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Abstract
is thesis presents results covering several topics in correlated many fermion systems. AMonte Carlo tech-
nique (CT-INT) that has been implemented, used and extended by the author is discussed in great detail in
chapter 3. e following chapter discusses how CT-INT can be used to calculate the two particle Green’s
function and explains how exact frequency summations can be obtained. A benchmark against exact diag-
onalization is presented. e link to the dynamical cluster approximation is made in the end of chapter 4,
where these techniques are of immense importance.
In chapter 5 an extensive CT-INT study of a strongly correlated Josephson junction is shown. In particular,

the signature of the first order quantum phase transition between a Kondo and a local moment regime in the
Josephson current is discussed.
e connection to an experimental system is made with great care by developing a parameter extraction

strategy. As a final result, we show that it is possible to reproduce experimental data from a numerically
exact CT-INT model-calculation.
e last topic is a study of graphene edge magnetism. We introduce a general effective model for the edge

states, incorporating a complicated interaction Hamiltonian and perform an exact diagonalization study
for different parameter regimes. is yields a strong argument for the importance of forbidden umklapp
processes and of the strongly momentum dependent interaction vertex for the formation of edge magnetism.
Additional fragments concerning the use of a Legendre polynomial basis for the representation of the two

particle Green’s function, the analytic continuation of the self energy for the Anderson Kane Mele Model as
well as the generation of test data with a given covariance matrix are documented in the appendix.
A final appendix provides some very important matrix identities that are used for the discussion of tech-

nical details of CT-INT.

Zusammenfassung
In der vorliegenden Dissertation werden verschiedene emen aus dem Feld der stark korrelierten Viel-
Fermionensysteme präsentiert. Zunächst wird in Kapitel 3 eine Monte Carlo Methode (CT-INT), welche
der Autor implementiert, angewandt und erweitert hat, auf detaillierte Weise eingeührt. Das nachfolgende
Kapitel diskutiert wie die Zweiteilchen Greensche Funktion in CT-INT berechnet werden kann und wie
exakte Frequenzsummen ausgewertet werden können. Dies wird in einem Vergleich mit Daten aus exakter
Diagonalisierung demonstriert. Abschließend wird die Verbindung zur dynamischen Cluster Näherung am
Ende von Kapitel 4 aufgezeigt, wo diese Methoden von außerordentlicher Bedeutung sind.
In Kapitel 5 wird eine umfangreiche CT-INT Studie eines stark korrelierten Josephson Kontakts vorgestellt.

Insbesondere wird die Verbindung zwischen dem Phasenübergang erster Ordnung von einem Kondoregime
zu einem Regime mit lokalem magnetischem Moment mit der Phasenverschiebung um π des Josephson-
Stroms herausgearbeitet.
Es wird gezeigt, wie der Übergang zu einem realen experimentellen System durchgeührt werden kann,

wobei besondere Sorgfalt auf die Entwicklung einer Strategie zur Extraktion der Modellparameter aus den
experimentellen Daten gelegt wurde. Als Endergebnis demonstrieren wir, dass es es möglich ist, experi-
mentelle Daten mit Hilfe einer numerisch exakten Modellrechnung zu reproduzieren.
Als letztes Projekt wird eine Untersuchung des Randmagnetismus von Graphen vorgestellt. Dazu wird

ein allgemeines effektives Modell eingeührt, welches einen komplizierten Wechselwirkungshamiltonian
enthält. Hierür wird eine Studie mit Hilfe von exakter Diagonalisierung des Hamiltonians in verschiede-
nen Parameterbereichen erarbeitet, wodurch wir argumentieren können, dass das Verbot von Umklapp-
prozessen und die starke Impulsabhängigkeit der Wechselwirkung ür die Bildung des Randmagnetismus
verantwortlich sind.
Zusätzlich dokumentieren einige Fragmente im Anhang theoretische Arbeiten zur Benutzung einer Basis

von Legendre Polynomen zur Darstellung der Zweiteilchen Greenschen Funktion, zur analytischen Fortset-
zung der Selbstenergie ür das Anderson Kane Mele Modell sowie zur Erstellung von Testdaten mit einer
analytisch bestimmbaren Kovarianzmatrix.
Ein Anhang mit einigen Matrix Identitäten die wichtig ür die Diskussion der technischen Details von

CT-INT sind schließt diese Arbeit ab.
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1. Introduction
e field of solid state physics is today divided in three parts: Experimental physics providing the fundamen-
tal and ultimate foundation of scientific research by empirical studies of real materials, analytic theoretical
physics searching for a fundamental understanding of phenomena through a huge apparatus of mathematical
concepts and computational theoretical physics making use of modern computers in order to treat numeri-
cally mathematical problems that appear to be unsolvable analytically.
All three disciplines are strongly entangled, and from today’s perspective, neither of them can solve the

riddles of strongly correlated systems individually, and only a collective effort will eventually lead to a break-
through for a deeper understanding of phenomena in strongly interacting systems. ese systems can show
fascinating physics, such as magnetic phenomena (one fascinating example of which is presented in chapter
6), the Kondo effect [1], high temperature superconductivity [2] and other exotic states of maer such as
spin liquids [3, 4].
Researchers in the field of computational solid state theory set out to solve problems that cannot be solved

or that can only be partially solved (for example only for special points in the parameter space) by analytical
methods. Various methods have been proposed and used for different problems, such as NRG [5], fRG [6],
exact diagonalization, Monte Carlo Methods [7–12] , DMRG [13], tensor network methods [14], DMFT [15]
and cluster extensions [16], the dual fermion method [17], DΓA [18] and many others. Every method has its
shortcomings and drawbacks, whether it be applicability to low temperatures or for groundstate properties,
finite size limitations, applicability to interaction strength or controlled and uncontrolled approximations as
well as practical applicability and computer time or memory restrictions.
is has led to the necessity of studying in detail available methods and the class of problems they are

suited for, culminating in the importance of the development and improvement of new and existing algo-
rithms.
Even though experience shows that an algorithmic improvement is always preferable, code optimization

has shown amazing breakthroughs in recent applications [4, 19] and the performance enhancement can be
by orders of magnitude in some cases. Examples for outstanding algorithmic improvements can be found
for example in the domain of antum Monte Carlo methods: e loop algorithm applicable e.g. to the
stochastic series expansion [20] introducing global updates that reduce autocorrelation times by orders of
magnitude or the segment picture for the hybridization expansion continuous time Monte Carlo method
(CT-HYB)[21] to name only two examples. Another even more impressive example is the introduction of
the Lanczos method [22] for the exact calculation of ground state properties for finite size systems.
e present thesis is in this sense a detailed showcase of the field of a computational approach to strongly

correlated fermion systems, as a numerically exact continuous time quantum Monte Carlo method CT-INT
and its optimization is presented in chapter 3. e goal in this chapter is to provide a pedagogical intro-
duction to the method, including the matrix theoretical background which is the foundation of an efficient
implementation with so called fast updates. Chapter 4 goes in even deeper algorithmic detail and presents a
method for the calculation of two particle quantities using CT-INT, a procedure that is crucial for accurate
computations of for example susceptibilities within the framework of the dynamical cluster approximation
(DCA), which is a method that has been used successfully in the past for the calculation of properties of
systems in the thermodynamic limit (cf. e.g. [23]). We will clearly place the focus on the development, de-
scription and verification of the mathematical and numerical toolbox and will only present some illustrative
results obtained by the method.
In chapter 5, we trace the methodological way from amethod to the study of physical properties of a model

system: An interacting quantum dot embedded between two superconducting leads. is system shows
the fascinating phenomenon of the Josephson current including a first order transition reflected by a sign
change of the supercurrent. e CT-INT is ideally suited for the study of this system and we present detailed
results describing themechanism of this phase transition and the connection between theπ-phase shi of the

9



1. Introduction

Josephson current and the transition from local moment behaviour to the formation of a Kondo singlet on the
quantum dot is discussed in detail. e work presented in chapter 5 is a reproduction of reference [24]. Aer
the study of the physics in this model, we go one step beyond and calculate quantities observable in a real
experimental sample. We demonstrate in detail, how amodel calculation can be compared with experimental
data, including a very careful treatment of the determination of the experimental parameters. Also here, some
methodological details are presented, focussing on the presentation of an accurate calculation of the linear
conductance from a CT-INT calculation.
Finally, we show in chapter 6 how analytical and numerical work can be used in synergy and present

a study of the edge magnetism in graphene. For this problem, the CT-INT method is not applicable in an
easy way and we use the Lanczos method for the exact calculation of ground state properties. is is an
illustrative example of how one can treat the finite size limitations of the exact diagonalization method and
how meaningful results can be obtained.
is collection of interesting physical problems that are tackled with different methods should give a nice

view on the importance of numerical algorithms suited particularly for specific problems at hand, a property
extraordinarily prominent in this field.

10



2. General maer

2.1. Abbreviations
In the field of computational many body physics, a large number of abbreviations is used especially in order
to refer to different numerical methods. Here, the most important acronyms used in the text are listed.

DCA Dynamical Cluster Approximation
CT-INT Interaction Expansion Continuous Timeantum Monte Carlo method
CTQMC Continuous Timeantum Monte Carlo method
QMC antum Monte Carlo method
DΓA Dynamical vertex approximation
DMFT Dynamical mean field theory

2.2. System of units
For convenience, brevity and elegance, we employ the system of natural units — which is widely used in
theoretical physics — throughout this work. Some exceptions are made in chapter 5 where we show how
theoretical and experimental unit systems are synchronized. is example is particularly instructive and
should convince a sceptic reader of the usability of the theoretical unit system even in practical applications
as from a comparison of the theoretical result with the experimental measurement data the translation to
laboratory units (in this case meV) can be deduced.
e natural unit system is defined by seing various universal constants to the value of 1. Of particular

importance are the definitions
ℏ = kB = 1 (2.1)

in the present work. ey imply that energies and inverse temperatures have the same units.

2.3. General notation
In table 2.1 the most important special symbols used in this work are introduced. Note that standard math-
ematical notation as well as notation used widely in theoretical physics is not introduced here with some
exceptions which may be defined differently in different references — such as for example the Heavyside
function Θ(x) or the Green’s functions G(τ).

2.4. Fourier transforms of Grassmann numbers
Let us fix the Fourier transforms between imaginary time and Matsubara frequencies as well as between real
space and momentum space in terms of Grassmann numbers (cf. [25–27]). We make use of Grassmann num-
bers here, as they provide a more general and flexible formulation of fermionic quantum thermodynamics in
terms of a field theory. However — in the following — we will mix operator and Grassmann language freely
wherever appropriate, always choosing the conceptually simplest formulation.

ck,σ(iωn) =
1√
βN

∑
x

β∫
0

dτ e−i(ωnτ−kTx)cx,σ(τ). (2.2)
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2. General maer

Symbol Meaning
β Inverse temperature, β = 1/T .
ind (k) Maps a cluster momentum vector k to an index.

Θ(x) Heaviside step function: Θ(x) =

{
1 if x ≥ 0

0 if x < 0
.

cx,σ Annihilation operator for particle on site xwith spin z component σ or its eigen-
value which is a Grassmann number depending on context.

c†x,σ Creation operator for particle on site x with spin z component σ.
c̄x,σ Grassmann number corresponding to c†x,σ .
iωn Fermionic Matsubara frequency, iωn = (2n+ 1)π/β, n ∈ Z.
iν Bosonic Matsubara frequency, iν = (2n)π/β, n ∈ Z.
nF(z) Fermi function nF(z) = 1

1+eβz .
K Combined fermionic frequency and momentumK = (K, iωn)
P Combined fermionic frequency and momentum P = (P, iω′n)
Q Combined bosonic frequency and momentum Q = (Q, iν)
k Combined fermionic frequency and momentum k = (k, iωn)
p Combined fermionic frequency and momentum p = (p, iω′n)
q Combined bosonic frequency and momentum q = (q, iν)
Z Grand canonical partition function

Table 2.1.: Important notation used throughout this document.

c̄k,σ(iωn) =
1√
βN

∑
x

β∫
0

dτ ei(ωnτ−kTx)c̄x,σ(τ). (2.3)

2.5. Single particle Green’s function
For the single particle Green’s function, we will use the convention common in the CT-INT literature (cf.
e.g. [9, 10, 21, 24, 28])

G(τ) = ⟨Tc†(τ)c ⟩ (2.4)

together with the Fourier transform to Matsubara frequencies

G(iωn) =

β∫
0

dτ eiωnτG(τ) and G(τ) =
1

β

∑
iωn

e−iωnτG(iωn). (2.5)

It should be brought to the reader’s aention that this definition also has an impact on equations of motion
and – in particular – to the form of the resolvent operatorG(iωn):

G(iωn) =
1

−iωn −H†
, (2.6)

which deviates by complex conjugation and transposition order from the form prevalent in the literature.
In other words, we could also write

G(iωn) = Gliterature(iωn)
†. (2.7)
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3. CT-INT

One of the most recent developments in quantum Monte Carlo methods, applicable to strongly interacting
systems, is the research in continuous time algorithms, a class of algorithms stemming historically from
an algorithm presented by Rombouts et al [12]. e main advantage of continuous time quantum Monte
Carlo methods over traditional approaches is the fact that they do not rely on a Troer decomposition of
the interacting Hamiltonian and thus abstain from the introduction of a discrete imaginary time grid such
as methods introduced previously, e.g. the BSS algorithm [7] or the impurity solver given by Hirsch and
Fye [8]. A discrete imaginary time grid with a time spacing ∆τ introduces a systematic error which can
only be overcome by the tedious procedure of performing calculations for different values of ∆τ (which
become more and more expensive for small values of∆τ ) and eventually extrapolate to the exact result for
∆τ = 0. While this procedure is viable and has been used successfully in the past, continuous time Monte
Carlo algorithms provide — at least for impurity or cluster type problems as presented in this thesis¹ — a
numerically exact and more efficient path for the solution of strongly interacting systems.
Today, we have three major continuous time antum Monte Carlo algorithms, classified according to

reference [21]:

• CT-AUX: Auxiliary field algorithm which is related to the Hirsch-Fye algorithm and has first been
proposed by Rombouts et al in [12] and further developed and reformulated by Gull et al in [11].

• CT-INT: Interaction expansion algorithm first proposed by Rubtsov et al in [9]. is method is amaz-
ingly flexible and has been extended to imaginary time and space displaced interactions (cf. [10]) as
well as to Nambu type Green’s functions (cf. [24]). It is also the method of choice for the solution of
cluster problems as demonstrated in chapter 4 of this thesis. is method is presented in depth below.

• CT-HYB: Hybridization expansion algorithm first presented by Werner and Millis in [30]. It is a pow-
erful method for the solution of multi orbital problems, although the application to clusters is strongly
hindered by the occurance of a trace over an operator product of cluster operators, the dimensionality
of which grows of course exponentially with the cluster size.

We will focus on CT-INT throughout the rest of the present thesis.

3.1. Density-density type interaction
e interaction expansion continuous time quantum Monte Carlo method (CT-INT) [9, 21] is a general
method for the solution of a system described by an action

S =
∑

σ,σ′,i,j

β∫
0

dτdτ ′ c̄σ,i(τ)G0 −1
σ,σ′ (i, τ ; j, τ

′)cσ′,j(τ
′)+

+
∑

i,j,σ,σ′

∑
si

β∫
0

dτdτ ′ V 0
σ,σ′(i, τ ; j, τ ′) [c̄σ,i(τ)cσ,i(τ)− ασ(si)] [c̄σ′,j(τ

′)cσ′,j(τ
′)− ασ′(si)] ,

(3.1)

¹e story is different for laice type problems as the BSS algorithm scales linearly in β and the laice size, leading to studies of huge
2 dimensional systems of up to 2592 sites in the example of a honeycomb Hubbard model [4, 29]. Although the actual presence of
a spin liquid is still under debate, this example shows the enormous power of the BSS method for fermionic laice problems.
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3. CT-INT

including imaginary time and space displaced interactions as well as non spin diagonal Green’s functions.
We have already incorporated an additional c-number ασ(s) which is used for the reduction of the sign
problem in theMonte Carlo algorithm². e additional variables s that are introduced here are Ising spins and
take the values±1 [10, 31]. Possible choices for the case of the Hubbard model and a problem having Nambu
Green’s functions will be given below. In principle, the action may even be more complicated and include
non density-density interactions but it is at present unknown how severe the sign problem for these cases is,
therefore we restrict the discussion of CT-INT to an action of the form (3.1). We will present the algorithm
following the lines of references [9, 10, 24] and will include implementation details about more general
moves and improved estimators, aiming for a comprehensive review enabling the reader to understand, use
and implement the algorithm.

3.2. Perturbation expansion of the partition function
e starting point for the derivation of CT-INT is a perturbation expansion around the noninteracting limit of
the grand canonical partition functionZ which can be wrien in the field theoretical language of Grassmann
numbers (cf. e.g. [25, 26])

Z =

∫
D [c̄σ,i,τcσ,i,τ ] e−S

= Z0 ⟨e−
∑

i,j,σ,σ′,si

∫ β
0
dτdτ ′V 0

σ,σ′ (i,τ ;j,τ
′)[c̄σ,i(τ)cσ,i(τ)−ασ(si)][c̄σ′,j(τ

′)cσ′,j(τ
′)−ασ′ (si)] ⟩

0
.

(3.2)

Here, ⟨ • ⟩0 denotes a thermal average with respect to the bare action (the gaussian part of the action (3.1)
containing the bare Green’s function G0). e actual perturbation expansion is then given by

Z

Z0
=
∞∑

n=0

(−1)n

n!

∫ β

0

dτ1dτ ′1 . . . dτndτ ′n
∑

i1,...,in
j1,...,jn

∑
σ1,...,σn

σ′
1,...,σ

′
n

s1,...,sn

V 0
σ1,σ′

1
(i1, τ1; j1, τ

′
1) · · · · · V 0

σn,σ′
n
(in, τn; jn, τ

′
n)×

× ⟨T [nσ1(i1, τ1)− α1]
[
nσ′

1
(j1, τ

′
1)− α′1

]
. . . [nσn(in, τn)− αn]

[
nσ′

n
(jn, τ

′
n)− α′n

]
⟩0 .
(3.3)

Here, we have used the shorthand notation αl = ασl
(sl) and α′l = ασ′

l
(sl). is expression can be cast

in diagrammatic language by collecting the indices i, τ , σ, s, j, τ ′, σ′ and s′ into vertices³:

v = {i, τ, σ; j, τ ′, σ′; s} . (3.4)

It should be noted that this choice is strongly dependent on the form of the interacting action and we will
show that a vertex in the case of a Hubbard interaction reduces to a simpler form. Additional complexity can
however be acquired by an even more general form of the interaction⁴ , which is deliberately not discussed
here, as the behaviour of the sign problem for this case as well as a good ansatz for the choice of the α
parameters are not known at the moment.
Let us define a le (x) and a right (y) end of the vertex and keep the artificial variable s separately v =

{x; y; s}, collecting first indices of V 0(x; y) in x = [i, τ, σ] and second indices in y = [j, τ ′, σ′]. e next

²Potentially, α could also depend on τ and i but we suppress this complexity for readability.
³is is rather natural, as we see that the bare interaction vertex V 0 carries all these indices. e indices s and s′ are appended for
technical reasons to the vertex and in principle additional degrees of freedom might be added.

⁴ e most general form of a two particle interaction can be wrien as

Hint =
∑
ijkl

∑
σ1,σ2
σ3,σ4

β∫
0

dτ1τ2τ3τ4 V (1, 2; 3, 4)c̄i,σ1 (τ1)cj,σ2 (τ2)c̄k,σ3
(τ3)cl,σ4

(τ4). (3.5)
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3.2. Perturbation expansion of the partition function

step is the introduction of a configuration Cn of vertices as an unordered set of vertices:

Cn = {v1, v2, . . . , vn} . (3.6)

Our goal is to rewrite sums and integrals in equation (3.3) in terms of a sum (which contains of course
integrals in continuous variables) over all configurations of vertices. We have to be cautious at this step,
because we do not impose any order on the vertices in Cn and therefore

Cn = C̃n ⇔ Cn ⊂ C̃n ∧ Cn ⊃ C̃n. (3.7)

As every integral and sum in equation (3.3) carries an index, order maers in this formulation, and it is
easy to see that this can be corrected for by the number n! of permutations of an ordered set each of which
is identified with the same unordered set Cn. We therefore get:

∞∑
n=0

∫ β

0

dτ1dτ ′1 . . . dτndτ ′n
∑

i1,...,in
j1,...,jn

∑
σ1,...,σn

σ′
1,...,σ

′
n

∑
s1,...,sn

=
∑
Cn

, (3.8)

where
∑

Cn
really visits every single distinct configuration of n vertices v as well as every possible pertur-

bation order n. us, equation (3.3) can be cast in much simpler language:

Z

Z0
=
∑
Cn

(−1)
n
V 0(x1; y1) · · · · · V 0(xn; yn)×

× ⟨T [n(x1)− α(x1; s)] [n(y1)− α(y1; s)] . . . [n(xn)− α(xn; s)] [n(yn)− α(yn; s)] ⟩0 .
(3.9)

Note that we write α(x; s) and α(y; s) in a very general form here for elegance, even though an extremely
simple form is used in practice, as e.g.

α(x; s) =
⟨n ⟩
2

+ sδ, and α(y; s) =
⟨n ⟩
2

− sδ (3.10)

with ⟨n⟩2 + δ > 1 for V 0(x; y) > 0 has been found to be beneficial [31].
e expectation value with respect to the gaussian action can be cast into a determinant by virtue of

Wick’s theorem and takes the form

⟨T [n(x1)− α(x1; s1)] . . . [n(yn)− α(yn; sn)] ⟩0

= det


G0(x1, x1)− α(x1; s1) G0(x1, y1) . . . G0(x1, yn)

G0(y1, x1) G0(y1, y1)− α(y1; s1) . . . G0(y1, yn)

. . . . . .
. . . . . .

G0(yn, x1) . . . G0(yn, yn)− α(yn; sn)


=: detMCn

.

