites to demonstrate the positivity of the second derivative

∂2

∂α2
lnZ (α)

∣
∣
∣
∣
α=0

=
Z ′′

Z
−
(
Z ′

Z

)2

, (D.15)
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where the restriction to α = 0 is possible without loss of generality. Performing cyclical

shifts under the trace the derivative Z ′ (α) simplifies to

Z ′ (α) = −β Tr e−β(H0+αH1)H1. (D.16)

Yet the second derivative takes the form of a time displaced correlation function

Z ′′ (0) = β

∫ β

0

dtTr e−(β−t)H0H1e
−tH0H1. (D.17)

Finally we use inequality (D.11) to proof the positivity

0 ≤ ∂2

∂α2
lnZ (α)

∣
∣
∣
∣
α=0

= β

∫ β

0

dt

[

Tr e−(β−t)H0H1e
−tH0H1

Z
−
(

Tr e−βH0H1

Z

)2
]

. (D.18)

At finite temperature a phase transition is only possible in the thermodynamic limit

where the system size L→∞. The free energy is thus the limit of convex functions

F∞ (α) = lim
L→∞

FL (α) (D.19)

and therefore also convex.

D.3 Comments

Remark 1. In order to see that F (T, V,N,D) is convex down as a function of temper-

ature we look at the second derivate

∂2F (T )

∂T 2
= − 1

T 3

[〈
H2
〉
− 〈H〉2

]
≤ 0. (D.20)

In this way we proof the full convexity of the grand partition function Ω (T, V,N) =

−PV = V Ω (T, 1, µ) since we know it already for Ω (T, 1, µ) .

Remark 2. Let us insert our results into an expansion of F (α)

F (α) = F (0) + αF ′ (0) +
α2

2
F ′′ (0) +O

(
α3
)

(D.21)

F (α) ≤ F (0) + α 〈H1〉H0
(D.22)

〈A〉H0
≡ Tr e−βH0A

Tr e−βH0
. (D.23)

The inequality holds for all α which is illustrated in Fig. 2.
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A convex down function like F (α) is always smaller than the tangent function

F (0) + αF ′.

Another proof of inequality (D.22) is given by Feynman. [30]

Remark 3. Inequality (D.22) is equivalent to Gibbs’ inequality

Tr ρ (0) ln ρ (0) ≥ Tr ρ (0) ln ρ (α) , (D.24)

where ρ (0) and ρ (α) are arbitrary density matrices. For convenience we represent ρ (α)

in the form

ρ (α) =
e−β(H0+αH1)

Tr e−β(H0+αH1)
. (D.25)

We find

kT Tr ρ (0) ln ρ (0) = F (0)− 〈H0〉H0
(D.26)

kT Tr ρ (0) ln ρ (α) = F (α)− 〈H0〉H0
− α 〈H1〉H0

(D.27)

which establishes the equivalence of the two inequalities (D.22) and (D.24).

Remark 4. Convexity is equivalent to another important statement about the energy

functional F

F [ρ] ≡ Tr ρ

(

H +
1

β
ln ρ

)

(D.28)

which assigns a free energy to a system H which is in state ρ. Then a variational principle

states that F [ρ] is minimized by ρ∗ = exp (−βH) /Tr exp (−βH) or

F [ρ∗] ≤ F [ρ] : ∀ρ (D.29)
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This is the finite temperature version for the ground state variational principle

〈Ψ|H |Ψ〉
〈Ψ| Ψ〉 ≥ E0. (D.30)

Among many other applications this variational principle is the starting point for finite

temperature density functional theory. [74] In order to proof Eq. (D.29) we introduce the

system Hamiltonian H, the suggested minimimum ρ∗ and an arbitrary ρ represented by

H0

ρ =
e−βH0

Tr e−βH0
, (D.31)

H1 ≡ H −H0. (D.32)

We insert

F [ρ∗] = −kT ln Tr e−βH , (D.33)

F [ρ] = 〈H1〉H0
− kT ln Tr e−βH0 (D.34)

into

F [ρ∗] ≤ F [ρ] (D.35)

−kT ln Tr e−β(H0+H1) ≤ −kT ln Tr e−βH0 + 〈H1〉H0
(D.36)

and the equivalence to Eq. (D.22) is obvious.