(3.11)

rough the definition

W (Cn) = (−1)nV 0(x1; y1) . . . V
0(xn; yn) detMCn , (3.12)

we finally have a very compact form for the perturbation expansion of Z
Z0
, collecting terms by the number

of vertices given through the perturbation order n:

Z

Z0
=
∑
Cn

W (Cn). (3.13)
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3. CT-INT

is equation is the starting point for the development of a Monte Carlo method that samples configura-
tions of vertices — each of which corresponds to a whole class of diagrams with fixed labels and n vertices.
e relative phases between individual diagrams are already incorporated partly by means of the determi-
nant. However, in principle, the termsW (Cn) may carry a complex phase factor which corresponds to the
fermionic sign problem. Formally, this problem can be overcome by moving the sign from the weight to the
observable⁵, a technique that is also referred to as reweighting. Let us ignore this problem for now and come
back to it later, as the equations can be adapted to the case of a system afflicted by the fermionic sign problem
rather easily. We will assume thatW (Cn) > 0 for all Cn from now on, an assumption that is indeed true in
some special cases.

3.3. Markov chain
We present here the fundamental concept of standard Markov chain Monte Carlo methods as it can also be
found for example in [32] and show, how the Markov chain should be generated specifically in the case of
CT-INT.
As we will see in section 3.4, it is necessary to devise an ergodic stochastic process that generates config-

urations of vertices Cn such that they are distributed according to the weightW (Cn) or in other words, we
want to employ an importance sampling method that allows us to pull a configuration of vertices Cn with
probability⁶

P (Cn) =
W (Cn)∑
Cn
W (Cn)

. (3.14)

In general, such a stochastic process is defined by a proposal probability matrix TCn→C′
n
which can be

chosen arbitrarily. In order to achieve the correct probability distributionW (Cn), the acceptance probabil-
ity PCn→C′

n
has to be chosen accordingly. If we add a “Monte Carlo” time scale to the stochastic process

(which evolves with everymove Cn → C ′n), aMaster equation describes the time evolution of the probability
distributionWCn(t):

dtWCn(t) =
∑
C′

n

TC′
n→CnPC′

n→CnWC′
n
(t)−

∑
C′

n

TCn→C′
n
PCn→C′

n
WCn(t). (3.15)

We design our algorithm such that the probability distributionWCn(t) becomes stationary (aer a ther-
malization period) and reaches the distribution given by the CT-INT weightsW (Cn) from equation (3.12).
en, the acceptance probability matrix PCn→C′

n
can be extracted from the stationary Master equation with

dtWCn(t) = 0:

0 =
∑
C′

n

TC′
n→CnPC′

n→CnW (C ′n)−
∑
C′

n

TCn→C′
n
PCn→C′

n
W (Cn)

=
∑
C′

n

[
TC′

n→CnPC′
n→CnW (C ′n)− TCn→C′

n
PCn→C′

n
W (Cn)

]
.

(3.16)

is equation can be fulfilled in many ways and the most common and easiest choice is the detailed balance,
where we require for every two configurations Cn and C ′n to hold

0 = TC′
n→CnPC′

n→CnW (C ′n)− TCn→C′
n
PCn→C′

n
W (Cn) (3.17)

One possible way of obeying equation (3.17) is the Metropolis algorithm (cf. [33]):

PCn→C′
n
= min

(
1,
TC′

n→CnW (C ′n)

TCn→C′
n
W (Cn)

)
. (3.18)

⁵is leads, however, to an increase of the statistical noise and upgrades the computational complexity from polynomial to exponential.
For this reason, the sign problem is considered to be a severe drawback of QMC methods in the case of frustrated systems.

⁶is implies that the weights must be normalizable. Further note that actually P (Cn) is a probability density, as it depends on
continuous variables. is implies that also TCn→C′

n
introduced below is a probability density. Keeping this in mind, we will call

them still probabilities.
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3.3. Markov chain

3.3.1. Multi vertex updates
In a practical calculation, the probability matrix will be a sparse matrix, as the calculation of the weight for
the new configurationW (C ′n) is very expensive. We therefore will only use “local” updates that correspond
to small changes to the configuration Cn. It is sufficient to use only two moves:

• Addition of 1 vertex: Cn → Cn+1 = Cn ∪ {vn+1}

• Removal of 1 vertex: Cn → Cn \ {vx} with x ∈ N and 1 ≤ x ≤ n.

Obviously these two moves allow for visiting every possible configuration of vertices and are therefore er-
godic.
However, it turns out that the operations required for this kind of updates do not exploit modern computer

hardware as much as wewould like, as outer products of vectors have a very bad floating point operations per
memory access ratio. In addition to that, we prefer to perform slightly bigger changes in configurations in one
step in order to move through the configuration space more quickly and obtain independent configurations
in less moves by reducing autocorrelation times. is can be achieved with a generalized set of updates:

• Addition ofm vertices: Cn → Cn+m = Cn ∪ {vn+1, . . . , vn+m}.

• Removal of m ≤ n vertices: Cn → Cn−m = Cn \ {vx1 , . . . , vxm} with xi ∈ N and 1 ≤ xi ≤ n in
addition to xi ̸= xj if i ̸= j.

An ergodic set of moves is then achieved by using these updates withm = 1 and in addition to that any set
of moves withm > 1. Note that using onlym > 1 is not sufficient and can only be justified in very rare and
special cases (cf. [9] wherem = 2 is used for a half filled Hubbard cluster).
We will study in detail how to design the stochastic process with a set of multiple updates at the example

of multi vertex addition and removal. Further updates — such as delayed spin flips shown later — can be
incorporated easily.
Let us break the stochastic process T into several steps:

• Add vertices with probability padd.

• Remove vertices with probability pdel.

• If addition is requested, addm vertices with probability padd(m),m ∈ {1, 2, . . . , Nadd}.

• If removal is requested, removem vertices with probability pdel(m),m ∈ {1, 2, . . . , Ndel}.

All other processes in the probability matrix TCn→C′
n
are set to zero:

TCn→Cn+k
= 0, if k < −min (n,Ndel) ∨ k > Nadd. (3.19)

For the nonzero matrix elements of T , we still have to find the probability density for the proposal of new
vertices in the case of a vertex addition as well as the probability for selectingm specific vertices for deletion.

• Generation of m random vertices vl = [il, τl, σl, sl, jl, τ
′
l , σ
′
l] with all variables equally distributed

yields:

pnew(m) = pmnew =

(
1

16N2β2

)m

, (3.20)

as the variables s, s′, σ and σ′ each have two possibilities, i and j are chosen from 1 to the number
of interacting laice sites N . In addition to this τ and τ ′ are continuous random numbers taken from
the interval [0, β].

• Removal ofm vertices leaves us with n!/(n−m)! possible choices and the corresponding probability
is therefore:

(n−m)!

n!
. (3.21)
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3. CT-INT

Puing everything together, we obtain:

• Vertex addition:
TCn→Cn+m = padd padd(m)

(
1

16N2β2

)m

, m > 0. (3.22)

• Vertex removal:
TCn→Cn−m = pdel pdel(m)

(n−m)!

n!
. (3.23)

Using equation (3.18), we can specify the acceptance probability for the addition of the set ofm vertices,
with Cn+m = Cn ∪ {vn+1, . . . , vn+m}:

PCn→Cn+m = min
(
1,
pdelpdel(m) (n−m)!

(
16β2N2

)m
W (Cn+m)

paddpadd(m)n!W (Cn)

)

= min

(
1,
pdelpdel(m) (n−m)!

(
16β2N2

)m
(−1)mV 0(vn+1) . . . V

0(vn+m) detMCn+m

paddpadd(m)n! detMCn

)
.

(3.24)

For the removal of the m ≤ n vertices {v1̄, . . . , vm̄} ⊆ Cn, with the new configuration Cn−m = Cn \
{v1̄, . . . , vm̄} we obtain similarly:

PCn→Cn−m = min
(
1,

paddpadd(m)n! detMCn−m

pdelpdel(m) (n−m)! (16β2N2)mV 0(v1̄) . . . V 0(vm̄) detMCn

)
. (3.25)

It is apparent that for the generation of the Markov chain, the ratios of the determinants detMCn
and

detMCn+m
or detMCn−m

have to be determined. e direct calculation of matrix determinants is extremely
expensive and should therefore be avoided. Additionally, the direct calculation of huge matrices is easily
afflicted by the numerical overflow of double precision floating point numbers, a problem that has to be
treated in a naive implementation by the transition to log detMCn

. A far beer way of calculating the
acceptance probabilities is given by the so called fast updates presented in section 3.3.2.
Note that because of the condition∑

C′
n

TC′
n→Cn = 1 and TCn→C′

n
≥ 0, (3.26)

we must have

padd + pdel = 1,

Nadd∑
m=1

padd(m) = 1,

Ndel∑
m=1

pdel(m) = 1 (3.27)

and all probabilities must of course be ≥ 0.

3.3.2. Fast updates
e idea of fast updates is based on the fact that the configuration Cn is not totally changed by the removal
or addition of m vertices and therefore already known information should be used. e foundation of fast
updates lies certainly inmatrix and determinant theory andwewill make heavy use of Sylvester’s determinant
theorem for two matricesA ∈ Cn×m and B ∈ Cm×n and appropriately sized identity matrices 1:

det (1+AB) = det (1+BA) . (3.28)

A collection of proofs for this identity can be found in [34]. We will also need standard block matrix notation
and manipulation in addition to the inversion of block matrices presented in B.1.1. ese ingredients can be
condensed into the central block determinant identity used for fast updates:

det
(
M u
vT α

)
= detM det

(
α− vTM−1u

)
, (3.29)
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3.3. Markov chain

with the matricesM ∈ Cn×n, u,v ∈ Cn×m and α ∈ Cm×m. We present a simple proof for equation (3.29)
in section B.1.2, exploiting Sylvester’s theorem. Note that in numerical calculations, the matrix α is usually
much smaller than M, i.e. n ≫ m and therefore only a small determinant has to be calculated, which is
beneficial, as the determinant has a computational complexity ofO(N3) for a N ×N matrix.

Vertex addition

As already mentioned, for the calculation of the acceptance probability of the move Cn → Cn+m, i.e. the
addition ofm vertices, the most expensive part is the calculation of the determinant ratio

detMCn+m

detMCn

. (3.30)

However, as the configurations Cn and Cn+m are very similar, because of Cn ⊂ Cn+m, we note that the
matrices MCn and MCn+m are also very similar, in fact, MCn+m is just an extension ofMCn by 2m rows
and columns:
MCn+m =

G0(x1, xn+1) . . . G0(x1, yn+m)
MCn G0(y1, xn+1) . . . G0(y1, yn+m)

...
...

G0(xn+1, x1) G0(xn+1, y1) . . . G0(xn+1, xn+1)−α(xn+1) . . . G0(xn+1, yn+m)
...

...
...

. . . . . .
G0(yn+m, x1) G0(yn+m, y1) . . . G0(yn+m, xn+1) . . . G0(yn+m, yn+m)−α(yn+m)


.

(3.31)

is form allows of course for an easy application of equation (3.29) and the determinant ratio (3.30) can
be easily calculated thus requiring only the determination of the determinant of a small 2m× 2m matrix.
Note that in equation (3.29) the inverse matrix M−1Cn

is needed. is may seem to be a problem at first
sight but can be overcome by keeping only the inverse Green’s function matrix M−1Cn

in memory. Once
a move is accepted, this matrix can be updated easily by the block matrix inversion technique detailed in
section B.1.1. We will see that the knowledge of M−1Cn

is also sufficient for the calculation of observables
and the direct matrix is in fact never needed. Usually, a robust code contains a mechanism to check the
quality of the inverse matrix aer a certain number of updates, but it has been found that the reconditioning,
i.e. the recalculation ofM−1Cn

from scratch is necessary only very rarely, making this algorithm numerically
extremely stable.

Vertex removal

e case of the removal of m vertices {v1̄, . . . , vm̄} ⊂ Cn is very similar to the addition of vertices and
the same strategy for the calculation of the determinant ratio is employed. e reason for this is that the
matrix MCn has exactly the same structure as in equation (3.31), except that MCn−m is now in the upper
le corner. is is achieved by the trick of changing all rows and columns in MCn that contain Green’s
functions with the deleted vertices to the end. An operation leaving the value of the determinant trivially
invariant if rows and columns are exchanged by the same permutation matrix P in the way PMCnP

T .
Because ofPT = P−1, this operation has to be applied equally toM−1Cn

. is is of course clearly legal as Cn

has an unordered set structure. Let us writeMCn in a corresponding block form to clarify this:

MCn
=

(
MCn−m u

vT α

)
. (3.32)

Together with equation (3.29), the determinant ratio required in equation (3.25) can be calculated:

detMCn−m

detMCn

= det
[(

α− vTM−1Cn−m
u
)−1]

. (3.33)
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e reader might object that we do not yet know M−1Cn−m
in contrary to the known M−1Cn

in the case of
vertex addition and that this may be expensive to calculate but the contrary is the case! As we only store
inverse matrices in memory, we have

M−1Cn
=

(
E F
G H

)
(3.34)

in memory⁷. However, as we detail in section B.1.1,H is given by:

H =
(
α− vTM−1Cn−m

u
)−1

. (3.35)

is is really remarkable, as we have this quantity already in memory and are le with the calculation of a
small 2m×2m determinant without further matrix-vector or matrix-(slender matrix) products as in the case
of vertex addition. is leads to an asymmetric computational cost of vertex addition and vertex removal,
and can be corrected for by a choice of pdel > padd. is leads to more trials of vertex deletion, where the
acceptance probability can be calculated at extremely low cost and the new inverse matrix is subsequently
calculated only in the (rare) case of acceptance of this move by means of the toolbox presented in section
B.1.1.
Vertex addition is in consequence proposed on rare occasions but accepted very oen, so the hard work

for the acceptance probability calculation is not wasted as it would be in the case padd = pdel.

Efficient treatment of G0(x, y)

During the calculation of updates, the auxiliary matrices u and vT as well asα have to be generated. While
this is in principle no problem, as they only contain the noninteracting Green’s functionG0(x, y) for differ-
ent combinations of vertices, it should be noted that considerable amounts of computer time can bewasted by
recalculating G0(x, y) again and again. A commonly used technique to avoid this problem is the discretiza-
tion of the imaginary time axis into a fine grid. en,G0(x, y) can be stored in a table and the calculation is
replaced by a table lookup. is introduces a small systematic error which can usually be kept smaller than
the statistical error by increasing the table size.
However, for very high precision benchmark calculations, it can be observed that quantities are affected

by this discretization error. e table lookup procedure can be improved by a simple linear interpolation
method that makes use of an additional table for the first derivative of the Green’s function. Let us for
simplicity show this in reduced notation, suppressing all indices except the imaginary time difference τ :

G(τ) = G(τi) + (τ − τi)dτG(τi), (3.36)

with the tabelized time τi that is closest to τ . is method allows for a considerable reduction of the table size,
sometimes leading even to a situation where the tables fit in the CPU cache, while still yielding extremely
accurate results and pushing the discretization error one order higher in∆τ .

3.4. Observables
In CT-INT, accessible observables are thermal averages of products of creation and annihilation operators.
Wewill see that the central observable is the single particle Green’s function and all other observables (which
are higher Green’s functions) can be constructed from it by virtue of a special Wick’s theorem (cf. [9, 24]).

3.4.1. Single particle Green’s function
Imaginary time formulation

Let us begin the discussion with the description of the calculation of the single particle Green’s function in
imaginary time

G(x, y) = ⟨Tc†xcy ⟩ =
1

Z

∫
D [c̄xicyi ] e−S c̄xcy (3.37)

⁷Here, the blocksizes are chosen such that they match the convention in equation (3.32), i.e. E ∈ C(n−m)×(n−m).
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where x = [i, τ, σ] and y = [j, τ ′, σ′] as defined for the density density vertex formulation of the Markov
chain in the previous section. For the calculation of this quantity, we can again write down a perturbation
expansion as in the case of the partition function, the equations being exactly the same as in section 3.3 with
the exception that the Grassmann numbers c̄x and cy have to be inserted at the end of the operator chain.
is is finally reflected aer the application of Wick’s theorem by the insertion of one additional row and
one column in the determinant and we obtain:

G(x, y) =
Z0

Z

∑
Cn

(−1)
n
V 0(x1; y1) . . . V

0(xn; yn) ⟨T [n(x1)− α(x1; s)] . . . [n(yn)− α(yn; s)] c
†
xcy ⟩0

=
Z0

Z

∑
Cn

(−1)
n
V 0(x1; y1) . . . V

0(xn; yn) det


G0(x1, y)

MCn G0(y1, y)
...

G0(x, x1) G0(x, y1) . . . G0(x, y)

 .

(3.38)
is is nearly the form that we need for the sampling of the observable. Unfortunately, the determinant
does not match detMCn

which we need for the identification ofW (Cn) to make use of the Markov chain of
configurations of vertices distributed according toW (Cn). is can be corrected easily by multiplying and
dividing by the correct determinant:

G(x, y) =

=
Z0

Z

∑
Cn

(−1)nV 0(x1; y1) . . . V
0(xn; yn) detMCn

det


G0(x1, y)

MCn G0(y1, y)
...

G0(x, x1) G0(x, y1) . . . G0(x, y)


detMCn

=

∑
Cn
W (Cn)

det


G0(x1, y)

MCn G0(y1, y)
...

G0(x, x1) G0(x, y1) . . . G0(x, y)


detMCn∑

Cn
W (Cn)

.

(3.39)
us, we only have to sample the contribution of a configuration Cn of vertices in our Markov chain to the
observable G(x, y):

⟨⟨G(x, y)⟩⟩Cn =

det


G0(x1, y)

MCn G0(y1, y)
...

G0(x, x1) G0(x, y1) . . . G0(x, y)


detMCn

. (3.40)

Fortunately, this equation can be reduced again using equation (B.4) to reduce the computational complexity
of the determinant and we obtain the simple equation

⟨⟨G(x, y)⟩⟩Cn = G0(x, y)−
2n∑

r,s=1

G0(x, zr)
(
M−1Cn

)
rs
G0(zs, y), (3.41)

leaving only a vector matrix vector product with complexity proportional to the square of the perturbation
order. Here, zr denotes either x or y parts of the specific vertex v, depending on the index r
Note that we only need to know the inverse matrix M−1Cn

, which we already have in memory from the
generation of the Markov chain by means of fast updates.

21



3. CT-INT

Direct calculation in Matsubara frequencies

For systems that are translation invariant in space and imaginary time, we can introduce a Fourier transfor-
mation to laice momenta k and fermionic Matsubara frequencies iωn. As time and space translation invari-
ance are broken by the fixed positions i, j and times τ , τ ′, the symmetry has to be restored stochastically in
principle. However, as we know thatG(x, y) will only depend on τ − τ ′ and i− j, we can also construct an
improved estimator, incorporating translational invariance before performing the Fourier transformation

⟨⟨G(τ, i, σ, σ′)⟩⟩Cn =
1

βN

β∫
0

dτ ′
∑
j

⟨⟨G(τ + τ ′, i+ j, σ; τ ′, j, σ′)⟩⟩Cn . (3.42)

is improved estimator can be understood as averaging over all equivalent configurations Cn at once,
where we understand configurations to be equivalent if they can be transformed into each other by moving
all imaginary times τ by the same time difference τ ′ (while taking care of mapping the resulting time back
to the interval [0, β]with the correct fermionic ruleG(β− τ) = −G(−τ) andG(τ) = G(τ +2β)) as well as
moving all laice position vectors i by the same distance j. ese operations leave the matrixMCn

invariant
becauseG0(x, y) is translation invariant in time and space. erefore, all equivalent configurations have the
same weight W (Cn) and averaging over them allows for faster sampling in the configuration space. Any
such operation reduces the variance of the observable and we obtain the estimator for the Matsubara Green’s
function G(iωn,k, σ, σ

′) in momentum space (cf. also [9]):

⟨⟨G(iωn,k, σ, σ
′)⟩⟩Cn =

G0(iωn,k, σ, σ
′)− 1

βN

2n∑
r,s=1

G0(iωn,k, σ, σr)eiωn(τr−τs)−ikT (s−r) (M−1Cn

)
r,s
G0(iωn,k, σs, σ

′).
(3.43)

Here the vectors r and s denote the corresponding laice positions i and j of the specific vertex depending
on the summation indices.
Note that this equation has the form of a reducible Dyson equation and gives consequently direct access

to the reducible self energy.
Using this method for the calculation of the Green’s function massively reduces the noise and is therefore

the method of choice.

3.4.2. Wick’s theorem per Monte Carlo configurationW (Cn) for higher Green’s
functions

e equations for the calculation of the single particle Green’s function G(x, y) presented in section 3.4.1
can be easily generalized to higher Green’s functions

Gm(ξ1, γ1, . . . , ξm, γm) = ⟨Tc†ξ1cγ1 . . . c
†
ξm
cγm ⟩ . (3.44)

e indices ξi and γi shall again denote a multiindex [τ, i, σ].
It is found, that this quantity can be calculated from theMarkov chain of configurations of vertices through

a perturbation expansion in the interaction:

Gm(ξ1, γ1, . . . , ξm, γm) =

∑
Cn
W (Cn)⟨⟨Gm(ξ1, γ1, . . . , ξm, γm)⟩⟩Cn∑

Cn
W (Cn)

. (3.45)

e direct calculation of the contribution ⟨⟨Gm(ξ1, γ1, . . . , ξm, γm)⟩⟩Cn is tedious and time consuming.
Luckily for every configurationCn a relation similar toWick’s theorem can be found, which greatly simplifies
the calculation of higher Green’s functions. It is closely connected to the determinant identity (B.15) proven
in section B.1.4. As in the case of the single particle Green’s function, the application of Wick’s theorem for
the noninteracting thermal expectation values yields

⟨⟨Tc†ξ1cγ1 . . . c
†
ξm
cγm⟩⟩Cn =

detBCn

detMCn

, (3.46)
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where we have defined the matrixBCn ∈ C(2n+m)×(2n+m) as

BCn =



G0(x1, γ1) . . . G0(x1, γm)

MCn

...
. . .

...
G0(yn, γ1) . . . G0(yn, γm)

G0(ξ1, x1) . . . G0(ξ1, yn) G0(ξ1, γ1) . . . G0(ξ1, γm)
...

. . .
...

...
. . .

...
G0(ξm, x1) . . . G0(ξm, yn) G0(ξm, γ1) . . . G0(ξm, γm)


. (3.47)

Defining the matrices Bij
Cn

∈ C(2n+1)×(2n+1), we can make use of the determinant identity (B.15)

B
ij
Cn

=


G0(x1, γj)

MCn

...
G0(ym, γj)

G0(ξi, x1) . . . G0(ξi, yn) G0(ξi, γj)

 , (3.48)

yielding

detBCn

detMCn

=
1

(detMCn
)n

det

detB
11
Cn

. . . detB1m
Cn

...
. . .

...
detBm1

Cn
. . . detBmm

Cn

. (3.49)

From equation 3.38 it is obvious, that detBij
Cn

/ detMCn
is identical to the contribution of the configuration

Cn to the one particle Green’s function ⟨Tc†ξicγj ⟩. Hence, Wick’s theorem holds for every configurationCn

and is given by

⟨⟨Gm(ξ1, γ1, . . . , ξm, γm)⟩⟩Cn =

det

 ⟨⟨G0(ξ1, γ1)⟩⟩Cn . . . ⟨⟨G0(ξ1, γm)⟩⟩Cn

...
. . .

...
⟨⟨G0(ξm, γ1)⟩⟩Cn . . . ⟨⟨G0(ξm, γm)⟩⟩Cn

 .
(3.50)

is relation is particularly useful in a simulation measuring multiple physical observables as measurements
of single particle Green’s functions can be reused in an economic way.
Note that this is a higher order Wick’s theorem, as the basic quantities are not bare Green’s functions but

configuration contributions to the fully interacting Green’s functions, however, this identity is of course a
direct consequence of Wick’s theorem in it’s standard form expressed in terms of bare Green’s functions.

3.4.3. Perturbation order
An interesting feature that CT-INT shares with other Monte Carlo methods, such as for example the stochas-
tic series expansion [35], is the fact that the average perturbation order is directly linked to a physical ob-
servable, i.e. the potential energy, providing an internal consistency check of the method. is is found
easily following the discussion in [9, 10]

⟨n ⟩ = −
β∫

0

dτdτ ′
∑
σ,σ′

∑
i,j

∑
s

V 0
σ,σ′(i, τ ; j, τ ′) ⟨ [nσ(i, τ)− ασ(s)] [nσ′(j, τ ′)− ασ′(s)] ⟩ . (3.51)

e perturbation order can be measured very easily and is usually determined with great accuracy. Higher
moments of the distribution can in principle be derived in the same way.
For an interaction local in space and time, i.e. V 0

σ,σ′(i, τ ; j, τ ′) = Uδ(τ − τ ′)δi,j , it is easy to see that

⟨n ⟩ ∝ UNβ. (3.52)
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We have already seen that one update move of a configurationCn to Cn±m by vertex addition involves only
(generalized) vector-matrix-vector products with a computational complexity proportional to the matrix size
(2n)2 ∝ (UNβ)2. As we have to perform on average nmoves to obtain an independent configurationC ′n by
touching every vertex in the configuration, we need n moves and thus can estimate the overall complexity
for an effective move between two independent configurations of vertices as

O
(
(UNβ)3

)
. (3.53)

Observe that the average expansion order divergeswith growing laice sizeN aswell as at strong coupling
U → ∞ and equally for β → ∞. is is in complete agreement with the intuition that we are dealing with a
finite temperature perturbation expansion around the noninteracting case and needmore andmore diagrams
to take into account the interaction with growing U .

3.4.4. Sign problem

Up to now, we did not discuss how to deal with the fermionic sign problem, which can lead to a negative (or
even complex) weightW (Cn). Clearly, in this caseW (Cn) cannot be interpreted as a statistical weight as
the corresponding probabilities

P (Cn) =
W (Cn)∑
Cn
W (Cn)

(3.54)

would not satisfy the condition P (Cn) ≥ 0. Does our whole derivation break down now? Fortunately not!
We can still save the equations and rewrite them in a meaningful way by moving the phase factor ofW (Cn)
to the observable:

⟨Gm(ξ1, . . . , γm) ⟩ =
∑

Cn
W (Cn)⟨⟨Gm(ξ1, . . . , γm)⟩⟩Cn∑

Cn
W (Cn)

=

=

∑
Cn

|W (Cn)| sgn(W (Cn))⟨⟨Gm(ξ1, . . . , γm)⟩⟩Cn∑
Cn

|W (Cn)| sgn(W (Cn))
.

(3.55)

In order to have an importance sampling equation of the form

⟨O ⟩ =
∑
Cn

p(Cn)O(Cn) (3.56)

with actual probabilities p(Cn), we have to expand this equation by the normalization
∑

Cn
∥W (Cn)∥:

⟨Gm(ξ1, . . . , γm) ⟩ =
∑

Cn
|W (Cn)| sgn(W (Cn))⟨⟨Gm(ξ1, . . . , γm)⟩⟩Cn∑

Cn
|W (Cn)|

∑
Cn

|W (Cn)|∑
Cn

|W (Cn)| sgn(W (Cn))
.

(3.57)
is way, we can now write the observable as the ratio of two Monte Carlo expectation values

⟨Gm(ξ1, . . . , γm) ⟩ = ⟨sGm ⟩
⟨s ⟩

, (3.58)

where s = sgn(W (Cn)) is the phase factor corresponding to the weightW (Cn). is means that instead
of one observable Gm, we now have to measure two, namely the phase s and the observable times the
phase sGm. e advantage is that we can again generate a Markov chain of configurations of vertices
with real and positive weights |W (Cn)|. All the equations presented up to now can be easily changed by
W (Cn) → |W (Cn)| and by keeping in mind that observables are replaced by their value times the phase
s of the weight. Formally, this means that we can perform simulations even if the simplistic formulation
given above would yield negative or complex weights. is does — unfortunately — not mean that the sign
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problem is solved. e severity can be seen following the discussion provided in reference [21]. Analogy to
bosonic models can be used to argue that the average phase behaves as

⟨s ⟩ = e−β∆F , (3.59)

with the free energy difference ∆F between the fermionic system at hand and a corresponding bosonic
system (which is constructed such that it has already the weightsW (Cn)). Clearly, at low temperatures the
average phase approaches 0, thus leading to the division by a very small number in equation (3.58). is
alone would not be a big problem, however it is found (cf. [21]) that the variance of the sign approaches 1 at
low temperatures

σ2
s = ⟨s2 ⟩ − ⟨s ⟩2 = 1− e−2β∆F ≈ 1. (3.60)

And thus we have a highly fluctuating sign observable with σs ≫ ⟨s ⟩. is is the essence of the fermionic
sign problem and renders it impossible to extract reliable estimates for observables at very low temperatures
in general as the noise of the final result grows exponentially with decreasing temperature.
It may — however — be possible to calculate quantities at intermediate temperatures if the average sign is

not too small and this is the domain of applicability of antum Monte Carlo methods. In addition to that,
special cases may exist, in which no sign problem exists at all [10]. One such problem is presented in chapter
5, where we study an impurity problem with even complex bath Green’s functions, that does not have a sign
problem.

3.5. Specific examples
Up to now, we have kept the discussion of CT-INT as general as possible, sticking to a density-density inter-
acting action formulation. In order to make the further discussion in subsequent chapters more transparent,
we will introduce here two instructive examples on how the complexity of the general form is reduced in
simpler examples. We will only discuss interactions that are local in space and time and can therefore think
in terms of Hamiltonians. e reader is pointed to [10] for an example including Holstein phonons that lead
to a time delayed interaction term aer integrating them out. An example for long range interactions can
be found in reference [31].

3.5.1. Hubbard model
e Hamiltonian of the Hubbard model describes nearest neighbor hopping of electrons in addition to an
onsite repulsion term in the case of double occupancy of a site. In an extended standard form already incor-
porating the α parameters for the reduction of the sign problem as proposed in reference [10], it reads:

H = −t
∑
i,j,σ

c†i,σcj,σ +
U

2

∑
i

∑
s=±1

(ni,↑ − α↑(s)) (ni,↓ − α↓(s)) . (3.61)

A good choice of ασ(s) for this case is

ασ(s) =
1

2
+ σsδ, (3.62)

with δ = 1
2 +0+. Because of equation (3.51), the average expansion order is proportional to δ2 and can thus

be chosen within limits given by the sign problem.
A comparison of the Hubbard Hamiltonian to the general action (3.1) shows how to chose the vertices:

V 0
σσ′(i, τ ; j, τ ′) = δσ,↑δσ,↓δ(τ − τ ′)δi,j

U

2
. (3.63)

Obviously, this means that many configurations Cn of vertices will have a weight of 0 according to equa-
tion (3.12). is means, that we can reduce the general vertex

v = {i, τ, σ, j, τ ′, σ′, s} (3.64)
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to a form that is restricted to the subspace of configurations with nonvanishing weight⁸:

vHubbard = {i, τ, ↑, i, τ, ↓, s} =: [i, τ, s] . (3.65)

Proceeding further in this formulation, we notice that now every occurrence of a le end x of a density
density vertex corresponds to spin ↑ and y corresponds to spin ↓. As we know that in the Hubbard model

G0
↑↓(τ, i) = 0, (3.66)

is means that the matrix MCn will be block diagonal with one block M↑Cn
corresponding to spin up

Green’s functions and the other blockM↓Cn
to spin down Green’s functions. Using

det
(
M↑Cn

0

0 M↓Cn

)
= detM↑Cn

detM↓Cn
, (3.67)

all (2n)×(2n) determinants presented in the general case can be reduced to 2 determinants ofn×nmatrices,
thus greatly reducing the computational effort. For amore detailed description of this case, find the equations
exploiting the separation of the spin blocks in reference [10].

Delayed updates

In the case of Hubbard type interactions, analogy to the Hirsch Fye algorithm [8, 36] teaches us that in
addition to the standard CT-INT updates, a third move may be introduced, flipping one Ising spin s in on
vertex of the configuration, i.e. the move

[τ, i, s] → [τ, i,−s] . (3.68)

e introduction of this kind of moves requires of course the extension of the stochastic process TCn→C′
n

which can be easily accomplished.
Clearly, as in the case of vertex addition and removal, the expensive part of the calculation is again the

determination of the determinant ratio for both spin blocks

detMσ
C′

n

detMσ
Cn

, (3.69)

where C ′n is the configuration with sx flipped in vertex vx.
Because of equation (3.62), it is obvious that

Mσ
C′

n
= Mσ

Cn
+

0 0 0
0 2σsxδ 0
0 0 0

 . (3.70)

Here, the blocks are sized such that the only nonzero matrix element 2σsxδ corresponds to the x, x element
of the matrix. Using the matrix determinant lemma presented in section B.1.3, the required determinant ratio
can be obtained without difficulty:

det(Mσ
C′

n
) = det(Mσ

Cn
) det

(
1 + vT (Mσ

Cn
)−1u

)
= det(Mσ

Cn
)
(
1 + 2σsxδ

(
(Mσ

Cn
)−1
)
x,x

)
, (3.71)

as ui = δi,x and vi = 2σsδδi,x. Apparently, we only have to look up the (x, x) element of the inverse matrix(
Mσ

Cn

)−1, which we have in memory. So the calculation of the acceptance probability of a single spin flip is
extremely cheap!

⁸Actually, the weight can still vanish for some configurations, we only exclude configurations here, that would have weight 0 due to
the bare vertex V 0.
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Once the move is accepted, the inverse matrices has to be updated, what can be done easily using the well
known Sherman-Morrison formula (cf. e.g. [37])

[
Mσ

C′
n

]−1
=
[
MCn + uvT

]−1
=
[
Mσ

Cn

]−1 − [
Mσ

Cn

]−1
uvT

[
Mσ

Cn

]−1
1 + vT

[
Mσ

Cn

]−1
u

. (3.72)

with the choices of u and v given above. As pointed out by Alvarez et. al. (cf. e.g. [19, 38]), this equation
has the numerical drawback that we have to calculate an outer product of the column vector

[
Mσ

Cn

]−1
u

with the row vector vT
[
Mσ

Cn

]−1, an operation which has an extremely bad floating point operations per
memory access ratio. is is hurtful because modern computers can perform floating point operations orders
of magnitude faster than memory access and therefore a naive implementation of the spin flip move would
waste a big part of the calculation time waiting for data stored in the memory.
e method that has been proposed to circumvent this problem e.g. in references [19, 38] is the following:

Instead of proposing one single spin flip in the Markov chain and then allowing for the proposal of other
moves subsequently, the stochastic process should be changed slightly such as to propose a certain number
Nflip of single spin flip moves in a row before moving on to different moves. is is the only change in the
stochastic process and the implementation details does not touch it any further.
As we have already seen, for the calculation of the acceptance probability of the flip of spin x, we only

need one element of the inverse Green’s function matrix. e trick is now to calculate the needed elements
on the fly and to delay the full update of the inverse matrix for a number ofNdelay spin flips. e calculation
of intermediate matrix elements is then simply done by taking matrix elements of the Sherman Morrison
formula. is way, the final update of the inverse matrix is a rank N update with N being the number
of accepted spin flips. is kind of updates has a greatly improved floating point operations per memory
access ratio and is therefore much more efficient. In our general code, performance gain claims of orders of
magnitude [38] could not be reproduced completely but a speedup forNdelay > 10 of factors of 2 . . . 8 could
be seen depending on the problem parameters as well as on cache sizes of the used CPUs.

Improved estimators

If we can identify configurations Cn and C̃n in the Markov chain that carry the same weight W (Cn) =
W (C̃n), it is possible to construct an improved estimator that effectively integrates over all equivalent con-
figurations. is idea has already been used in order to introduce an improved estimator for the single particle
Green’s functionG(k, iωn) in Matsubara frequencies and momentum space and guarantees the reduction of
the variance of the estimator, as more configurations of the configuration space are sampled synchronously.
It is easy to see that the transposition of the Green’s function matrixMCn does not change the weight of a

configuration, as the determinant in equation (3.12) is invariant under transposition of the matrix. However,
the transposed matrix belongs to a different configuration of Hubbard vertices

C̃n = {(β − τ1,−x1, s1) , . . . , (β − τn,−xn, sn)} . (3.73)

Exploiting this property, we obtain an improved estimator ⟨⟨O⟩⟩Cn,C̃n
for the observable O:

⟨⟨O⟩⟩Cn,C̃n
=

1

2

(
⟨⟨O⟩⟩Cn + ⟨⟨O⟩⟩C̃n

)
. (3.74)

is method is especially intriguing as it improves data quality at virtually zero cost.

3.6. Impurity problem with superconducting leads
A very interesting class of problems for which CT-INT is extremely well suited are impurity problems. Here
we present the form of the algorithm suited for an impurity problemwith superconducting leads as discussed
in chapter 5. We will closely follow and partly reproduce work published in reference [24]. is example
shows that the method is indeed very well applicable to the case of a non spin diagonal Green’s function, i.e.
if G↑↓(τ) ̸= 0.
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3. CT-INT

For the numerically exact solution of the so called BCS-Anderson-model presented in detail in chapter 5,
we use CT-INT boiled down to the impurity formulation.
As pointed out in [9, 10] the interacting HamiltonianHU in Eq. (5.4) can up to a constant be rewrien as

HU = −U
2

∑
s=±1

(
d†↑d↑ − αs

↑

)(
d†↓d↓ − αs

↓

)
(3.75)

introducing the parameters αs
σ to minimize the sign problem. For the present case, a choice of αs

↑ = αs
↓ =

1
2 + sδ with δ = 1

2 + 0+ was found to completely eliminate the sign problem at half filling, even aer the
complex phase factors exp(iϕα) in the Hamiltonian were introduced.
is form of the interacting Hamiltonian is equivalent to the Hubbard interaction on a single site (the im-

purity) and the algorithm can be derived easily from the general form as before by noting that the interaction
vertex now only depends on an imaginary time τ and the Ising spin s and is given by

V 0
σ,σ′(i, τ ; j, τ ′) =

(
−U

2

)
δσ,↑δσ,↓δ(τ − τ ′)δi,jδi,d, (3.76)

where d represents the index of the impurity site. Let us however, reproduce the work published in [24] here
to provide a more practical derivation of the algorithm for this simple case.
Using perturbation theory, the partition function Z of the full Hamiltonian (5.4) can be wrien as:

Z

Z0
= ⟨T e−

∫ β
0
dτHU (τ) ⟩

0
=

=
∞∑

n=0

(
U

2

)n ∫ β

0

dτ1 . . .
∫ τn−1

0

dτn
∑

s1,...,sn

×

× ⟨T
(
n̂↑(τ1)− αs1

↑

)
. . .
(
n̂↓(τn)− αsn

↓

)
⟩0 ,

(3.77)

with the number operators n̂σ = d†σdσ and the thermal expectation value ⟨•⟩0 = 1
Z0

Tr
[
e−βH0•

]
. AsH0 is a

noninteracting Hamiltonian, Wick’s theorem holds, and the expectation value ⟨T (n̂↑(τ1)−α1
↑) . . . (n̂↓(τn)−

αn
↑ ) ⟩0 can be cast in a determinant of a matrixMCn

of size 2n× 2n, where Cn is a configuration of vertices
{τi, si}. In contrast to the formulation for the Hubbard model given in [10], we do not need to include
an index for the laice site as we only have one correlated site, the impurity. e MatrixMCn

is not block
diagonal for the two spin sectors in the case∆ ̸= 0, so we cannot factor the determinant in two determinants
of n× n matrices. Finally, the partition function of the model is given by

Z

Z0
=
∑
Cn

(
U

2

)n

detMCn , (3.78)

where the sum runs over all possible configurations Cn of vertices as in [10]. e matrixMCn is defined by

MCn
=

G0
dd(τ1, τ1)−α1 . . . G0

dd(τn, τ1)
...

. . .
...

G0
dd(τ1, τn) . . . G0

dd(τn, τn)−αn

 (3.79)

using the 2 × 2 Green’s function matrices G0
dd(τ, τ

′) =

(
⟨Td†

↑(τ)d↑(τ
′)⟩0 ⟨Td†

↓(τ)d↑(τ
′)⟩0

⟨Td†
↑(τ)d↓(τ

′)⟩0 ⟨Td†
↓(τ)d↓(τ

′)⟩0

)
and with αi =(

αi
↑ 0

0 αi
↓

)
.

A similar reasoning yields an expression for the thermal expectation value ⟨O(τ) ⟩ = 1
Z Tr

[
e−βHO(τ)

]
of the full model:

⟨O(τ) ⟩ =
∑

Cn

(
U
2

)n detMCn
⟨⟨O(τ)⟩⟩Cn∑

Cn

(
U
2

)n detMCn

. (3.80)

28



3.7. Conclusion and Outlook

Here ⟨⟨O(τ)⟩⟩Cn is the contribution of the configuration Cn to the observable O(τ), which is given by

⟨⟨O(τ)⟩⟩Cn =
⟨T (n̂↑(τ1)− α1

↑) . . . (n̂↓(τn)− αn
↓ )O(τ) ⟩0

⟨T (n̂↑(τ1)− α1
↑) . . . (n̂↓(τn)− αn

↓ ) ⟩0
. (3.81)

From this equation, we can easily use the concepts presented for the general case above and generate a
Markov chain of configurations distributed according to W (Cn) (note the absence of the sign problem.),
as discussed above. It is important to realize that this is a concrete example, where the separation of the
matricesMCn into two spin blocks does not occur.

3.7. Conclusion and Outlook
In this chapter, we have discussed various technical aspects of CT-INT in extensive detail. e reader should
be able to make use of the information collected here and understand the method completely, enabling him
or her to implement the method in a computer code and give an overview about the different tricks used in
modern CT-INT codes.
In contrast to most other presentations of the algorithm, multi vertex updates have been discussed here,

as the mathematical formulation can be provided elegantly by generalizing all matrix equations to block
equations.
e actual benefit of multi-vertex updates is however extremely hard to quantify and would require a

systematic and problem dependent study of the parameters of the stochastic process in combination with
the actual CPU time needed to acquire a specific accuracy. is involves a complete and careful error analysis
in order to be sure that autocorrelation times for the requested observable (!) are overcome by the simulation.
General or even trustworthy claims can therefore not be made here but it should be noted that the author
found that tuning proposal probabilities can bring a weak performance factor⁹. is is a really involved
problem, though, that also depends on the computer architecture at hand as e.g. cache sizes in combination
with the perturbation order maer. To get an idea of how much can be expected in an ideal case, it should be
repeated that the introduction of delayed updates has been reported to bring an improvement in CPU time
of about one order of magnitude (cf. [38]).
e reduction of the general formulation to two example cases has been given mostly for pedagogical

reasons and gives an idea of the great variety of problems for which the method can be used. e most com-
plicated forms of the interaction that have been studied so far are long range interactions [31] and imaginary
time retarded interactions [10], however additional complexity may be introduced by the noninteracting part
of the Hamiltonian as has been shown in reference [24] for a complex Nambu spinor Green’s function also
discussed in section 3.6 as well as in chapter 5, where the results are presented and the power of the method
becomes apparent.
One fascinating example for the remarkable flexibility of the method that has not been mentioned here is

the formulation on the generalized Keldysh contour, allowing for a real time evolution and the study of non
equilibrium physics within the bounds of the domain accessible due to the complex phase problem that is
rather severe in this case at long evolution times. is has been demonstrated by Florian Goth and Fakher
F. Assaad in reference [39].
We also describe how configurations of equal weight can be identified and used for the creation of im-

proved estimators. is is useful for the calculation of two particle quantities and allows to exploit a given
configuration as much as possible while economizing CPU time.

⁹ink of something like 1.5 to get a feeling.
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4. Two particle quantities
In recent years, the numerical interest in general two particle quantities given by a four point Green’s func-
tion G4(q; k, p) has emerged mostly for technical reasons:

• Methods like the Dynamical mean field theory (DMFT) and its generalizations give access to two
particle quantities in the thermodynamic limit — such as susceptibilities χ(q, iν)— only via the corre-
sponding irreducible vertex Γ(q; k, p), which is obtained from G4(q; k, p) through the Bethe Salpeter
equation as detailed in section 4.6.

• Methods like the Dynamical vertex approximation (DΓA)[18], the dual fermion method [17] or the
Parquet formalism [40, 41] are formulated in terms of self consistency equations on the two particle
level, i.e. through Γ(q; k, p).