Remark 5. The inequality (D.11) is an interesting result by itself because it demonstrates

the positivity of correlation functions of the type

0 ≤
∣
∣
∣
∣

(
Tr ρA

Z

)∣
∣
∣
∣

2

≤ Tr e−(β−∆)H0A∗e−∆H0A

Z
. (D.37)

Remark 6. We are able to demonstrate that the partition function is convex. Bessis,

Moussa and Villani (BMV) [12] conjecture that all derivatives Z [n] (α) are again convex.

More precisely they propose the following

Z (α) = Tr exp [−β (H0 + αH1)] =

∫

exp (−ατ) dµ (τ) , (D.38)

where dµ (τ) is a positive measure with a support between the inf and the sup of the

spectrum σ (H1) . For inf {σ (H1)} ≥ 0 this is equivalent to the convex property for all

derivatives

Z [n] (α) (−1)n ≥ 0. (D.39)
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The conjecture is automatically true for all those problems which can be attacked with

a worldline QMC algorithm with positive weight. From the positive QMC weight the

positive measure in the conjecture (D.38) is constructed. For the auxiliary field QMC

such a construction of positive dµ (τ) is not possible even when the QMC weight is positive

everywhere. Equivalent formulations to the BMV conjecture are given by Lieb. [63]

Remark 7. Thermodynamic potentials for finite systems at finite temperatures are al-

ways analytic functions. Phase transitions i.e non-analytic behaviour may only happen

at zero temperature or in the thermodynamic limit.

In the introduction we considered nonanalytic behaviour in the zero temperature

function F (T = 0, N, V, U) . We asked whether F is a meaningful thermodynamic poten-

tial and conclude that a free energy like F (0, N, V, U) fits naturally into the framework

of thermodynamics because it will always be a convex function. The buildup of singu-

lar behaviour at zero temperature also happens in much the same way as in the finite

temperature situation. The only novel point about zero temperature transitions is the

possibility that an additional correlation length (i.e correlations in time) diverges. The

term quantum phase transition is usually reserved for this situation. [88]
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Appendix E

Spin-Wave Theory

When approaching the SU (2) symmetric Heisenberg point from either the SC or the

CDW phase we find critical behaviour in the “transverse” correlation functions. It is

interesting to compare our results for the complex fermionic Hamiltonian 3.1 with a spin

wave calculation for the bosonic limit U → −∞. Let us first write down the purely

bosonic Hamiltonian

H =
∑

〈i,j〉
Jx

η†i ηj + ηiη
†
j

2
+ Jzη

z
i η

z
j , (E.1)

with Jx = 4tp and Jz = 4 (tp − 2V ) . In linear spin-wave theory (LSWT) we need to

distinguish “easy axis” CDW with Jz > Jx and “easy plane” SC with Jz < Jx.

E.1 Easy axis

We introduce linear spin-wave theory for the CDW phase [17, 105] via

η+
A,k =

(

ukαk − vkβ†
k

)

, (E.2)

η+
B,k =

(

ukβ
†
k − vkαk

)

(E.3)

where A,B are sublattice labels and αk and βk are the Bogoliubov transforms of the

original bosons. The Bogoliubov factors are

uk =

√

Jz + εk
2εk

, (E.4)

vk =

√

Jz − εk
2εk

(E.5)
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where we introduced the dispersion εk

εk =
√

J2
z − J2

xγ
2
k (E.6)

with γk = −1/2 (cos kx + cos ky) .

In the CDW phase the η correlation function became critical, therefore we need

〈

η†kηk

〉

(Q,ω) =
〈(

η†A,k + η†B,k

)

(ηA,k + ηB,k)
〉

(Q,ω) (E.7)

= (uk − vk)2
〈

αkα
†
k + β†

kβk

〉

(Q,ω) (E.8)

=

√

Jz + Jx

Jz − Jx

2δ (ω) , (E.9)

where we dropped terms
〈

α†
kα

†
k

〉

and used γQ = −1 and εQ = 0. For the equal time

correlations (in CDW V < 0)

〈

∆†
k∆k

〉

(0) =

∫ ∞

0

〈

η†kηk

〉

(Q,ω) dω = 2

√

tp + (−V )

(−V )
∼
√

tp
|V | (E.10)

we obtain a square root divergence as we approach the phase transition. The integrated

correlation function is equal to the uniform susceptibility

Reχ+−
∆†∆

(0, ω = 0) =

∫ ∞

0

〈

∆†
k (τ) ∆k

〉

dτ ∝ ∆−1
〈

∆†
k∆k

〉

(0) (E.11)

and picks up the inverse gap ∆−1
k of the

〈
η+
k η

−
k

〉
transverse mode. The gap of the LSW

dispersion εk at k = 0 is

∆ =
√

(4tp − 8V )2 − 16t2p ∼ 8
√

|V | tp. (E.12)