In this chapter, we will present a detailed theoretical study of two particle quantities in the particle hole
channel. e focus lies clearly on the methodological part aiming for a proof of concept and the goal is to
present a method to compute two particle quantities using the example of the dynamical spin susceptibility
in DCA using CT-INT in a rigorous way. Special care is taken in the data analysis part in order to provide a
reliable estimate of the covariance matrix Cov(χ(q, iν)) which is needed for a meaningful analytic contin-
uation of the imaginary frequency result to real frequencies using the stochastic maximum entropy method
[42].
e difficulty of this task lies in the enormous amount of numerical data that has to be computed, stored

and analyzed. is can already be understood by noting that the two particle Green’s function G4(q; k, p)
is a rank 6 tensor, as it depends on the three momenta k, p and q as well as on two internal¹ fermionic
Matsubara frequencies iωn and iω′n in addition to the external bosonic Matsubara frequency.
In order to provide sound and verified results, we will first study general properties of the two particle

Green’s functions and proceed with calculations on an exactly solvable system: e Hubbard model on a
finite size 2× 2 cluster. e comparison with exact results obtained by exact diagonalization will provide a
line of argumentation for the method employed. In section 4.6 we will finally step up to the thermodynamic
limit of the 2D Hubbard model and present DCA results for the dynamical spin susceptibility using a 2× 2
cluster. While it is known from previous results (e.g. [43]) that finite size cluster DCA results are biased², this
is nevertheless a first step in the reliable calculation of momentum resolved dynamical two particle quan-
tities including nonlocal and vertex corrections. Future developments in the availability of computational
resources will provide access to larger clusters including further nonlocal corrections. Note that the method
discussed here is applicable without changes to larger clusters and limited only by the required CPU time
and memory and — as will become clear in the data analysis part — the amount of fast permanent storage.

4.1. Channels
e most general two particle Green’s function in a many electron system can be wrien down in the fol-
lowing way

G4(1234) = N ⟨c#1σ1,k1
c#2σ2,k2

c#3σ3,k3
c#4σ4,k4

⟩ . (4.1)

¹e nomenclature will become more apparent later, when we remind ourselves that a physical susceptibility — which is in fact the
real quantity of interest — is obtained by summing over the internal momenta and frequencies k and p and depends only on the
external momentum and frequency q.

²For example in finite cluster DCA calculations a nonvanishing Neel temperature TN for an antiferromagnetic phase transition can be
found in 2D, which is a clear violation of the MerminWagner theorem. In systematic studies, however, it is found that for increasing
cluster size TN is found to extrapolate to 0 and the exact result is recovered for infinite cluster size.
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4. Two particle quantities

In this general form, appearing operators c#σ,k can be either creation operators c†σ,k for a particle with
spin σ and combined imaginary frequency and momentum k = (iωn,k) or the corresponding annihilation
operators cσ,k . N is just a normalization factor.
It is clear that for special systems, the freedom in G4(1234) is rapidly reduced as we will impose a non-

broken U(1) symmetry associated with charge conservation, which implies that only two operators may be
creation operators, whereas the other two have to be annihilation operators in consequence. Let us use the
convention #1 = #3 = †.
Furthermore, in the thermodynamic limit or in a finite system by introduction of periodic boundary con-

ditions, we have translation invariance on the laice, which is linked to laice momentum conservation up
to a reciprocal laice vector³.
In addition to that, we also have conservation of frequency which stems from the fact that in imaginary

time the two particle Green’s function only depends on 3 imaginary time variables because of imaginary
time translation invariance:

⟨Tc#11 (τ1)c
#2
2 (τ2)c

#3
3 (τ3)c

#4
4 (τ4) ⟩ = sgn(π) ⟨c#π(1)

π(1) (τπ(1))c
#π(2)

π(2) (τπ(2))c
#π(3)

π(3) (τπ(3))c
#π(4)

π(4) (τπ(4)) ⟩

= sgn(π) 1
Z
Tr
(
e−βHeτ1̃Hc#1̃

1̃
e(τ2̃−τ1̃)Hc#2̃

2̃
e(τ3̃−τ2̃)Hc#3̃

3̃
e(τ4̃−τ3̃)Hc#4̃

4̃
e−τ4̃H

)
=

1

Z
sgn(π) ⟨c#1̃

1̃
(τ1̃ − τ4̃)c

#2̃
2̃
(τ2̃ − τ4̃)c

#3̃
3̃
(τ3̃ − τ4̃)c

#4̃
4̃
(0) ⟩ ,

(4.2)

because of the cyclic property of the trace. Here π is the permutation that brings {τ1, τ2, τ3, τ4} in time
order.
In order to implement our convention that momentum and frequency 1 and 3 should be associated with a

creation operator, we will use the notation 1̄ and 3̄ for them. Finally, we will ensure the conditions

k1 + k3 = k2 + k4 and iω1 + iω3 = iω2 + iω4 (4.3)

by defining
k1 = k, k2 = k + q, k3 = p, k4 = p− q. (4.4)

And thus limiting our discussion to the so called particle hole channel. Depending on how the transfer mo-
mentum q and its associated (bosonic) transfer frequency are defined, one can also study the particle particle
or the vertical particle hole channel (cf e.g. [44]) but these will be unimportant to our further discussion. Note
that the nomenclature stems from a diagrammatic way of thinking about two particle scaering processes
and the way of labelling incoming and outgoing momenta. A complete and detailed analysis eventually leads
to a set of diagrammatic equations, the parquet equations.

4.2. Symmetries of the two particle Greenfunction
In this section⁴ we study the symmetries of the two particle Green’s function G4(1̄23̄4) defined by:

G4(1̄23̄4) = ⟨ξ†1ξ2ξ
†
3ξ4 ⟩ = N

β∫
0

d(1234)eiωnMτ e−ikMx ⟨Tc†1c2c
†
3c4 ⟩ (4.5)

with
c
(†)
i := c(†)(τi, xi, σi) and ξ

(†)
i := ξ(†)(iωi, ki, σi) (4.6)

and⁵
Mij = δij(−1)(j−1) i, j ∈ {1, 2, 3, 4} (4.7)

³is will always be understood implicitly without further comment whenever we write equations containing laice momenta. e
equation k1+k3 = k2+k4 has to be interpreted as an equality of le and right hand side aer mapping them to the first Brillouin
zone.

⁴e collection of symmetries of the two particle Green’s function was done in collaboration with Jua Ortloff and can also be found
in her PhD thesis (ref. [45]). Information about symmetries in slightly different notation can also be found in ref. [46]

⁵is compact notation is literally only applicable for one spatial dimension, but may be generalized to higher dimensions.
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4.2. Symmetries of the two particle Greenfunction

4.2.1. General Symmetries
SU(2) Symmetry: Introduction of G⊥4 (1̄23̄4)

Because of SU(2) symmetry, we can restrict ourselves to the “S+S−”-spin susceptibility (G⊥4 ), i.e. the spin
indices will be pinned to σ1 =↑, σ2 =↓, σ3 =↓, σ4 =↑. (Referring to this definition of G⊥4 , we will neglect
the spin indices in our further discussion)
A complete analysis of SU(2) symmetry would yield (cf. e.g. [45, 47]):

G
∥
4(1̄23̄4) = G⊥4 (1̄23̄4)−G⊥4 (3̄21̄4). (4.8)

with ∥= σσσσ and ⊥= σσ′σ′σ.

RAS-Symmetry: Remainder of Antisymmetry G⊥4 (1̄23̄4) = G⊥4 (3̄41̄2)

e canonical fermionic anticommutation relations lead to the exchangability of creators (1̄ ↔ 3̄) and anni-
hilators (2 ↔ 4) yielding the sign of the corresponding permutation. Note, that because of the pinning of the
spin indices, in our case, we are not allowed to do this independently and we have to apply SU(2) symmetry
to get:

G⊥4 (1̄23̄4) = G⊥4 (3̄41̄2). (4.9)

Auxiliary symmetry ⟨T [c†1c2c
†
3c4] ⟩

∗
= ⟨T [c†4βc3βc

†
2β
c1β ] ⟩

To prove this, we need to exchange a hermitian conjugation with the time ordering operator:

c(τ, x)† = (eτHcxe−τH)† = e−τHc†xeτH = c†(−τ, x). (4.10)

Using this, we have:
(T [c†1c2c

†
3c4])

† = T [(c†1c2c
†
3c4)

†]. (4.11)

(Proof trivial, think of a time ordering permutation.) Now, using TrO = TrOT we have:

⟨Tc†1c2c
†
3c4 ⟩

∗
=

1

Z
Tr
(
T [e−βHc†1c2c

†
3c4]

)∗
=

1

Z
Tr
(
T [e−βHc†4βc3βc

†
2β
c1β ]

)
= ⟨T [c†4βc3βc

†
2β
c1β ] ⟩

(4.12)

Note, that
c
(†)
iβ

= c(†)(β − τi, xi) (4.13)

and we also inserted 1 = e−βHeβH in between the c operators and used the cyclicity of the trace.

4.2.2. Symmetries for real Hamiltonians: H = HT

r-Symmetry G⊥4 (1̄23̄4)∗ = G⊥4 (1̄r2r3̄r4r) for real Hamiltonians

In the case of a real Hamiltonian, we have: ⟨Tc†1c2c
†
3c4 ⟩ ∈ R, because everything can be wrien in terms of

real matrices.

G⊥4 (1̄23̄4)
∗ =

β∫
0

d(1234)e−iωnMτ e+ikMx ⟨Tc†1c2c
†
3c4 ⟩ = G⊥4 (1̄r2r3̄r4r). (4.14)

Here we use the notation
ξir = ξ(−iωi,−ki) (4.15)

33



4. Two particle quantities

RAS-r-Symmetry G⊥4 (1̄23̄4) = G⊥4 (3̄r4r1̄r2r)
∗ for real Hamiltonians

Combining already derived symmetries, we get:

G⊥4 (1̄23̄4)
(4.9)
= G⊥4 (3̄41̄2)

(4.14)
= G⊥4 (3̄r4r1̄r2r)

∗. (4.16)

κ-Symmetry G⊥4 (1̄23̄4) = G⊥4 (4̄κ3κ2̄κ1κ) for real Hamiltonians

Here we use that for real Hamiltonians, ⟨Tc†1c2c
†
3c4 ⟩ ∈ R:

G⊥4 (1̄23̄4) =

β∫
0

d(1234)eiωn
TMτ e−ikTMx ⟨Tc†1c2c

†
3c4 ⟩

=

β∫
0

d(1234)eiωn
TMτ e−ikTMx ⟨Tc†4βc3βc

†
2β
c1β ⟩

τ←β−τ
=

β∫
0

(−1)4d(1234)e−iωn
TMτ (−1)4e−ikTMx ⟨Tc†4c3c

†
2c1 ⟩

=

β∫
0

d(1234)eiωn
T (−M)τ e−i(−k)T (−M)x ⟨Tc†4c3c

†
2c1 ⟩

= G⊥4 (4̄κ3κ2̄κ1κ).

(4.17)

Note, that we need to change the sign matrix M to −M in order to identify the term with the Fourier
transform convention for G⊥4 . Further, we used the notation:

ξiκ = ξ(iωi,−ki). (4.18)

RAS-κ-Symmetry G⊥4 (1̄23̄4) = G⊥4 (2̄κ1κ4̄κ3κ) for real Hamiltonians

Combining already derived symmetries, we get:

G⊥4 (1̄23̄4)
(4.9)
= G⊥4 (3̄41̄2)

(4.17)
= G⊥4 (2̄κ1κ4̄κ3κ) (4.19)

w-Symmetry G⊥4 (1̄23̄4)∗ = G⊥4 (4̄w3w2̄w1w) for real Hamiltonians

Combining symmetries from subsubsection 4.2.2 , we get:

G⊥4 (1̄23̄4)
∗ = G⊥4 (1̄r2r3̄r4r) = G⊥4 ((4̄r)κ(3r)κ(2̄r)κ(1r)κ) = G⊥4 (4̄w3w2̄w1w). (4.20)

with
(ξir )κ = ξiw = ξ(−iωi, ki). (4.21)

RAS-w-Symmetry G⊥4 (1̄23̄4)∗ = G⊥4 (2̄w1w4̄w3w) for real Hamiltonians

Combining already derived symmetries, we get:

G⊥4 (1̄23̄4)
(4.9)
= G⊥4 (3̄41̄2)

(4.20)
= G⊥4 (2̄w1w4̄w3w)

∗ (4.22)
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4.2. Symmetries of the two particle Greenfunction

Efficient Parametrization

As noted in section 4.1, we only have 3 independent frequencies/momenta. Let us therefore define with a
bosonic multiindex Q = (iν, q):

iω2 = i(ω1 + ν), iω4 = i(ω3 − ν), k2 = k1 + q, k4 = k3 − q.

G⊥4 (Q; 1̄3̄) = G⊥4 (1̄(1 +Q)3̄(3−Q))
(4.23)

e above symmetries have the following implications for G⊥4 (Q; 1̄3̄):

G⊥4 (Q; 1̄3̄)
(4.9)
= G⊥4 (Qr; 3̄1̄) (4.24)

G⊥4 (Q; 1̄3̄)
(4.14)
= G⊥4 (Qr; 1̄r3̄r)

∗ (4.25)

G⊥4 (Q; 1̄3̄)
(4.16)
= G⊥4 (Q; 3̄r1̄r)

∗ (4.26)

G⊥4 (Q; 1̄3̄)
(4.17)
= G⊥4 (Qκ; (3̄−Q)κ(1̄ +Q)κ) (4.27)

G⊥4 (Q; 1̄3̄)
(4.19)
= G⊥4 (Qw; (1̄ +Q)κ(3̄−Q)κ) (4.28)

G⊥4 (Q; 1̄3̄)
(4.20)
= G⊥4 (Qw; (3̄−Q)w(1̄ +Q)w)

∗ (4.29)

G⊥4 (Q; 1̄3̄)
(4.22)
= G⊥4 (Qκ; (1̄ +Q)w(3̄−Q)w)

∗ (4.30)

Frequency shi

From this summary of symmetries, it is clear that with nonvanishing Q the center of symmetry shis. We
can therefore redefine frequencies and momenta in the following way:

1̄− = 1̄− Q

2

−
and 3̄+ = 3̄ +

Q

2

+

. (4.31)

Note that bosonic⁶ frequency-momenta Q
2

± are defined such that

Q

2

+

+
Q

2

−
= Q. (4.32)

Using these relations, equation (4.27) reduces to

G⊥4 (Q; 1̄−3̄+) = G⊥4 (Qκ; (3̄
−)κ(1̄

+)κ). (4.33)

For Q = 0 and iν = 4n
β π with n ∈ Z it is obvious that the choice Q

2

+
= Q

2

−
=
(
i ν2 , 0

)
fullfills the

requirement of bosonic Matsubara frequencies and equation (4.32) and makes it apparent that the center of
symmetry under frequency exchange is really shied by (Q2

−
, Q2

+
). For nonzero Q, the simplest choice is

Q
2

+
= (iν2

+,Q) and Q
2

−
= (iν2

−,0). We will not expand on the symmetry in the momentum domain as the
actual treatment might depend on laice properties and is not as general as the frequency domain.
e case of general bosonic Matsubara frequencies iν = 2n

β π with n ∈ Z is treated such that we define
iν2
± = in

±

β π with n− ∈ Z being the largest even number with n− < n and n+ = 2n − n−. erefore, n+

is also even and both iν2
± are consequently legal bosonic Matsubara frequencies.

⁶Q
2

± must be implemented such that the corresponding frequencies are always bosonic matsubara frequencies and the corresponding
momenta are allowed laice momenta.
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4. Two particle quantities

4.3. G4(q; k, p) in the particle hole channel
As already discussed in section 4.1, a general susceptibility in the particle hole channel has the Grassmann
number representation

Gσ1,σ2,σ3,σ4

4,ph (q; k, p) =
1

βN
⟨c†σ1,k

cσ2,k+qc
†
σ3,pcσ4,p−q ⟩ , (4.34)

We will restrict the following discussion to the case of conserved total spin. is leads to the restriction

σ1 + σ3 = σ2 + σ4. (4.35)

erefore, we obtain a 4 × 4 matrix representation of the general susceptibility in spin space (4.34) puing
the spin indices σ1 and σ2 in the first index and the spin indices σ3 and σ4 in the second index using the
ordering ↑↑→ 0, ↓↓→ 1, ↑↓→ 2 and ↓↑→ 3.
Let us introduce the following shorthand notation for the generalized susceptibility in order to write the

matrix in a compact form:
σ1σ2σ3σ4 = Gσ1,σ2,σ3,σ4

4,ph (q; k, p). (4.36)

us, we obtain

G4,ph(q; k, p) =


↑↑↑↑ ↑↑↓↓ ↑↑↑↓ ↑↑↓↑
↓↓↑↑ ↓↓↓↓ ↓↓↑↓ ↓↓↓↑
↑↓↑↑ ↑↓↓↓ ↑↓↑↓ ↑↓↓↑
↓↓↑↑ ↓↓↓↓ ↓↑↑↓ ↓↑↓↑

 (4.37)

Of course, not all entries fulfill the condition (4.35), it is obvious, that ↑↑↑↓= 0, ↑↑↓↑= 0, ↑↓↑↑= 0, ↑↓↓↓= 0,
↓↑↑↑= 0, ↓↑↓↓= 0, ↓↓↑↓= 0, ↓↓↓↑= 0. Also, ↑↓↑↓=↓↑↓↑= 0, because the corresponding term contains two
creation operators for spin ↑ (↓) but two annihilation operators for spin ↓ (↑), which would not conserve the
total spin. en, G4,ph(q; k, p) gets the following form:

G4,ph(q; k, p) =


↑↑↑↑ ↑↑↓↓ 0 0
↓↓↑↑ ↓↓↓↓ 0 0
0 0 0 ↑↓↓↑
0 0 ↓↑↑↓ 0

 (4.38)

e Hamiltonian of the Hubbard model

H = −t
∑

<i,j>,σ

c†i,σcj,σ + U
∑
i

(
n̂i,↑ −

1

2

)(
n̂i,↓ −

1

2

)
. (4.39)

is naturally invariant under the transformation ↑↔↓ because of SU(2)-symmetry.
is implies that observables will also obey this symmetry, therefore we directly obtain that ↓↑↑↑=↑↓↓↓

and ↓↓↑↑=↑↑↓↓ as well as ↑↑↑↑=↓↓↓↓. is simplifies the particle-hole channel immensely:

G4,ph(q; k, p) =


↑↑↑↑ ↑↑↓↓ 0 0
↑↑↓↓ ↑↑↑↑ 0 0
0 0 0 ↑↓↓↑
0 0 ↑↓↓↑ 0

 (4.40)

Diagonalization of this matrix form yields of course the eigenvalues ↑↑↑↑ + ↑↑↓↓, ↑↑↑↑ − ↑↑↓↓, ↑↓↓↑ and
↓↑↑↓. e channel containing ↑↑↑↑ + ↑↑↓↓ is called the charge-channel, while the other three eigenvalues
form the spin-channel as the corresponding susceptibilities

χσ1σ2σ3σ4(q) =
∑
k,p

Gσ1σ2σ3σ4

4,ph (q; k, p). (4.41)
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4.4. Calculation of two particle quantities in Matsubara frequencies

are the charge (χc(q)) and spin (χz
s (q), χ+−

s (q) and χ−+s (q)) susceptibilities⁷. e huge advantage of using
the susceptibility χ+−

s is that for this quantity the Bethe-Salpeter equation does not have an additional spin
structure, i.e. it can be wrien in terms of rank 6 tensors⁸ instead of rank 8 tensors for the accomodation of
2 additional spin indices. is reduces the required complexity already by a factor of 4.

4.4. Calculation of two particle quantities in Matsubara
frequencies

Here, wewill only look atG⊥4 (Q;K,P ) in the spin channel, as all the information of the particle-hole channel
is contained in this quantity⁹ for an SU(2) symmetric problem, in particular the Hubbard model, wich we will
have in mind throughout this section. As we will be dealing with finite size clusters from now on, let us use
capital leersK,P for fermionic Matsubara frequency-momenta andQ for a bosonic frequency momentum.

4.4.1. Calculation of G4(Q;K,P ) in the spin channel in CT-INT
e calculation ofG4(Q;K,P ) in Matsubara frequencies is extremely expensive in terms of computer time,
therefore we have to economize time wherever possible. However, it is instructive to study the direct ap-
proach, which makes direct use of Wick’s theorem for CT-INT configurations according to equation (3.50)
first, before we move on to a reduced approach, which economizes a substantial amount of multiplications
by factoring out as many known quantities as possible.

Direct approach

In its Matsubara frequency variant, equation (3.50) for G4(Q;K,P ) reads¹⁰:

⟨⟨G⊥4 (Q;K,P )⟩⟩Cn =
1

βN
⟨⟨c†↑,Kc↓,K+Qc

†
↓,P c↑,P−Q⟩⟩Cn = − 1

βN
⟨⟨c†↑,Kc↑,P−Q⟩⟩Cn⟨⟨c

†
↓,P c↓,K+Q⟩⟩Cn .

(4.42)
with

⟨⟨c̄σ,Kcσ,P ⟩⟩Cn = δK,PG
0
σ(K)− 1

βN
G0

σ(K)G0
σ(P )

∑
r,s

ei(ωnτr−KTXr)
(
M−1σ

)
r,s

e−i(ω′
nτs−P

TXs). (4.43)

Clearly, ⟨⟨c̄σ,Kcσ,P ⟩⟩Cn can be easily tabelized for the required Matsubara frequency range and from this
table, ⟨⟨G4(Q;K,P )⟩⟩Cn can be constructed by iterating over all frequencies and momenta.
is approach, however, has the drawback that we have to look up the bare one particle Green’s function

G0(K) for every combination ofK andP and that we have to multiply the sum over vertices by two complex
numbers during the calculation of table ⟨⟨c̄σ,Kcσ,P ⟩⟩Cn . While the computational cost of this operation is
not dominant, it is nevertheless preferable to calculate a reduced quantity. is is presented in the following
paragraph.

Reduced approach

We will argue that it is possible to reduce the amount of multiplications neccessary in the calculation of
the table ⟨⟨c̄σ,Kcσ,P ⟩⟩Cn

by multiplying out equation (4.42) and directly measuring the vertex T (Q;K,P )

⁷e spin sector is built up by Sz , S+ and S−.
⁸3 frequencies and 3 momenta
⁹is is of course only true theoretically, as a redefinition of Q and exploitation of symmetries is required, which can in practice not
be done in order to obtain the full information on the same frequency window also in the charge channel.

¹⁰It is important to note that we only obtain one term because of the conservation of spin. In this case, G0
2,↑↓(τ) = 0 and therefore,

the expanded matrix needed for the calculation of ⟨⟨c̄↑,Kc↓,P ⟩⟩Cn does not have full rank and its determinant is therefore 0. us,
the second term from Wick’s theorem involving mixed spin contributions vanishes.
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4. Two particle quantities

instead of the two particle Green’s function G⊥4 (Q;K,P ). Before writing down the result, let us introduce
the short hand notation

XCn
σ (K,P ) =

∑
r,s

ei(ωnτr−KTXr) (M−1σ

)
r,s

e−i(ω
′
nτs−P

TXs). (4.44)

Hence, we obtain:

⟨⟨G⊥4 (Q;K,P )⟩⟩Cn = − 1

βN

[
δK,P−QG

0
↑(K)G0

↓(K +Q)

− 1

βN
δP,K+QG

0
↓(P )G

0
↑(K)G0

↑(K)XCn

↑ (K,K)

− 1

βN
δK,P−QG

0
↑(K)G0

↓(P )G
0
↓(P )X

Cn

↓ (P, P )

+

(
1

βN

)2

G0
↑(K)G0

↓(K +Q)G0
↑(P −Q)G0

↓(P )X
Cn

↑ (K,P −Q)XCn

↓ (P,K +Q)
]

(4.45)

Detailed inspection of this result allows for further simplification, as we can use the fact that¹¹

− 1

βN
G0

σ(K)G0
σ(K) ⟨XCn

σ (K,K) ⟩ = Gσ(K)−G0
σ(K). (4.46)

Here, the statistical average ⟨ • ⟩ denotes a Monte Carlo average in CT-INT over all (weighted) configura-
tions Cn of vertices as detailed in chapter 3. Note that in a practical calculation, the fully interacting one
particle Green’s function can be usually calculated to a much higher precision than the two particle Green’s
function and is — in the context of the DCA — basically already known at the moment when the two particle
calculation is started.
Using this simplification and factoring out all vertex-independent quantities, we obtain:

G⊥4 (Q;K,P ) = − 1

βN

[
δK,P−QG

0
↑(K)G0

↓(K +Q)

+ δP,K+QG
0
↓(P )

(
G↑(K)−G0

↑(K)
)

+ δK,P−QG
0
↑(K)

(
G↓(P )−G0

↓(P )
)

+

(
1

βN

)2

G0
↑(K)G0

↓(K +Q)G0
↑(P −Q)G0

↓(P ) ⟨X
Cn

↑ (K,P −Q)XCn

↓ (P,K +Q) ⟩
]

(4.47)

At this point, it is already obvious that we only have to calculate the vertex

T (Q;K,P ) = ⟨XCn

↑ (K,P −Q)XCn

↓ (P,K +Q) ⟩ (4.48)

From this result, the two particle Green’s function can easily be reconstructed via

G⊥4 (Q;K,P ) = − 1

βN
δK,P−Q

[
−G0

↓(K)G0
↑(K +Q) +G0

↓(P )G↑(K) +G0
↑(K)G↓(P )

]
−
(

1

βN

)3

G0
↑(K)G0

↓(K +Q)G0
↑(P −Q)G0

↓(P )T (Q;K,P ).

(4.49)

For a noninteracting system, the vertexT (Q;K,P ) vanishes and the two particle Green’s function reduces
nicely to the correct result.

¹¹is is of course just the accumulation formula forG(K) as already given in reference [9] and also in chapter 3.
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4.4. Calculation of two particle quantities in Matsubara frequencies

4.4.2. Improved estimator for T (Q;K,P )

Following the recipe presented in section 3.5.1, we can enhance the statistics for the measurement of the
vertex T (Q;K,P ). e configuration of vertices C̃n is obtained from Cn by applying the transformations
τ → β − τ and x→ −x to every vertex [τ, x, s] of the configuration Cn. is leads to

XC̃n
σ (K,P ) =

∑
r,s

ei(ωn[β−τr]+KTXr) (M−1σ

)
s,r

e−i(ω
′
n[β−τs]+PTXs) = XCn

σ (P,K), (4.50)

i.e. the X matrix is just transposed by the transformation Cn → C̃n, an operation that can virtually be
performed at no computational cost. We use the fact thatW (Cn) =W (C̃n) in order to redefine the estimator
⟨⟨T (Q;K,P )⟩⟩Cn in the following way:

⟨⟨T (Q;K,P )⟩⟩Cn :=
1

2

(
XCn

↑ (K,P −Q)XCn

↓ (P,K +Q) +XCn

↑ (P −Q,K)XCn

↓ (K +Q,P )
)
.

(4.51)
In addition to that, we will also will make use of SU(2) symmetry, as we have seen in section 4.3 that the

↑↓↓↑ variant ofG⊥4 must by symmetry be equal to the ↓↑↑↓ version. Taking together equations (4.42), (4.43)
and (4.44), we immediately see that the ↓↑↑↓ susceptibility can be obtained through the exchange

XCn

↑ (K,P ) ↔ XCn

↓ (K,P ). (4.52)

As we know that by virtue of symmetry the two ↑↓↓↑ two particle Green’s function must be equal to the
↓↑↑↓ variant, we will enforce this symmetry already on the level of Monte Carlo configurations rather than
waiting for an automatic stochastic restoration of SU(2) symmetry. is leads to a second redefinition of the
estimator ⟨⟨T (Q;K¸P )⟩⟩Cn :

⟨⟨T (Q;K,P )⟩⟩Cn
:=

1

4

[
XCn

↑ (K,P −Q)XCn

↓ (P,K +Q) +XCn

↑ (P −Q,K)XCn

↓ (K +Q,P )

+ XCn

↓ (K,P −Q)XCn

↑ (P,K +Q) +XCn

↓ (P −Q,K)XCn

↑ (K +Q,P )
]
.

(4.53)

is procedure allows for a more complete exploitation of a configuration Cn of vertices and makes the
expensive transition through nested for-loops for the construction of ⟨⟨T (Q;K,P )⟩⟩Cn in memory more
worthwhile.

4.4.3. Frequency and momentum structure of T (Q;K,P )

Before moving on to the physically interesting quantities, we discuss shortly the frequency and momentum
structure of T (Q;K,P ) as this is the basic quantity that we obtain from the Monte Carlo calculation. is
study already gives us important hints on how to deal with G⊥4 (Q;K,P ) as the frequency structure of this
quantity is very similar.
We observe several features in the frequency structure that have also been identified by Jan Kuneš [48]

for a related but of course different quantity in an impurity model: e irreducible vertex Γ(iν; iωn, iω′n).
As it is impossible to visualize the whole quantity T (Q;K,P ), we provide two example graphs illustrating

the momentum and frequency structure: One at vanishing bosonic transfer frequency iν in figure 4.1 and
one for iν ̸= 0 in figure 4.2.
T (Q;K,P ) possesses a background that is constant in frequency and momentum on top of which struc-

tures emerge:

• a constant in terms of iω′n for fixed iωn at a small Matsubara frequency (dominant at iωn ∈
[
π
β ,
−π
β

]
).

• a constant in terms of iωn for fixed iω′n at a small Matsubara frequency (dominant at iω′n ∈
[
π
β ,
−π
β

]
).

• a constant on the diagonal (iωn = iω′n) and on the antidiagonal (iωn = iω′n) as well as on offdiago-
nals/antidiagonals immidiatelly adjacent to the diagonal and antidiagonal.
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Figure 4.1.: Graphical representation of the vertex T (Q, iν) for fixed Q = [0, π]T and iν = 0 as a matrix.
e multiindex (iωn,K) is used as column index, while (iω′n,P) serves as the row index. e
tick position indicating the momenta K and P specifies the first nonzero fermionic Matsubara
frequency iπβ . is is example data calculated in CT-INT for the Hubbard model on a 2×2 laice
with t = 1, U = 8, β = 1 and µ = 0.
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Figure 4.2.: Graphical representation of the vertex T (Q, iν) for fixedQ = [π, π]T and iν = 16iπβ as a matrix.
e multiindex (iωn,K) is used as column index, while (iω′n,P) serves as the row index. e
tick position indicating the momenta K and P specifies the first nonzero fermionic Matsubara
frequency π

β . ese results stem from the same calculation as figure 4.1.
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Figure 4.3.: Frequency and momentum structure of G⊥4 (Q) for the 2 × 2 Hubbard model at U = 8, µ = 0,
t = 1 and β = 1 ploed in logarithmic color scale for a beer visibility of the features.

is frequency structure is repeated in every momentum sector and is exactly the same even for an im-
purity model without any momentum dependency. However, the important momentum structure emerges
from the different weights of the individual terms of the frequency structure, depending on the momentum
sector. Regarding every momentum sector, clearly the center of mass is located symmetrically in a Matsubara
frequency window centered at (0, 0)¹².
Additional complexity emerges at a nonvanishing bosonic transfer frequency iν. It appears that the “cross”

shaped structure with one frequency being constant is split into two and one cross is moved by (−iν, iν) in
frequency space. is is of course directly related with the shi of the symmetry centre discussed in section
4.2. We have already adjusted for this shi and moved the center of mass in the plot accordingly. While
symmetries show that this choice is natural, we will argue in section 4.6.2 that this way of choosing the
frequency window is mandatory for an efficient treatment of the Bethe Salpeter equation.

4.4.4. Frequency and momentum structure of G⊥
4 (Q;K,P )

e frequency and momentum features of the two particle Green’s function are clearly inherited from
T (Q;K,P ) as can be seen from the bulk term in equation (4.49) containing the vertex T (Q;K,P ). e
term containing bare one particle Green’s functions and the Kronecker delta δK,P−Q does not introduce
additional structure but modifies the weight of the (shied) diagonal.
For a visualization of the features, we provide CT-INT results forG⊥4 for the same parameters as depicted

in figures 4.1 and 4.2. e results are shown in figures 4.3 and 4.4.
At 0 transfer frequency iν, the center of mass of the frequency structure is in the (0, 0) point for each

momentum sector. e diagonal lines emerging from the Kronecker delta term in equation (4.49) are clearly
visible. It is also apparent thatG⊥4 decays quickly in nearly all directions of the momentum space except the
diagonal and on the “cross”-feature. e same picture is valid for nonvanishing bosonic transfer frequency in
figure 4.4with the generalization that the center ofmass shis in frequency and the “cross” feature is split into
two parts shied away from each other by iν exactly as in the case of the T (Q) vertex. Again, momentum
structure is manifested in different weights depending on the momentum sector which is probably most
apparent in the frequency diagonal seen in figure 4.4.

¹²Even though, iωn = 0 is of course not an allowed fermionic Matsubara frequency
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Figure 4.4.: Frequency and momentum structure of G⊥4 (Q) for the 2 × 2 Hubbard model at U = 8, µ = 0,
t = 1 and β = 1 ploed in logarithmic color scale aer taking the absolute value for a beer
visibility of the features.

4.4.5. Matsubara summation
Two particle physical quantities of interest in a many fermion system are for instance susceptibilities, which
can be obtained from the general two particle Green’s functions by summation over internal frequencies and
momenta. From G⊥4 (Q;K,P ), the spin susceptibility χ+−

s (Q) is thus obtained by

χ+−
s (Q) =

∑
K,P

G⊥4 (Q;K,P ) (4.54)

Naturally, the sum overK and P contains a sum over the momentaK andP as well as over the associated
Matsubara frequencies iωn and iω′n. e sum over momenta in the first Brillouin zone can be performed
exactly as we are always dealing with finite clusters and these sums are therefore always finite. e problem,
however, is the frequency sum, as it runs over an infinite number of Matsubara frequencies. Let us write this
explicitly to make the maer more clear

∑
K

=
∑

K∈1BZ

∞∑
n=−∞

, with iωn =
(2n+ 1)π

β
. (4.55)

Clearly, the exact evaluation of equation (4.54) is impossible, as in a practical calculation we do not know
G⊥4 (Q;K,P ) for an infinite number of frequencies iωn and iω′n.
e problem of evaluation of Matsubara sums has been studied in the past and an intriguing idea has

been brought forward by Hartmut Monien in reference [49]. is idea transports the ansatz for Gaussian
integration to discrete sums and proposes a set of frequency positions and weights at which the summand
has to be evaluated in order to exponentially converge to the correct value of the sum. is application of
this idea to our problem is hindered by an obstacle: It requires the knowledge of the two particle Green’s
function G⊥4 (Q;K,P ) on a frequency grid differing from the Matsubara frequency grid. In particular, one
needs to knowG⊥4 at positions that are no legal Matsubara frequencies. is requires analytical continuation
of a complex function of multiple variables and is per se a difficult problem. e sheer amount of data is
frightening enough, so we did not pursue this approach any further.
Another very promising approach has been explained by Jan Kuneš in [48]. He makes use of the frequency

structure of the irreducible vertex Γ(Q;K,P ) and aaches to the exactly known functionG4(Q;K,P ) on a
small frequency window an asymptotic part constructed from the irreducible vertex. It is believed that this
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Figure 4.5.: Symmetric sum over Matsubara frequencies ofG4(Q;K,P ) as a function of the cutoff frequency
for iν = 0. At small cutoff frequency, the linear behaviour is dominant and can be fied to a linear
function.

approach can be adapted for a multisite cluster including momentum structure and in fact our results show
that the frequency structure of G⊥4 (Q;K,P ) does not become any more complicated with the introduction
of momenta. However, the approach requires the use of even bigger amounts of data and the asymptotic
part has to be cut at a (of course much higher) cutoff frequency. Also the frequency at which the numerically
exactly known G⊥4 is replaced by the asymptotic part introduces some amount of approximation¹³.
A third idea that has obtained particular interest is the introduction of a new basis. is idea has been

brought forward by Lewin Boehnke et al. in [50]. Here, a mixed basis representation is used and the Mat-
subara frequencies iωn and iω′n are replaced by indices l and l′ of Legendre indices through a unitary trans-
formation, while the bosonic Matsubara frequency is kept. Although this has not been clear a priory, it has
been shown that sums in the new basis converge exponentially and the truncation of the sum¹⁴ at a particular
order of Legendre polynomials lcutoff is acceptable. is idea is particularly intriguing and has therefore been
studied in the framework of this thesis. While it became apparent that it is possible to formulate the equa-
tions even when the impurity formulation is upgraded to laice terms by the introduction of momenta, it
turned out that an efficient method for the calculation ofG⊥4 (Q;L,L′) directly in the Legendre basis in CT-
INT could not be developed. e reason for this is that Wick’s theorem becomes entangled in the Legendre
basis and this kills the performance of the algorithm. is problem is discussed in appendix A.1.
In order to find out how to deal with this problem, let us first look at the convergence of the frequency

sum (4.54). We will introduce a cutoff frequency iωc at which we will stop summations. Note however, that
the cutoff frequency will always be measured with respect to the center of mass of G⊥4 (Q;K,P ) such as to
ensure symmetric summing. Failure to do so will lead to a biassed summation and slow down convergence.
We thus obtain

χ+−
s (Q;ωc) =

∑
K,P

ωc∑
iω−

n ,iω′+
n =−ωc

G⊥4 (Q;K,P ) (4.56)

¹³is method together with the idea discussed in the next paragraph is discussed systematically in great detail in Jua Ortloffs PhD
thesis [45].

¹⁴by virtue of the unitary transformation, sums over Matsubara frequencies translate into sums over Legendre indices
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Figure 4.6.: Symmetric sum over Matsubara frequencies ofG4(Q;K,P ) as a function of the cutoff frequency.
At small cutoff frequency, the linear behaviour is dominant and can be fied to a linear function.
Note the special feature appearing for iν ̸= 0: e sum only becomes monotonic if the frequency
window is larger than the bosonic transfer frequency iν. is can be understood nicely by con-
sidering that for too small cutoff frequency the summation window is inside of the “double-cross”
feature of G⊥4 (Q) as depicted in figure 4.4.

It is clear that for ωc → ∞, we obtain

lim
ωc→∞

χ+−
s (Q;ωc) = χ+−

s (Q). (4.57)

If we introduce a new variable x = 1
ωc
, we can Taylor expand χ+−

s (Q; 1
x ) around x = 0 in terms of x and

replace x aerwards:

χ+−
s (Q;ωc) = χ+−

s (Q) +
a

ωc
+O

(
1

ω2
c

)
(4.58)

with some constant a ∈ C.
We can check the validity of this expansion by calculating χ+−

s (Q,ωc) for different values of ωc. We
show two representative examples in figures 4.5 and 4.6. It is apparent that the linear approximation for
small values of 1

ωc
is valid, the linear fit to this region shows this very nicely. It is also very clear that the

change of the sum even at the largest accessible cutoff frequency is still substantial and it is already from this
picture questionable if the truncation of the sum is an acceptable approximation. We will argue here that it
is indeed not, as the asymptotic behaviour of χ+−

s (Q) in terms of bosonic frequencies will not be reproduced
correctly.
Fortunately, the way out is already obvious now: We will use the asymptotic form (4.58) and perform a

linear fit to χ+−
s (Q;ωc) as a function of 1

ωc
in the region of the largest cutoff frequencies. e constant term

of the linear fit at 1
ωc

= 0 is then the extrapolated estimator for the exact value of χ+−
s (Q).
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4.5. Spin susceptibility on a 2× 2 cluster: An instructive test case

4.5.1. Exact diagonalization
In order to test our approach, we introduce an exactly tractible system, namely the Hubbard model on a finite
size system of small size. Here, we will restrict ourselves to a 2× 2 Hubbard cluster with periodic boundary
conditions. e Hamiltonian reads:

H2×2 = −t
∑
⟨i,j⟩,σ

c†i,σcj,σ + U
∑
i

(
ni,↑ −

1

2

)(
ni,↓ −

1

2

)
− µ

∑
i

ni. (4.59)

is system can be solved exactly by exact diagonalization¹⁵ . In order to perform this, we construct a
product basis of the Fock space, as every orbital of spin σ can either be empty or occupied. erefore, we can
write |α ⟩ ∈ {|0 ⟩ , |σ ⟩}. e product basis then has the dimension 22N , where N is the number of laice
sites and every laice site corresponds to one spin up and one spin down orbital. Every state of the product
basis can be wrien as

|ψ ⟩ = |n↑,i1 , n↓,i1 , . . . , n↑,iN , n↓,iN ⟩ with nσ,i ∈ {0, 1} ¹⁶. (4.60)

Clearly, in this basis, it is easy to construct matrix representations for the operators c†i,σ and ci,σ as they only
operate on single orbitals (cf. e.g. [25, 26, 51]):

c†i,σ |n↑,i1 , . . . , n↓,iN ⟩ =

{
(−1)

∑
j≤i,σ′ nσ′,j |n↑,i1 , . . . , nσ,i + 1, . . . , n↓,iN ⟩ if nσ,i = 0

0 else.
(4.61)

Using the standard matrix product of the matrix forms of the operators in equation (4.59), the Hamiltonian
can subsequently be obtained in its matrix formH . In a second step, we use numpy (see e.g. [52]) to calculate
eigenvectors |n ⟩ and eigenvalues En of H .
is enables us to calculate the spin susceptibility from the Lehmann representation given in equation

(4.108). However, we have to be careful in the case iν = 0, as for En = Em, equation (4.108) would contain
an undefined expression. It turns out that the term for this case yields:

χ(q, iν = 0) =
1

Z

∑
n,m

En ̸=Em

|⟨n |S+(q) |m ⟩|2 e
−βEm − e−βEn

En − Em
+

1

Z

∑
n,m

En=Em

|⟨n |S+(q) |m ⟩|2 βe−βEn .

(4.62)
In order to evaluate this expression on a computer, wemake use of a standard trick in exact diagonalization,

i.e. we transform the creation and annihilation operators into the eigenbasis {|n ⟩} of the Hamiltonian in
order to economize matrix-vector products¹⁷. We define

Qn,m
x,σ = ⟨n | c†x,σ |m ⟩ . (4.63)

us, we can write
S+(q) =

1√
Ns

∑
k

ck,↑ck+q,↓ =
1√
Ns

∑
x

eiqTxc†x,↑cx,↓. (4.64)

And therefore
⟨n |S+(q) |m ⟩ = 1√

Ns

∑
x

eiqTx
(
Qx,↑Q

†
x,↓

)
n,m

. (4.65)

¹⁵ In the literature, this term is used ambiguously and oen refers to methods extracting information about the ground state of a system,
such as the Lanczos method that we use in chapter 6. Here, however, we mean a calculation of the full spectrum of the Hamiltonian,
which gives us exact access to dynamical quantities at finite temperatures.

¹⁶is is of course Wolfgang Pauli’s exlusion principle for identical fermions.
¹⁷A computer scientist would refer to this technique as caching.
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4.5.2. Cross check at U = 0

It is oen instructive to begin a study of a correlated many fermion system with the noninteracting case
which can be studied exactly relatively easily in many cases. In the present case, the noninteracting limit is
obtained by seing U = 0. is yields the Hamiltonian

H0
2×2 = −t

∑
⟨i,j⟩,σ

c†i,σcj,σ − µ
∑
i

ni. (4.66)

It can be diagonalized easily be making the transition to momentum space according to the momentum part
of equations (2.2) and (2.3):

H0
2×2 = −t

∑
x

∑
δ∈{(0,±1)T ,(±1,0)T }

1

N

∑
k

∑
p

ei(k
Tx−pT [x+δ])c†k,σcp,σ − µ

∑
k

nk

=
∑
k

[−2t (cos(kx) + cos(ky))− µ] c†k,σck,σ

=
∑
k

ϵkc
†
k,σck,σ.