Thus the transverse susceptibility (E.11) diverges as

Reχ+− (0, ω = 0) ∝ 1

V
. (E.13)

E.2 Easy Plane

The analogous spin wave calculation [105] for the SC phase (Jz < Jx) gives a dispersion

with two branches, ε+
k for the in-plane fluctuations

〈

η†kηk

〉

and ε−k for the out-of-plane

fluctuations
〈
ηz
kη

z
−k

〉

ε±k =
√

(Jx ± Jxγk) (Jx ∓ Jzγk). (E.14)
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Now the out-of-plane fluctuations close their gap at k = Q and diverge as we approach

the transition.

For the spin-wave calculation we choose LRO into y-direction. For convenience we

rotate the system such that ordered state lies again in z-direction and the new coupling

jα are

Jx → jz (E.15)

Jy → jx (E.16)

Jz → jy (E.17)

and the easy plane condition is jz = jx > jy.

Notice that in the Hamiltonian k now couples to −k and the sum is over half the

Brioullin zone (BZ/2) because of sublattice A,B

H =
∑

BZ/2

jz

(

a†kak + b†kbk + a†−ka−k + b†−kb−k

)

+
γk (jx + jy)

2
(akbk + b−ka−k +H.c.)

+
γk (jx − jy)

2

(

akb
†
−k + bka

†
−k +H.c.

)

. (E.18)

The easy axis calculation was easier because the last term was missing. We proceed by

first diagonalizing the first and the third term with the unitary base change










ak

bk

a−k

b−k











=:
1√
2











Ak − B−k

Bk − A−k

Bk + A−k

Ak + B−k











. (E.19)

The Hamiltonian (E.18) becomes

H =
∑

BZ/2

(

jz +
γk (jx − jy)

2

)(

A†
kAk +B†

kBk

)

+

(

jz −
γk (jx − jy)

2

)(

A†
−kA−k +B†

−kB−k

)

+
γk (jx + jy)

2

(

AkBk + A†
kB

†
k + A−kB−k + A†

−kB
†
−k

)

. (E.20)

This also decoupled k and −k and we can use a Bogoliubov transformations (here for k)

Ak =
(

ukαk − vkβ†
k

)

, (E.21)

Bk =
(

ukβ
†
k − vkαk

)

(E.22)
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to solve for the spectrum

ε±k =

√
(

jz ±
γk (jz − jy)

2

)2

− γ2
k (jz + jy)

2

4

=
√

(jz ± jzγk) (jz ∓ jyγk). (E.23)

After rotating back to a LRO in y-direction we recover the result (E.14). In-plane and

out-of-plane fluctuations do not mix. The respective spectral functions are thus again

A± (k,ω) =
(
u±k − v±k

)2
2δ (ω) (E.24)

with Bogoliubov factors

u±k =

√

Jx + ε±k
2ε±k

, (E.25)

v±k =

√

Jx − ε±k
2ε±k

. (E.26)

For the gapped density-density mode this implies a divergence as V → 0

〈nQn−Q〉 ∼
1√
V

(E.27)

and

Reχnn (Q,0) ∼ 1

V
. (E.28)

This is the same behaviour as in the CDW phase.
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M. Fourmigué, and P. Batail. Mott Transition, Antiferromagnetism, and Uncon-

ventional Superconductivity in Layered Organic Superconductors. Phys. Rev. Lett.,

85:5420, 2000. XV, 8, 73, 74, 75, 100

[62] E. H. Lieb. Two Theorems on the Hubbard Model. Phys. Rev. Lett., 62:1201, 1989.

14

[63] E. H. Lieb and R. Seiringer. Equivalent Forms of the Bessis-Moussa-Villani Con-

jecture. preprint, math-ph:0210027, 2002. 123

[64] E. Y. Loh and J. Gubernatis. Stable Numerical Simulations of Models of Inter-

acting Electrons in Condensed-Matter Physics. In W. Hanke and Y. V. Kopaev,

editors, Modern Problems of Condensed Matter Physics, volume 32, page 177. North

Holland, Amsterdam, 1992. 11, 13, 24, 32, 107
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