(4.67)
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Figure 4.7.: Absolute value of the function faux(z) in the complex plane for the parameters β = 5, ϵk = −2,
ϵk+q = −2, iν = i8π

β . e pole structure of faux(z) is clearly illustrated. Note the poles on the
imaginary axis correspond to fermionicMatsubara frequencies. e color axis has been truncated
in order to make the structure more prominent.

e calculation of the spin susceptibility is now straightforward, as we can make use ofWick’s theorem ¹⁸

¹⁸Unfortunately, in the literature the termWick’s theorem refers to many identities who are eventually linked to Wick’s original form
first published in [53]. Here, we refer to the form reducing a higher order Gaussian integral to a determinant of two point Gaussian
integrals, which are linked to Green’s functions of a noninteracting system by quantum field theory.
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for noninteracting many particle Green’s functions (see e.g. [25, 26, 54])

χ(q, iν) = 1

βNs

∑
k,p,iωn,iω′

n

⟨ c̄k,↑(iωn)ck+q,↓(iωn + iν)c̄p,↓(iω′n)cp−q,↑(iω′n − iν) ⟩0 =

= − 1

βNs

∑
k,p,iωn,iω′

n

δk,p−qδiωn,iω′
n−iνG

0
↑(k, iωn)G

0
↓(k+ q, iωn + iν) =

= − 1

βNs

∑
k,iωn

G0
↑(k, iωn)G

0
↓(k+ q, iωn + iν).

(4.68)

Obviously, SU(2) symmetry implies that the single particle Green’s function is spin independent. Using the
resolvent formalism (cf. e.g. [26, 54, 55]) ¹⁹, we obtain

χ(q, iν) = − 1

βNs

∑
k,iωn

1

(iωn − ϵk)

1

(iωn − iν − ϵk+q)
. (4.70)

e sum over fermionic Matsubara fequencies may be carried out using a common trick in solid state physics
(cf. e.g. [54, 55]): We introduce an auxiliary function faux(z), which has poles at the positions of the fermionic
Matsubara frequencies:

faux(z) =
1

1 + eβz
1

z − ϵk

1

z − iν − ϵk+q
(4.71)

Figure 4.7 illustrates the pole structure of faux(z) and shows thatwe have poles at z ∈ {iωn, ϵk, ϵk+q + iν} =
Mpoles. As faux(z) decays more quickly than 1

z at the boundary of the complex plane which we denote by
C∞, we have ∮

C∞

dz faux(z) = 0. (4.72)

However, using the residue theorem, this integral can be evaluated in a different way:∮
C∞

dz faux(z) = 2πi
∑

zi∈Mpoles

Reszi faux(z) (4.73)

e function faux(z) only has simple poles in the case of iν ̸= 0 ∨ ϵk ̸= ϵk+q. Let us consider this case first
and continue with the other case iν = 0 ∧ ϵk = ϵk+q later. In the end, we will see that both results are
indeed linked through the consideration of the first case in the limit of ϵk+q → ϵk.

Case iν ̸= 0 ∨ ϵk ̸= ϵk+q Here, all poles inMpoles are distinct and of order one. We therefore have:

Resϵk faux(z) = lim
z→ϵk

(z − ϵk)faux(z) =
1

1 + eβϵk
1

ϵk − ϵk+q − iν . (4.74)

Resϵk+q+iν faux(z) = lim
z→ϵk+q+iν

(z − ϵk+q − iν)faux(z) =
1

1 + eβϵk+q

1

ϵk+q − ϵk + iν . (4.75)

Resiωn
faux(z) = lim

z→iωn

(z − iωn)faux(z) = − 1

β

1

iωn − ϵk

1

iωn − iν − ϵk+q
. (4.76)

¹⁹Keep in mind that because of our non-standard definition of the single particle Green’s function, the resolvent reads

G0(k, iωn) =
1

−iωn − ϵk
. (4.69)

However, we can invert the sum over fermionic Matsubara frequencies in this case, as it runs over all frequencies, thus introducing
the transformation iωn → −iωn.
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In total, we get

1

β

∑
iωn

1

iωn − ϵk

1

iωn − iν − ϵk+q
= (nF(ϵk)− nF(ϵk+q))

1

ϵk − ϵk+q − iν . (4.77)

Of course, this is already the desired result!

Case iν = 0∧ ϵk = ϵk+q In this case, things change slightly and we are now confronted with the complex
line integral ∮

C∞

dz
1

1 + eβz
1

(z − ϵk)
2
= 0. (4.78)

Now, two poles fall together and form a second order pole at ϵk. e residues can be calculated and yield

Resiωn

1

1 + eβz
1

(z − ϵk)
2
= − 1

β

1

(iωn − ϵk)
2 . (4.79)

Resϵk
1

1 + eβz
1

(z − ϵk)
2
= − βeβϵk

(1 + eβϵk)2 . (4.80)

and therefore
1

β

∑
iωn

1

(iωn − ϵk)
2 = − βeβϵk

(1 + eβϵk)2 . (4.81)

In conclusion, we can now write down the final result for the noninteracting spin susceptibility in the
form

χ(q, iν) =


− 1

Ns

∑
k

nF(ϵk)−nF(ϵk+q)
ϵk−ϵk+q−iν if iν ̸= 0

1
Ns

∑
k

ϵk=ϵk+q

βeβϵk

(1+eβϵk )2
− 1

Ns

∑
k

ϵk ̸=ϵk+q

nF(ϵk)−nF(ϵk+q)
ϵk−ϵk+q

if iν = 0 (4.82)

As already mentioned, the second case result can be obtained by seing iν = 0 and performing the limit
ϵk → ϵk+q using L’Hôpital’s rule.
Now, we have established two independent methods to calculate χ(q, iν) for the 2× 2 Hubbard model at

U = 0 and we can thus verify the correctness of the computer implementation of the exact diagonalization
code by comparing the two results. e comparison is displayed for an example parameter set in figure 4.8.
Note that this is a nontrivial test for the exact diagonalization approach and asures us that we can obtain
trustworthy results for the interacting 2× 2 Hubbard cluster which will bring us one step up the ladder for
the verification of our Monte Carlo approach.

4.5.3. Comparison to Monte Carlo results

In order to demonstrate the numerical exactness of our CT-INT approach and the extrapolation to infinite
cutoff frequencies ωc, we calculate χ+−

s (Q) for the Hubbard model on a 2× 2 cluster via G⊥4 and compare
the result to the exact solution obtained from exact diagonalization of the Hamiltonian. We also show data
obtained from naive frequency summation without any extrapolation to infinite cutoff frequencies. Our
data shows clearly that the cutoff error is substantial and should be corrected for in order to eliminate the
systematic error.
is is a serious test for the method and gives us enough confidence to proceed to an application of this

method to the DCA in the next section as this is the domain for which it is designed. Note that it is of course
by several orders of magnitude easier (in terms of memory and CPU time) to calculate χ+−

s (Q) directly in
CT-INT, a procedure that is — hélas — not applicable to the DCA as we will see in the next section.
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Figure 4.8.: Comparison of the results for χ(q, iν) for the noninteracting Hubbard model at U = 0, β = 10,
t = 1 and µ = 0.6 obtained by our exact diagonalization approach and by the direct analytic
evaluation of equation (4.82). e two results agree within numerical rounding errors and the
imaginary part of χ(q, iν) vanishes for both approaches.

4.6. Spin susceptibility in DCA

4.6.1. DCA

Let us briefly introduce the dynamical cluster approximation (DCA) here. For a detailed and extensive review
of DCA and other cluster methods, the reader is referred to reference [16].
e principal idea of DCA is to extend the dynamical mean field theory (DMFT) (cf. e.g. [15]) by relaxing

the constraint of the local self energy Σ(iωn) systematically. Whereas the DMFT introduces an effective
impurity problem determined through the DMFT self consistency equations for the description of a laice
problem in the thermodynamic limit. e impurity self energy of the impurity problem is then identified
with the local self energy of the laice problem with N sites. In the DCA, nonlocal corrections to the self
energy are introduced by replacing the impurity problem by an effective cluster problem withNc interacting
sites. en, the cluster self energy has a momentum dependence limited to cluster momenta and is identified
with the coarse grained self energy of the laice.
e coarse graining procedure is done in such a way that the Brillouin zone is separated into patches

associated with the cluster momenta and a sum over laice momenta in one patch is performed.
We shall denote all quantities on the cluster with an index c and quantities defined on the laice with the

index l. In addition cluster momenta are denoted by capital bold leers and cluster frequency-momenta are
given normal capital leers. For laice momenta we use the same convention but with lower case leers.
e effective cluster model for the description of the laice problem has to be determined such that the

DCA self consistency equations are fulfilled:

Gc(K) = Gl,cg(K) =
Nc

N

∑
k∈K

1

(G0,l(k))
−1 − Σ(K)

. (4.83)

Here, the notation k ∈ K refers to all laice momenta k that lie on the patch associated with the cluster
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Figure 4.9.: Comparison of different methods for the determination of the real part of χ+−
s (Q = [0, 0], iν)

for the Hubbard model at U = 8, t = 1, β = 1 and µ = 0.
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Figure 4.10.: Comparison of different methods for the determination of the real part of χ+−
s (Q = [0, π], iν)

for the Hubbard model at U = 8, t = 1, β = 1 and µ = 0. We use a semilogarithmic scale to
demonstrate that the asymptotic behaviour as a function of iν is only reproduced correctly if
the Matsubara sums (4.54) are summed up completely without truncation.
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Figure 4.11.: Comparison of different methods for the determination of the real part of χ+−
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for the Hubbard model at U = 8, t = 1, β = 1 and µ = 0. We use a semilogarithmic scale to
demonstrate that the asymptotic behaviour as a function of iν is only reproduced correctly if
the Matsubara sums (4.54) are summed up completely without truncation.

momentumK. e effective model is then described by the noninteracting cluster Green’s function

Gc,0(K) =
1

(Gc(K))−1 +Σ(K)
(4.84)

together with the local interacting Hamiltonian for every cluster site.
Self consistency is usually reached by iteration, starting with a vanishing self energy and thus using the

coarse grained noninteracting laice Green’s function as a starting point. e resulting interacting cluster
problem is solved using a cluster solver (e.g. CT-INT) and from the result, the self energy is extracted:

Σ(K) =
1

Gc,0(K)
− 1

Gc(K)
. (4.85)

Σ(K) is plugged into the coarse graining equation (4.83) and from the resulting coarse grained laice Green’s
function, a new noninteracting cluster Green’s function is determined:

Gc,0(K) =
1

(Gl,cg(K))−1 +Σ(K)
. (4.86)

is procedure is repeated until Σ(K) converges and does not change any more with new iterations.
As the DCA is a self consistent theory formulated only on the one particle level, the way of calculation of

two particle quantities is a priori ambiguous. However, Mark Jarrell et. al. argue in reference [43] that the
thermodynamically consistent way to determine two particle quantities in the DCA is given by identifying
the irreducible two particle vertex Γ(Q;K,P ) in the appropriate channel on the DCA cluster with its coarse
grained version on the laice. e reason for this is that susceptibilities obtained this way are identical to
second derivatives of the DCA approximation of the grand canonical potential – a property which ensures
thermodynamic consistency (cf. [43]).
is is the reason why we have been pursuing the study of two particle quantities given in terms of

the two particle Green’s function up to this point. is quantity gives us unique access to the irreducible
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vertex Γ⊥(Q;K,P ) through the Bethe Salpeter equation (also referred to as two particle Dyson equation
for example in [43]):

G⊥4 (Q;K,P ) = G⊥,04 (Q;K,P ) +
∑
K′,P ′

G⊥,04 (Q;K,K ′)Γ⊥(Q;K ′, P ′)G⊥4 (Q;P ′, P ). (4.87)

In the DCA, we now have two relevant Bethe salpeter equations, one for the effective model on the cluster
and one for the laice on which we want to calculate susceptibilities:

G⊥4,c(Q;K,P ) = G⊥,04,c (Q;K,P ) +
∑
K′,P ′

G⊥,04,c (Q;K,K ′)Γ⊥c (Q;K ′, P ′)G⊥4,c(Q;P ′, P ). (4.88)

G⊥4,l(q; k, p) = G⊥,04,l (q; k, p) +
∑
k′,p′

G⊥,04,l (q; k, k
′)Γ⊥l (q; k

′, p′)G⊥4,l(q; p
′, p). (4.89)

e method of calculating G⊥4,l(q; k, p) can be broken up in the following steps:

• Perform a full DCA cycle until convergence for the calculation of the self energy Σc(K).

• In the last DCA iteration, calculate G⊥4,c(Q;K,P ) (in our case using CT-INT).

• Using
G⊥,04,c (Q;K,P ) = − 1

βNc
δK,P−QGc(K)Gc(P ) (4.90)

and equation (4.88) calculate Γ⊥c (Q;K,P ).

• Identify
Γ⊥l (q; k, p) = Γ⊥c (Q;K,P ) (4.91)

by a coarse graining procedure. is means that Γ⊥l (q; k, p) will be constant for all momenta q lying
on the same patch in momentum space asQ and so on for k and p.

• Using a patchwise constant irreducible vertex Γ⊥l (q; k, p) together with equation (4.89), using

G⊥,04,l (q; k, p) = − 1

βN
δk,p−qGl(k)Gl(p), (4.92)

calculateG⊥4,l(q; k, p), where the single particle Green’s functionsGl may be obtained from the nonin-
teracting version in addition to the coarse grained self energy σ(K) identical to the cluster self energy
by virtue of Dyson’s equation.

In the very end, the DCA result for the laice susciptibility χ+−
s (q) is obtained by summing over the inner

Matsubara frequencies and momenta,

χ+−
s,l (q) =

∑
k,p

G⊥4,l(q; k, p). (4.93)

Note that this result may be obtained in principle for any laice momentum q and is not restricted to
cluster momenta. Momentum dependence is thus introduced at two levels: Firstly by the noninteracting one
particle Green’s function on the laice on a fine momentum grid and secondly by the effect of the interaction
communicated by the coarse grained self energy and the coarse grained irreducible vertex. Note that this
procedure is constructed in a way as to yield the exact result in infinite dimensions as well as in the limit of
infinite cluster size while providing thermodynamic consistency within the DCA at any cluster size.
As noted in reference [43], the Bethe Salpeter equation on the laice may be completely coarse grained

(index cg) to cluster momenta, as the DCA approximation of the irreducible vertex is constant on patches in
momentum space corresponding to the cluster momenta:
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4.6. Spin susceptibility in DCA

G
⊥,cg
4,l (q;K,P ) =

∑
k∈K,p∈P

G⊥4,l(q; k, p) =∑
k∈K,p∈P

G⊥,04,l (q; k, p)+
∑

k∈K,p∈P

∑
K′,P ′

∑
k′∈K′,p′∈P′

G⊥,04,l (q; k, k
′)Γ⊥l (Q;K ′, P ′)G⊥4,l(q; p

′, p),
(4.94)

leading to

G
⊥,cg
4,l (q;K,P ) = G

⊥,0,cg
4,l (q;K,P ) +

∑
K′,P ′

G
⊥,0,cg
4,l (q;K,K ′)Γ⊥l (Q;K ′, P ′)G

⊥,cg
4,l (q;P ′, P ). (4.95)

Here G⊥,0,cg4,l (q;K,P ) =
∑

k∈K,p∈PG
⊥,0,
4,l (q; k, p) is the coarse grained bubble part of the two particle

Green’s function²⁰.
Note that the external transfer momentum q is not affected by the coarse graining procedure, as the Bethe

Salpeter equation is diagonal in the multiindex q. e main reason why this is beneficial is of course the fact
that the sum in equation (4.93) may be split into∑

k,p

=
∑
K,P

∑
k∈K,p∈P

(4.96)

and the inner sum is carried out directly to yield G⊥,cg4,l (q;K,P ). e number of relevant momenta is thus
substantially reduced and all quantities depend on the same number of momenta, i.e. the number of cluster
momenta.

4.6.2. Truncation of the Bethe-Salpeter equation
As discussed in the previous section, the central equation describing the influence of the irreducible vertex
Γ(Q;K,P ) on two particle quantities G4(Q;K,P ) is the Bethe-Salpeter equation ²¹ (cf. for example [25]):

G⊥4 (Q;K,P ) = G⊥,04 (Q;K,P ) +
∑
K′,P ′

G⊥,04 (Q;K,K ′)Γ⊥(Q;K ′, P ′)G⊥4 (Q;P ′, P ). (4.97)

For fixed Q, this tensor equation can be formally understood as a matrix equation with a matrix-matrix-
matrix product in the second term. Unfortunately, we deal with infinitely sized matrices here and for any
numerical calculation the matrices have to be truncated. In the present work, we always deal with a finite
set of laice momenta (on the DCA cluster), therefore no truncation inK is required. However, Matsubara
frequencies have to be cut at some cutoff frequency.
Even though we have already provided many arguments why the frequency window on whichG⊥4 has to

be calculated must be shied at finite transfer frequencies iν, let us illustrate this issue even further in the
context of the Bethe Salpeter equation in the following section.

Shi of the frequency window

Anaive cutoff scheme consists of choosing the frequencywindow iω1, iω2 ∈ {−iωc, . . . , iωc}. is, however,
leads to the problem of singular matrices:

G⊥,04 (Q;K,P ) = − 1

βN
G(K)G(P )δK,P−Q. (4.98)

Obviously, this matrix is singular, if we cut it to the naive frequency window, as it does not have the full
rank, which is illustrated in Figure 4.12.

²⁰Note that our definition ofG⊥
4 implies that no factors of N

Nc
occur here.

²¹Here, we only care for the Bethe-Salpeter equation of the S+S− spin channel with G⊥
4 (Q;K,P ) =

1
βN

⟨ c̄σ,Kcσ̄,K+Qc̄↓,P c↑,P−Q ⟩. For the general case, the Bethe-Salpeter equation aquires additional spin indices.
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Figure 4.12.: Graphical representation of the naively truncated Bethe Salpeter equation. Vanishing matrix
elements are depicted in white. It is obvious that G⊥,04 is a singular matrix, if truncated in this
way. e same is also true for the other matrices but the reduced rank is not as striking in this
case.

Even more important, by inspection of actual data (e.g. figure 4.4), one observes that also G⊥4 (Q) may
become a (numerically) singular matrix if cut inappropriately. e reason for this is that the matrix has a
“center of mass” which shis away from the central Matsubara frequency point with an increasing external
Matsubara frequency iν given by the multiindex Q.
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Figure 4.13.: Good truncation scheme. Red dot: Center of the imaginary frequency plane (iω1, iω2). Green
dot: Center of the shied frequency window.

It is clear that in the shied frequency window, G⊥,04 (Q) is a diagonal matrix and has full rank. We can
easily argue that also the other matrices have to be regular matrices²².

Truncation error

Cuing the high frequency part from all matrices in the Bethe Salpeter equation introduces a systematic
error, as the matrix-matrix-matrix product mixes the high and low frequency parts of the matrices.
In a practical calculation, Γ⊥ is not the final result but used together with the laice Bethe Salpeter equa-

tion. is masks the truncation error and makes it much less severe than it might seem here. e actual
procedure for a DCA calculation is presented in the next section.

4.6.3. Calculation of G⊥cg
4,l (q;K,P ) on the laice

Keeping in mind the issue of a possible systematic error (which is controllable by increasing the cutoff fre-
quency) stemming from the truncation of the two Bethe Salpeter equations in the frequency domain, let us
go one step back and deal with infinitely sized matrices first for the derivation of a compressed form of the
quantity G⊥cg4,l (q;K,P ) without an explicit calculation of the vertex Γ⊥(Q;K,P ) as already proposed by
Mark Jarrell in [43].

²²Except for situations where we have a phase transition in the spin channel, as in this case the matrixG⊥,0
4 (Q)Γ⊥ can have eigen-

values of 1, making the matrix (1−G⊥,0
4 (Q))Γ⊥ singular and destroying the argument.
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Figure 4.14.: If the Bethe Salpeter equation is truncated to the submatrices marked in green, the red subma-
trices are neglected. erefore, in numerical calculations the exact Bethe Salpeter equation is
always replaced by an approximate, truncated Bethe Salpeter equation.

It is easy to see that because of the identificationΓ⊥c (Q;K,P ) = Γ⊥l (Q;K,P ) = Γ⊥(Q;K,P ), the vertex
Γ⊥(Q)may be eliminated from equations (4.88) and (4.95) by standard matrix manipulations and we obtain:

G
⊥,cg
4,l (q) =

[
G
⊥,0,cg
4,l (q)−1 −G⊥,04,c (Q)−1 +G⊥4,c(Q)−1

]−1
. (4.99)

Naturally, this result reduces nicely to the trivial equation G⊥,cg4,l (q) = G⊥4,c(Q) in the case in which the
underlying laice is identical with the underlying cluster.
Let us first think about the actual meaning of the inverse matrix notation. As we know (cf. section 4.4.4)

that the diagonal matrix G⊥,04,c (Q) is transformed into an off diagonal matrix upon the introduction of a
nonzero transfer momentum and frequencyQ, it may seem that an inverse matrix in this case is not defined.
is is indeed a special feature of infinite matrices that this kind of matrices can have an inverse which we
can write down easily, adopting a matrix notation:

(
G⊥,04,c (Q)−1

)
K,P

= −βNcδK,P+Q
1

G(K)G(P )
. (4.100)

is is indeed the correct result, because

∑
K′

(
G⊥,04,c (Q)−1

)
K,K′

(
G⊥,04,c (Q)

)
K′,P

=

∑
K′

−βNcδK,K′+Q
1

G(K)G(K ′)

(
− 1

βNc

)
δK′,P−QG(K

′)G(P ) = δK,P .
(4.101)

As already noted in section 4.6.2, all quantities in the Bethe salpeter equation have to be wrien down in
the shied frequency window upon truncation. It is interesting to observe that this means that all inverted
quantities will then automatically be cast into an associated frequency window which is obtained by “trans-
position” of the shied frequency window, such that the diagonal of the inverse lies on the diagonal of the
frequency window, as is obvious from equation (4.100).
In summary, the correct way of dealing with two particle matrix equations at finite transfer frequency and

momentum q requires an appropriate shi of the frequency window. en, it is allowed to perform matrix
manipulations and even inversions, even though the truncation error has to be considered. is leads to a
form of equation (4.99) truncated to the shied frequency windowwhile the matrix inversion of the diagonal
“bubble” terms G⊥,0,cg4,l (q) and G⊥,04,c (Q) can be performed analytically through equation (4.100).
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4. Two particle quantities

4.7. Analytic continuation of dynamical two particle quantities

4.7.1. Calculation of the covariance matrix
Now, we have on our hands a viable method for the calculation of two particle quantities in the framework
of the DCA. We have invested a considerable amount of care into the construction of a reliable method
and have eliminated the systematic error stemming from the truncation of the sum over internal Matsubara
frequencies. e result of our calculation is the quantity χ+−

s (q, iν). Unfortunately, this quantity is only
known on the imaginary frequency axis, while experimentally observable dynamical susceptibilities depend
on real frequencies. While theory (cf. e.g. [25, 55, 56]) assures us that there exists a meromorphic function
χ+−
s (z) and the experimental quantity of interest is just χ+−

s (ω+ i0+), the Wick rotation of numerical data
from the imaginary frequency axis to the real axis is a daunting task. e method of choice for Monte Carlo
data is a stochastic procedure using ideas from probability theory: e stochastic maximum entropy method
([42, 57]). We will not expand on this method here but only emphasize that it is crucial to have an accurate
estimate of the covariance matrix of the underlying data before the method can be used. e reason for this
is that without the knowledge of the covariance matrix, every data point of χ+−

s (q, iν)will be considered to
contain the same amount of information. is is, however not true given that the Monte Carlo data used for
the estimation of χ+−

s at different frequencies iν is strongly correlated as the same XCn matrices are used.
is leads to potential cross correlations between different frequencies and the off diagonal elements of the
covariance matrix therefore should be included.
In addition, the convergence to the asymptotic tail of χ+−

s (q, iν) for high frequencies reduces the amount
of information in the tail which can only appropriately be taken into account by considering the full covari-
ance matrix.
A trustworthy and robust method for the estimation of the covariance matrix²³ is the bootstrap method. It

makes the assumption that the sampled Monte Carlo bins are a representative approximation for the whole
population. e approximated population is then resampled to produce bootstrap samples fromwhich derived
quantities may be calculated which are associated with a covariance matrix. Let us call our Monte Carlo bins
Yi with i = 1, 2, . . . Nbins. Yi is typically a high dimensional data structure accomodating scalar, vectorial and
tensor-type observables, in our case the sign, the one particle Green’s function G(K) and the two particle
Green’s functionG⊥4 (Q;K,P ). Obviously, for this kind of object, a+ operation can be meaningfully defined
and we can resample the Monte Carlo bins to obtain bootstrap samples

Y B
j =

1

Nbins

Nbins∑
j=1

Yrand(Nbins), j ∈
[
1, . . . , Nbsamples

]
(4.102)

with a uniformly distributed, natural random number rand(Nbins) ∈ [1, . . . , Nbins] ⊂ N. is way of gener-
ating a bootstrap sample clearly allows multiple pulling of the same Monte Carlo bin.
On every bootstrap sample, we can now apply our whole data analysis toolbox in order to extract the

quantity of interest from the raw Monte Carlo data. We will call this operation formally f(Y ). We then
obtain the estimate for the covariance matrix of our result f by²⁴

Covbstrap(x, y) =
1

Nbsamples

∑
i

[f(Y B
i )]x[f(Y

B
i )]y −

(
1

Nbsamples

∑
i

[f(Y B
i )]x

)(
1

Nbsamples

∑
i

[f(Y B
i )]y

)
.

(4.103)

Numerical evaluation of equation (4.103) for huge data In the present context, the evaluation of
equation (4.103) is unfortunately not trivial in the case of huge amounts of data. Because the two particle
²³which itself is again an observable calculated from our Monte Carlo data and is in principle affected by a statistical error on its own

right
²⁴e result f can of course be as simple as a real number, in which case the covariance reduces to the variance of this scalar result,

but it may in general be a complicated high dimensional array, in which case the notion of a covariance matrix has to be formally
upgraded to a tensor. In order to circumvent this problem, we will always deal with vectorial quantities. is is acchieved by
pulling down higher dimensional quantity to a vector by introduction of a generalized stride. For a matrix quantity this would
mean rowwise concatenation of the matrix. Here, the x component of the vector valued function f(Y ) is notated as [f(Y )]x.
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4.7. Analytic continuation of dynamical two particle quantities

Green’s function G⊥4 (Q;K,P ) requires large amounts of memory (typical sizes are several gigabytes but
increase quickly if the number of frequencies or momenta is increased, the totality of the Monte Carlo bins
ranging well over 100 GB), it can easily happen that we can only accomodate a small numberNmem bootstrap
samples in the memory of the machine on which we perform the data analysis.
Typically, the Monte Carlo bins are stored on a mass storage device, today consisting of hard disk drives

(HDD). While HDDs allow for massive data storage, the random access time is very long and reading the
Monte Carlo bins from disk for the construction of bootstrap samples uses most of the time of the data
analysis code. As the actual application of the function f to the data can usually be parallelized²⁵ the cost of
reading data from disk dominates the total computational cost of the data analysis code.
Naturally, read access should therefore be limited to the absolutely neccessary amount. We notice that

this can be acchieved by several measures:

• Generate the array of indices before actually reading the bins Yi from disk. If for the construction of
the bootstrap sample Y B

j a bin is used multiple times, it only has to be read once.

• Generate the array of indices for all bootstrap samples before reading any bin from disk. is is
beneficial if more than one bootstrap sample can be kept in memory as will be argued in the remaining
part of this paragraph.

• Reorder the bootstrap samples in blocks to minimize the total number of Monte Carlo bins read from
disk.

One step that might be advantageous with today’s hardware possibilities is employing a solid state disk
(SSD). SSDs have random access times that are orders of magnitude faster than HDDs and can be employed
easily for this task²⁶.
If more than one bootstrap sample Nmem > 1 fit in memory, the total number of bins read from this can

be reduced by roughly a factorNmem. e reason for this is that on average every bin read from disk can be
reused for the generation of Nmem bootstrap samples instead of only one.
As we already know in advance, which bins will be neccessary for which bootstrap samples, we can even

optimize the order of the bootstrap samples such that the total number of disk reads is reduced. is process,
however, has only turned out to be useful if the numberNmem is very small (typically 2 . . . 5).
Let us illustrate the procedure in an example. For 20 Monte Carlo bins, we wish to generate 20 Bootstrap

samples. Naively, one would generate each bootstrap sample at a time and pull a new random number aer
reading the previous Monte Carlo bin. is is linked to a read cost of 400 as 400 Monte Carlo bins have to
be read from disk in total.
However, we can generate the indices to be read for each bootstrap sample beforehand. e result is shown

in the upper part of table 4.1. Every line corresponds to a bootstrap sample and the numbers show howmany
times the Monte Carlo bin of the corresponding column has to be read. For example, bin number 16 is used 5
times to generate the bootstrap sample number 4. Naturally, if we know this before the calculation, we will
only read it once from disk and multiply it with its number of occurrences, saving expensive read operations.
is procedure brings down the total read cost to 251 in the present example.
Further economy of read operations is achieved by trying to use a bin once read from disk as oen as

possible before reading the next bin. is can be done by keeping as many bootstrap samples in memory, as
possible, 2 in the present example. Now, if we read bin number 1 from disk for the generation of bootstrap
sample number 1, we keep it in memory and use it also for the generation of bootstrap sample number 2.
is gives us another spectacular reduction of read processes down to only 171. Obviously the lower limit
of read processes is 20 which can only be reached if all bootstrap samples fit in memory.
We observe that a further reduction of read processes might be possible by finding the optimal order of

bootstrap samples that are generated in parallel. Apparently, we have to block together bootstrap samples

²⁵In the case of calculating the DCA approximation of χ+−
s (Q) this can be trivially obtained by exploiting the fact that the Bethe

Salpeter equations are diagonal in terms of the bosonic transfer momentum and frequency Q and thus each Q sector can be dis-
tributed to a different CPU.

²⁶Using a RAID can also speed up the disk reads, but does not reduce the random acces time as SSDs do.
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Figure 4.15.: Covariance matrix of χ+−(Q, iν) for the same parameters as in figures 4.9 and 4.11. We use a
logarithmic color scale and therefore show the absolute value of matrix elements. Note that the
indices 0 through 9 correspond to the real part of χ+−, while indices 10 to 19 denote the imag-
inary part. us, the diagonal blocks depict the covariance matrices of Re(χ+−) and Im(χ+−)
respectively.

which have as many “holes”²⁷ in common as possible. is is a global optimization problem which grows
difficult very quickly. We use a small simulated annealing Monte Carlo algorithm to at least bring down the
read cost by some extent without being so ambitious as to really find the global minimum. For this, a cost
function ξ(π) associated with a permutation π ∈ S(n) of the bootstrap samples is introduced. ξ(π) is then
just the number of read operations associated with a specific order π of bootstrap samples. e optimization
process is thus mapped to finding the global minimum of ξ(π). It is of course impossible to just check every
permutation as their number is already for this small example 20! ≈ 2.4 · 1018.
For the simulated annealing, we introduce a Monte Carlo move π → π′ by adding a transposition of

two elements of the permutation π, i.e. in a given order π we exchange two bootstrap samples. Ergodicity
is guaranteed by this procedure as every permutation may be wrien as a product of transpositions. We
exclude swapping two bootstrap samples in the samememory block as this operation leaves the cost function
invariant. Introducing an artificial inverse temperature β, we accept a swap with probability

Pπ→π′ = min
[
1, e−β(ξ(π

′)−ξ(π))
]
. (4.104)

e finite temperature allows for temporary increases of the cost function to overcome energy barriers.
During the Monte Carlo run, the inverse temperature is slowly decreased until the cost function does not
change any more (on a supportable time scale). is procedure allows for bringing down the read cost in the
present example to 152. Note that unfortunately the benefit is strongly reduced when Nmem is increased, a
step that is nevertheless preferable if affordable as the total read cost can be reduced by roughly a factor of
Nmem until the limit Nbins is reached for Nmem = Nbsamples.

4.7.2. Importance of the full covariance matrix
e covariance matrices of χ+−(Q, iν) for the same data as displayed in figures 4.9 and 4.11 are shown in
figure 4.15. e covariance matrix respects the whole data analysis procedure including the extrapolation to
infinite cutoff frequency of the frequency sum. It is apparent from the data that the approximation of a diag-
onal covariance matrix is not valid in general. e reason for the correlations between different frequencies

²⁷i.e. Monte Carlo bins that are not used for the specific bootstrap sample.
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is twofold: On the one hand, the asymptotic behaviour for high frequencies is reflected in the covariance
matrix and on the other hand, data for different frequencies iν stems originally from the sameXσ

Cn
matrices

introduced earlier and is therefore correlated.
Ignoring these correlations might introduce spurious behaviour aer analytic continuation to the real axis

and is therefore not acceptable.

4.7.3. Analytic continuation of the spin susceptibility
Ultimately, we are interested in the spin susceptibility on the real axis

χ′′(q, ω) =
π

Z

∑
n,m

e−βEn |⟨n |S+(q) |m ⟩|2 δ(ω + En − Em)(1− e−βω). (4.105)

Here we also understand that S+(q) = 1√
N

∑
k

c†↑,kc↓,k+q and therefore (S+(q))† = S−(q). From the DCA

code, we obtain the coarse grained laice 2 particle Green’s function

G4(k, p, q) =

(
1

βN

)3 ∑
r1,r2,r3,r4

β∫
0

d(1234) eiωnτ1−(iωn+iν)τ2+iω′
nτ3−(iω

′
n−iν)τ4

e−ikr1+i(k+q)r2−ipr3+i(p−q)r4 ⟨Tc†↑,r1(τ1)c↓,r2(τ2)c
†
↓,r3(τ3)c↑,r4(τ4) ⟩ .

(4.106)

We obtain the spin susceptibility on the imaginary axis by summing over the internal momenta k and p and
over the internal frequencies iωn and iω′n:

χ(q, iν) =
∑

iωn,iω′
n,k,p

G4(k, p, q). (4.107)

is gives us the Lehmann representation

χ(q, iν) = 1

Z

∑
n,m

|⟨n |S+(q) |m ⟩|2 e
−βEm − e−βEn

En − Em − iν . (4.108)

Comparing the Lehmann representations on the real and imaginary axis, we obtain the basic equation
needed for the analytic continuation:

χ(q, iν) = 1

π

∞∫
−∞

dω 1

ω + iν χ
′′(q, ω). (4.109)

Unfortunately, this cannot be used, as we do not know the sum rule
∞∫
−∞

dω χ′′(q, ω). (4.110)

We can, however, rewrite the expression such that a sum rule is known, which is crucial for the application
of the stochastic maximum entropy method:

χ(q, iν) = 1

π

∞∫
−∞

dω ω

ω + iν
χ′′(q, ω)

ω
=

∞∫
−∞

dωK(iν, ω)A(ω). (4.111)

For the “spectral function” A(ω), a sum rule can be easily found, namely:
∞∫
−∞

dωA(ω) =
∞∫
−∞

dω χ
′′(q, ω)

ω
= πχ(q, iν = 0). (4.112)
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e kernel used in the stochastic maximum entropy method is given by

K(iν, ω) = ω

π(ω + iν) . (4.113)

e maximum entropy method calculates A(ω), which then has to be transformed back to χ′′(q, ω).
Note that this procedure has the drawback that the maximum entropy method needs to be fed with a sum

rule bearing a statistical error. It is therefore advisable to divide χ(q, iν) by the sum rule — exploiting the
idea discussed in section A.2 — already on the level of bootstrap samples. is leads to the incorporation of
statistical uncertainties in the covariance matrix and the exactly known sum rule of 1 can be used.

4.8. Conclusion
We have developed a method for the calculation of the dynamical spin susceptibility in DCA on the real
frequency axis. e whole procedure is very involved and requires many intermediate steps that have to be
controlled:

• Before starting the two particle calculation, the DCA cycle has to be checked to converge, yielding the
cluster self energy Σ(K, iωn). is step can be handeled prey well as a lot of experience is available
and CT-INT is a reliable cluster solver.

• In the second step, for the converged DCA bath Green’s function, a final CT-INT calculation is per-
formed, in which G⊥4,c(Q;K,P ) is calculated. Appropriate cutoff frequencies have to be chosen. is
step is computationally extremely demanding and enormous amounts of CPU time and memory are
required.

• For the determination of the laice two particle Green’s function, the clusterG⊥4,c(Q;K,P )matrix has
to be inverted for every frequency-momentum combination Q, corrected for the DCA laice bubble
part G⊥,0,cg4,l (q) and inverted back as discussed in section 4.6.3.

• In order to obtain χ+−(q, iν), the sum over internal frequencies and momenta K and P has to be
performed for G⊥4,l for different cutoff frequencies and extrapolated to infinite cutoff frequency.

• e last two steps have to be repeated for every bootstrap sample in order to obtain a reliable estimate
of the covariance matrix of χ+−(q, iν).

• Analytic continuation to the real frequency axis has to be performed for every q that is requested.

Note that frequency cutoff errors can in principle be eliminated completely bymoving thematrix inversion
step into the loop for different cutoff frequencies, as the extrapolation procedure will eliminate a potential
cutoff error stemming from this step. is comes, however, at the price of an increase of the computa-
tional cost for the calculation of χ+−(q, iν) for every bootstrap sample. Data for the dynamic susceptibility
χ+−(q, ω) calculated in DCA by using this method of full elimination of the cutoff error will be presented
in an upcoming publication [58].
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Raw indices for 20 bootstrap samples of 20 Monte Carlo bins.
#bin mod 10 = 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

#B =1 1 1 1 3 2 1 1 3 2 1 2 2
2 3 2 1 1 1 3 2 1 2 1 1 1 1
3 1 1 1 1 1 3 4 1 2 3 2
4 1 2 1 1 2 1 1 1 1 1 5 3
5 2 2 2 3 1 1 2 3 2 2
6 2 1 2 1 4 1 1 1 2 2 1 1 1
7 2 2 3 1 1 3 1 1 1 1 1 1 2
8 1 2 1 3 2 2 2 3 1 2 1
9 1 1 3 1 2 3 2 3 2 1 1
10 2 1 1 1 1 1 2 3 1 2 1 1 1 2
11 3 1 3 1 1 1 3 2 3 1 1
12 2 1 1 2 1 1 3 2 1 1 1 3 1
13 1 3 1 1 1 1 1 1 2 1 1 2 2 2
14 1 2 2 1 2 3 2 1 1 1 1 1 1 1
15 1 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1
16 1 1 2 4 1 1 2 1 1 1 1 2 2
17 1 1 2 1 1 1 3 2 3 2 1 1 1
18 1 1 3 2 1 1 3 2 1 2 3
19 1 1 3 2 1 1 1 1 1 2 1 5
20 1 1 1 2 2 1 1 2 1 1 2 3 1 1

Naive: 400 reads. Repeat economy: 251 reads. With 2 bins in memory: 171 reads.
Optimized index array for the same bootstrap samples as above.
#bin mod 10 = 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

#B =3 1 1 1 1 1 3 4 1 2 3 2
6 2 1 2 1 4 1 1 1 2 2 1 1 1
20 1 1 1 2 2 1 1 2 1 1 2 3 1 1
15 1 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1
13 1 3 1 1 1 1 1 1 2 1 1 2 2 2
9 1 1 3 1 2 3 2 3 2 1 1
7 2 2 3 1 1 3 1 1 1 1 1 1 2
10 2 1 1 1 1 1 2 3 1 2 1 1 1 2
16 1 1 2 4 1 1 2 1 1 1 1 2 2
19 1 1 3 2 1 1 1 1 1 2 1 5
14 1 2 2 1 2 3 2 1 1 1 1 1 1 1
18 1 1 3 2 1 1 3 2 1 2 3
12 2 1 1 2 1 1 3 2 1 1 1 3 1
11 3 1 3 1 1 1 3 2 3 1 1
1 1 1 1 3 2 1 1 3 2 1 2 2
17 1 1 2 1 1 1 3 2 3 2 1 1 1
8 1 2 1 3 2 2 2 3 1 2 1
5 2 2 2 3 1 1 2 3 2 2
2 3 2 1 1 1 3 2 1 2 1 1 1 1
4 1 2 1 1 2 1 1 1 1 1 5 3

Optimized bootstrap sample order:152 reads.

Table 4.1.: Example showing a bootstrap sample index array for 20 Monte Carlo bins (columns) before (top)
and aer the minimization of the bin reads with 2 bins in memory.
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5.1. Introduction
Magnetic degrees of freedom in superconducting environments have aracted considerable interest due to
the underlying competing effects. Already a classical spin oriented along the z-axis [59, 60] embedded in a
superconducting host generates a localized state within the superconducting gap. As a function of the inter-
action strength this excitation crosses the Fermi energy thereby triggering a first order transition between a
ground state with vanishing total electronic spin and a ground state with nonzero total electronic spin.
In the case of a quantum spin, things become even more interesting and hybrid superconductor-quantum

dot devices have recently aracted much aention [61] due to their peculiar physical behavior determined
by the interplay of superconductivity of the leads and the level characteristics of the dot. Applications in
nanoelectronics or quantum-information processing are envisaged. Among other properties, DC Joseph-
son transport [62–67] was intensively studied. Similar to the Josephson effect of ordinary tunnel junctions
[68] a difference ϕ ̸= 0, π of the order parameter phases of the two superconductors with gap ∆ leads to
an equilibrium Josephson current J running through the system [62–67]. e focus was on carbon nan-
otube dots [62, 64–67] with well separated single-particle levels, i.e., level broadening Γ and temperature T
much smaller than the level spacings, simplifying the modeling as a single-level dot with energy ϵ can be
considered.
It is well established both theoretically [69] as well as experimentally [63–67] that the local Coulomb

interaction, i.e. the dot charging energyU , can lead to a 0-π transition of the quantum dot Josephson junction,
associated to a first order (level-crossing) quantum phase transition from a singlet (0) to a doublet (π) ground
state [70]. In fact, a variation of any of the system parameters U , ϵ, ∆, ϕ, as well as the tunnel couplings
ΓL/R (with Γ = ΓL +ΓR) can be used to tune the system across the phase boundary, if the others are taken
from appropriate ranges. At T = 0 the transition leads to a jump in J from a large and positive (0-phase) to
a small and negative value (π-phase) as Cooper pair tunneling through the junction necessarily accumulates
a phase π if a local magnetic moment is formed on the quantum dot [71–74]. At finite temperatures, it
is smeared out and significantly diminished, yet the sign change of J is clearly observed in SQUID setups
[63, 64, 67]. e experimental challenge in observing the true magnitude of the Josephson current to be
compared with theoretical predictions consists in suppressing uncontrolled phase fluctuations, which can
be achieved by using designed on-chip circuits [65, 66]. In such experiments J is tuned by a variation of
a gate voltage Vg which translates into a rather controlled change of ϵ¹, inducing a change of the electron
number on the impurity. e effect of the changing electron number on the behavior of such systems has
also been extensively studied[75–78] and the theoretical expectation of the collapse of the Kondo effect if the
superconducting gap∆ exceeds the Kondo temperature TK has been confirmed by experiments of Buitelaar
et al.[79].
e physics becomes particularly interesting if the dot is tuned to a parameter regime in which Kondo

correlations [1] become relevant for suppressed superconductivity. It is characterized by the appearance
of the Kondo scale (at odd dot filling) kBTK =

√
ΓU/2 exp(−πU/8Γ) [1]. Kondo physics is important if

kBT ≲ kBTK ≪ Γ, with kB denoting the Boltzmann constant. In this regime perturbative methods in either
U , such as self-consistent Hartree-Fock (HF) [80], or Γ [69] become uncontrolled. Even for ∆ ≫ kBTK, at
which superconductivity prevails, one expects Kondo correlations to have a significant impact on J . ese
were partly incorporated using a method developed for large∆ [3]. Other techniques successfully used for
Kondo correlated quantum dots with normal leads, such as the noncrossing approximation (NCA) [81, 82],
numerical renormalization group (NRG) [83–87], (Hirsch-Fye) quantum Monte Carlo (QMC) [88–90], and

¹e gate voltage variation may simultaneously slightly change the level broadening Γ by changing Schoky barriers at the contacts
(cf. reference [67]).
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functional renormalization group (fRG) [84] were extended to the present setup. With superconducting
leads they suffer from significant conceptual or practical limitations such as, e.g. half filling of the dot level
(NRG) and high (NCA, QMC) or zero (fRG) temperature and, therefore, cannot be used for a quantitative
comparison to experiments performed at temperatures of the order of a few tens of mK and with a wide span
of gate voltages [65, 66]. e regime of the strongest competition between superconductivity and Kondo
correlations is reached for ∆ ≈ kBTK. For typical experimental gap sizes of ∆ ≈ 0.1meV [65–67], in this
regime kBTK ≪ Γ is no longer fulfilled. Still, even for kBTK ≲ Γ a precursor of Kondo correlations is expected
to stabilize the singlet phase and perturbative methods become unreliable.
Most numerical works present in the literature, however, only present either the study of the Josephson

current [83, 84, 88, 89] or the study of the spectral properties of theantum dot [86].
In addition to numerical efforts, many analytical approximations have been introduced to tackle different

aspects of the physics of the problem. e non crossing approximation has been used to show that Andreev
bound states crossing the Fermi energy are connected to the 0 to π transition of the Josephson current[81].
Perturbative methods as well as mean field theory have brought a quite complete understanding of the phase
diagram featuring the 0 and π phases as well as the intermediate phases 0′ and π′[3, 91, 92]. Another method
employed by several authors is the introduction of different analytically solvable effective models, which are
valid in different limits [3, 86, 92]. ese models are very useful to acquire an intuitive understanding of
the physics. We will present the study of an effective Hamiltonian for the limit of a superconducting gap∆
much larger than the bandwidth to support the interpretation of the CT-INT data.
In this chapter² we demonstrate how to use the weak coupling CT-INT method [9] to compute the Joseph-

son current as well as the spectral functions for the same parameter set in order to present a comprehensive
study of the 0 to π transition of a Josephson quantum dot. Our numerically exact data clearly confirms the
picture of a first order phase transition from a singlet phase linked to the 0-junction regime of the Josephson
current J to a doublet phase corresponding to the π-junction regime.
We further exploit the exceptional flexibility and accuracy of this approach and compute J in combination

with the normal-state linear conductance G for the parameters of the experiment of Ref. [65]. Our simulta-
neous analysis of J and G reveals that the dot shows significant Kondo correlations, but superconductivity
prevails as ∆ ≈ 10TK. In the normal state it lies in the interesting and theoretically challenging parameter
regime with kBT ≈ kBTK ≈ µBh, where µBh (with the Bohr magneton µB) denotes the scale associated to the
applied Zeeman field h used to destroy superconductivity. Compared to previous approaches, we are now
able to quantitatively study this experimentally relevant parameter regime with a numerically exact method,
and find excellent agreement between the experimentally measured critical current Jc and the numerically
computed one for both the 0- and π-phases (see Fig. 5.16). We show that due to the fairly large le-right
asymmetry of the tunnel couplings and the finite temperature the current-phase relation J(ϕ) is rather sinu-
soidal even close to the 0-π transition (see Fig. 5.17), providing an a-posteriori justification of the extraction
of Jc from the measured current-voltage characteristics of the on-chip circuits applying the extended RSJ
model [65, 66]. Finally, using the parameters of the experiment, but increasing Γ such that ∆ ≈ kBTK we
compute the gate voltage dependence of the current in the regime of the strongest competition between
superconductivity and (precursors o) Kondo correlations (see Fig. 5.18).
A somewhat related topic — explored out of curiosity — is the study within dynamical mean field theory

(DMFT) [15] of the periodic Anderson model with an s-wave BCS-conduction band (BCS-PAM). Within this
approximation, the BCS-PAM maps onto the single impurity Anderson model with superconducting baths
supplemented with a self-consistency condition. We will show that the physics of the impurity model can
be taken over to the laice case. In particular the first order transition observed in the impurity model is
reproduced in the BCS-PAMand is signalized by the crossing of the low energy excitations in the local density
of states. e momentum resolved single particle spectral function in the singlet phase reveals the coherent,
Bloch-like, superposition of Andreev bound states. In the doublet or local moment phase the single particle
spectral function is characterized by incoherent quasiparticle excitations. We provide an understanding of
this in terms of models of disorder.

²e content of this chapter has been published in nearly identical form in references [24] and [28]. Additional technical details are
provided here to explain the method for the calculation of the conductance in a more profound way.
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5.2. Model
e physics of a quantum dot coupled to two superconducting leads withN laice sites (L=le, R=right) via
a hybridization term is captured by the single impurity Anderson model with the leads described by the BCS
mean-field Hamiltonian:

H̃ =

R∑
α=L

H̃0,α + H̃d + H̃V , (5.1)

with

H̃0,α =
∑
k,σ

ξk c̃
†
k,σ,αc̃k,σ,α

−
∑
k

(
∆eiϕα c̃†k,↑,αc̃

†
−k,↓,α + h.c.

)
,

H̃d =
∑
σ

ξdd̃
†
σd̃σ + U

(
d̃†↑d̃↑ −

1

2

)(
d̃†↓d̃↓ −

1

2

)
,

H̃V = − V√
N

R∑
α=L

∑
σ,k

(
c̃†k,σ,αd̃σ + d̃†σ c̃k,σ,α

)
.

(5.2)

e operators c̃†k,σ,α are creation operators for electrons with a z-component of the spin σ and momentum
k in lead α, d̃†σ is a creation operator of an electron with a z-component of the spin σ on the quantum
dot. ξk = ϵ(k) − µ = −2t cos(k) − µ is the dispersion relation for the electrons in the leads, where we
assume, that the dispersion is independent of the lead index α, and ξd = ϵd − µ is the position of the dot
level. roughout this chapter, we will express all quantities in units of t = 1. e superconducting order
parameter has a modulus∆ and a phase ϕα. e parameter V characterizes the strength of the hybridization,
and U corresponds to the Coulomb blockade.
Since the Hamiltonian does not conserve the electron number as a consequence of the BCS-term, we use

the standard trick of rewriting the Hamiltonian in terms of creation and annihilation operators of quasipar-
ticles, which for spin up are identical to the electrons, but correspond to holes in the spin down sector. is
can also be expressed as a canonical transformation:

d̃†↑ → d†↑, d̃
†
↓ → d↓, c̃

†
k,↑,α → c†k,↑,α, c̃

†
−k,↓,α → ck,↓,α. (5.3)

Using the new operators, the Hamiltonian can be wrien in a Nambu notation:

H = H0 +HU =
∑
k,α

c†k,αEα(k)ck,α + d†ϵdd

− V√
N

∑
k,α

(
c†k,ασzd+ d†σzck,α

)
+HU

(5.4)

withHU = −U(d†↑d↑ −
1
2 )(d

†
↓d↓ −

1
2 ), the Nambu spinors

d =

(
d↑
d↓

)
, ck,α =

(
ck,↑,α
ck,↓,α

)
, (5.5)

the matrices
Eα(k) =

(
ξk −∆eiϕα

−∆e−iϕα −ξk

)
, ϵd =

(
ξd 0
0 −ξd

)
(5.6)

and the Pauli matrix
σz =

(
1 0
0 −1

)
. (5.7)
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Figure 5.1.: Eigenenergies of the effective Hamiltonian (5.15) for varying U . e fixed parameters are given
by V = 0.5 and ∆ = 1. e crossing of the two lowest levels is clearly seen at U ≈ 1.7. e
ground state forU < 1.7 is a singlet state. For larger values ofU , the twofold degenerate doublet
state becomes energetically more favorable.

For practical reasons, we use the following definition for the single particle Green’s function throughout
Sec. 5.2 to Sec. 5.5 as already used before:

Gσσ′

dd (iωm) =

β∫
0

dτ exp(iωmτ) ⟨Td†σ(τ)dσ′ ⟩ . (5.8)

With this definition, the resolvent operator G0(iωm) =
(
−iωm1−HT

0

)−1
can be used to obtain the

Green’s function of the noninteracting system:

G0
dd(iωn)

−1 = (−iωn1− ϵd)

+
V 2

N

∑
α,k

σz

(
iωn1+ET

α(k)
)−1

σz.
(5.9)

From this equation, we obtainG0
dd(τ), which is the basic ingredient for the application of CT-INT to this

problem as we already detailed in chapter 3.
For the Josephson current, we will also need the Green’s functionG0,α

kd :

G0,α
kd =

Vα√
N

(
iωn1+ET

α(k)
)−1

σzG
0
dd(iωn). (5.10)

5.3. Effective Hamiltonian in the limit∆/W → ∞
To gain a deeper understanding of the physics on the quantum dot, it is useful to search for analytically
solvable toy models. We will study an effective model, which reproduces the physics of the Hamiltonian
(5.1) in the limit∆/W → ∞, whereW is the band width. To derive the effective model, we look at the limit
∆ → ∞ of the Green’s function in Eq. (5.9). e superconducting order parameter ∆ appears only in the
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Figure 5.2.: For∆ < 1.412 the ground state is the singlet state from Eq. (5.16). If∆ is increased, the weight
α of the single occupied states | ↑̃, ↓̃ ⟩ and | ↓̃, ↑̃ ⟩ decreases in favor of the states with a double
occupied quantum dot, corresponding to the weights β and γ. At ∆ = 1.412 the ground state
changes to the twofold degenerate doublet state given in (5.19) and the weight of the states with
a single occupied quantum dot b increases with ∆. e parameters in this plot are V = 0.5 and
U = 1.0.

matrix Eα(k), thus we examine the behavior of this matrix for large values of∆. is can easily be done by
diagonalizing Eα(k) for ϕα = 0:

Eα(k) = U−1∆

(
−
√
∆2 + ξ2k 0

0
√
∆2 + ξ2k

)
U∆. (5.11)

Let us first look at the limit ∆ → ∞ of the transformation matrix U∆, which for brevity is not a unitary
matrix.

U∆ =

− ξk−
√

∆2+ξ2k
∆ 1

− ξk+
√

∆2+ξ2k
∆ 1

⇒ U∞ =

(
1 1
−1 1

)
. (5.12)

e diagonalmatrix in Eq. (5.11) can be considered in a similarmanner andwe obtain for lim
∆→∞

Eα(k) = E∞:

E∞ = U−1∞

(
−∆ 0
0 ∆

)
U∞ =

(
0 −∆

−∆ 0

)
. (5.13)

Using this result, for large values of∆ the sum over k and α in Eq. (5.9) can be carried out yielding

G0,∞
dd (iωn)

−1 = (−iωn1− ϵd) + 2V 2σz (iωn1+E∞)
−1

σz. (5.14)

is is exactly the free Green’s function obtained from a Hamiltonian of the form:

Heff = −
√
2V (c†σzd+ d†σzc) + c†E∞c+ d†ϵdd+HU . (5.15)

Heff describes a system consisting of one bath site c connected by a hybridization term to the correlated quan-
tum dot d. e dispersion of the bath has completely vanished, as the superconducting band gap becomes
much larger than the bandwidth.
We chose a basis of the 16 dimensional Hilbert space and write the Hamiltonian as a matrix, which sub-

sequently can be diagonalized. As we have restricted the parameter space for the Monte Carlo simulations
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to ϵd = 0 and µ = 0 in the original Hamiltonian of Eq. (5.1), we will use the same parameters for the exact
diagonalization results.
Note, that the effective Hamiltonian in the limit ∆/W is not unique. In the case of real ∆, the Green’s

function (5.9) for N = 1, µ = −2t and ϵd = µ reduces exactly to (5.14), as EL = ER = E∞. is case
corresponds to the effective Hamiltonian in the zero bandwidth limit studied by Vecino et al. [92].

5.3.1. Ground state of the effective model
e ground state of the system (5.15) can be determined by diagonalizing the HamiltonianHeff. As depicted
in Fig. 5.1, the energy levels cross at a critical value of U = Uc and a similar behavior can be observed by
varying ∆ with a corresponding critical value ∆c. For U < Uc and ∆ < ∆c, the ground state is given by
|ψs ⟩ = −α (| ↑↓, 0 ⟩ − |0, ↑↓ ⟩) − β (| ↑, ↓ ⟩+ | ↓, ↑ ⟩) − γ (| ↓, ↓ ⟩+ | ↑, ↑ ⟩), with the notation c†σ |0, 0 ⟩ =
|σ, 0 ⟩ and d†σ |0, 0 ⟩ = |0, σ ⟩. Note, that we are using the unphysical basis introduced in Eq. (5.3). To
interpret this ground state it is beer to return to the physical basis by inverting the canonical transformation
in Eq. (5.3) and transforming the vacuum state |0, 0 ⟩ → | ↓̃, ↓̃ ⟩. e ground state can then be rewrien in
the physical basis as:

|ψs ⟩ = α
(
| ↓̃, ↑̃ ⟩ − | ↑̃, ↓̃ ⟩

)
+ β

(
| 0̃, ↑̃↓̃ ⟩+ | ↑̃↓̃, 0̃ ⟩

)
+ γ

(
| 0̃, 0̃ ⟩+ | ↑̃↓̃, ↑̃↓̃ ⟩

)
.

(5.16)

is state is clearly a singlet state, corresponding to a Kondo singlet between the quantum dot and the
bath with the dominant weight α. e states representing a pairing on the quantum dot or in the bath have
the suppressed weights β and γ for small values of∆ but grow more important if∆ is increased as is shown
in Fig. 5.2.
At U > Uc, the ground state changes and we get the twofold degenerate ground states

|ψd,↑ ⟩ = a (| ↑↓, ↑ ⟩ − | ↑↓, ↓ ⟩) + b (| ↑, ↑↓ ⟩+ | ↓, ↑↓ ⟩) (5.17)

and
|ψd,↓ ⟩ = a (|0, ↑ ⟩ − |0, ↓ ⟩) + b (| ↓, 0 ⟩+ | ↑, 0 ⟩) , (5.18)

rewrien in the physical basis:

|ψd,↑ ⟩ = a
(
| ↑̃, 0̃ ⟩ − | ↑̃, ↑̃↓ ⟩

)
+ b

(
| 0̃, ↑̃ ⟩+ | ↑̃↓, ↑̃ ⟩

)
|ψd,↓ ⟩ = a

(
| ↓̃, 0̃ ⟩ − | ↓̃, ↑̃↓ ⟩

)
+ b

(
| 0̃, ↓̃ ⟩+ | ↑̃↓, ↓̃ ⟩

)
.

(5.19)

is two-fold degenerate ground state has a z-component of the total spin ±1/2 and hence corresponds to
a local moment.

5.3.2. Phase diagram
To further illustrate the phase transition between the singlet state |ψs ⟩ and the doublet states |ψd,↑↓ ⟩, the
double occupancy ⟨ d̃†↑d̃↑d̃

†
↓d̃↓ ⟩ of the quantum dot in the effective model is shown in Fig. 5.3. At low

temperature a very sharp drop of the double occupancy on the phase boundary can be observed, which
evolves to a jump at T = 0. Here the larger values of the double occupancy are connected to the singlet
phase, while the lower values belong to the doublet phase, where single occupancy is favored. is can be
understood by studying the expectation value of the double occupancy in the ground state. In the singlet
phase, we obtain

⟨ψs | d̃†↑d̃↑d̃
†
↓d̃↓ |ψs ⟩ = |β|2 + |γ|2 , (5.20)

and for the doublet phase:
⟨ψd,↑↓ | d̃†↑d̃↑d̃

†
↓d̃↓ |ψd,↑↓ ⟩ = |a|2 . (5.21)
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Figure 5.3.: Double occupancy ⟨ d̃†↑d̃↑d̃
†
↓d̃↓ ⟩ of the quantum dot in the effective model at β = 200 and V =

0.5. is plot can be understood as a phase diagram of the effective model, as the phase boundary
is accompanied by a sharp decay of the double occupancy.

From the behavior of the weights β, γ and a shown in Fig. 5.2 it is clear that the double occupancy increases
with∆ in the singlet phase and decreases in the doublet phase.
Note, that many of the results presented here can be observed either at fixedU or∆ as can be conjectured

from Fig. 5.3.

5.3.3. Proximity effect

To gain further insight in the sign change of the local pair correlations ⟨ d̃†↑d̃
†
↓ ⟩ [83, 93, 94], we calculate the

ground state expectation value of the local pair correlations in the effective model (5.15). For the singlet
phase, we obtain

⟨ψs | d̃†↑d̃
†
↓ |ψs ⟩ = ⟨ψs |

(
β | ↑̃↓̃, ↑̃↓̃ ⟩+ γ | ↑̃↓̃, 0̃ ⟩

)
= 2Re(β∗γ) ≥ 0.

(5.22)

Clearly, only terms describing the pairing on the quantum dot contribute to the pair correlations, whereas
the Kondo singlet of electrons on the quantum dot and in the bath does not. From Fig. 5.2, it is obvious that
the resulting pairing correlation is positive and increases with ∆. is illustrates the proximity effect, as a
pair field in the bath induces a pair field on the quantum dot.
On the other hand, in the doublet phase, we obtain

⟨ψd,↓ | d̃†↑d̃
†
↓ |ψd,↓ ⟩ = ⟨ψd,↓ | a | ↓̃, ↑̃↓ ⟩ = − |a|2 < 0. (5.23)

As in the singlet phase, only the states corresponding to a pairing on the quantum dot contribute to the pair
correlations. e local moment part of the ground state does not generate pair correlations. As the weight a
in the doublet phase ground state is positive and decreases with ∆ (see Fig. 5.2), the local pair correlations
have a negative sign in contrast to the positive sign in the singlet phase and decrease with∆.
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Figure 5.4.: Spectral function A↑↑(ω) of the effective model for different values of∆ at β = 200, U = 1 and
V = 0.5. e δ-peaks have been broadened by a Gaussian function of width σ = 0.04 for beer
visibility.

5.3.4. Spectral function
Using the Lehmann representation, the spectral function A↑↑(ω) of the effective model is easily calculated.
It is defined by

A↑↑(ω) =
π

Z

∑
n,m

Mnm

(
e−βEm+e−βEn

)
δ(ω+En−Em), (5.24)

with the matrix elementsMnm =
∣∣∣⟨n | d̃†↑ |m ⟩

∣∣∣2. e spectral function is shown in Fig. 5.4. Comparing
this plot to the numerical solution of the full model as depicted in Fig. 5.13, we observe, that the simple model
already shows the important feature of an excitation at the position ω = 0 at the critical value of ∆. Even
though for very small values of ∆, the Kondo resonance at ω = 0 can not be seen in the simple model, we
see a precursor of the Kondo resonance as a pole of the Green’s function, which develops into a resonance
if we increase the number of sites in the bath[95].
A careful analysis reveals, that the low frequency signature of the spectral function reflects the excitation

between the two lowest lying states of the spectrum. ese states are the ground states of the singlet and the
doublet phase and therefore, the position ω of the excitation marks precisely the energy difference of the two
ground states. At the critical value of ∆ = 1.412, the level crossing occurs and leads to a vanishing energy
difference of the two ground states, meaning that the excitation between the two states lies now precisely at
ω = 0.

5.3.5. Dynamical spin structure
Like the spectral function, the dynamical spin structure factor S(ω) can be calculated using the Lehmann
representation:

S(ω) =
π

Z

∑
n,m

e−βEn

∣∣∣⟨n | S̃+ |m ⟩
∣∣∣2 δ(ω + En − Em). (5.25)

In the Monte Carlo simulation, a numerically more stable quantity is obtained by replacing S+ by Sz in the
above equation. is quantity is completely equivalent toS(ω), as we onlymake use of theSU(2)-symmetry
of the problem, and is therefore used in the following.
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Figure 5.5.: Dynamical spin structure factor S(ω) of the effective model at β = 200. e phase transition
from the singlet-phase to the doublet-phase for U = 1 and V = 0.5 occurs at∆ ≈ 1.412. At this
point a transition from a gapped excitation to a peak at ω = 0 corresponding to a local magnetic
moment in the doublet phase is observed. To visualize the δ-functions, a Gaussian broadening of
width σ = 0.05 has been applied.

In the representation (5.25) ofS(ω), it is clear that the dynamical spin structure factor will show excitations
at frequencies corresponding to the energy needed to flip the spin on the quantum dot. erefore, the
dynamical spin structure factor is very well suited to determine whether the system is in the singlet or
in the doublet regime.
In Fig. 5.5 the phase transition from the singlet phase to the doublet phase is reflected by the fact, that

in the singlet phase, a gapped excitation can be observed, whereas in the doublet phase, a peak at ω = 0
emerges, which corresponds to a local magnetic moment.

5.3.6. Dynamical charge structure

e dynamical charge structure factorN(ω) can be defined by the Lehman representation

N(ω) = − π

Z

∑
n,m

|⟨n | ñ− δn,m |m ⟩|2 e−βEmδ(ω + En − Em). (5.26)

As for the other spectral functions, the charge structure factor N(ω) shown in Fig. 5.6, exhibits a sharp
change of its behavior at the phase transition for the critical value of the superconducting gap∆. We observe,
that the charge structure shows a finite gap for all values of∆ and that for large values of∆, the gap increases
in a slightly nonlinear manner.
A more detailed study of the matrix elements contributing to the charge structure factor reveals, that

because of correlation we have completely different excitations than for the spectral function. In fact, the
most prominent excitations are excitations from the respective ground states in the two different phases to
higher energy states with structure similar to that of the ground states.
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Figure 5.6.: Dynamical charge structure factor N(ω) of the effective model at β = 200. We have used the
same parameters as for Fig. 5.4

5.4. CT-INT

5.5. Numerical results
In this section, we present the results obtained by CT-INT simulations for the model (5.1). We restrict our-
selves to the case of half filling, ϵd = 0 and µ = 0. In the first part of this section, we will discuss the
results for static quantities including the Josephson current, double occupancy and pair correlations on the
quantum dot. We then proceed to dynamical quantities such as the single particle spectral function and the
dynamical spin structure factor.

5.5.1. Josephson current
e Josephson current flowing through the antum dot can be calculated directly within the CT-INT
method, as it is given by an equal time Green’s function:

⟨jα ⟩ = i
V√
N

∑
k,σ

⟨ c̃†k,σ,αd̃σ − d̃†σ c̃k,σ,α ⟩ (5.27)

We show here our results for the Josephson current at an inverse temperature of β = 50 as a function of
the superconducting gap ∆. For small values of ∆, we observe a sinusoidal form of the Josephson current
as a function of the phase difference ϕ with increasing amplitude, as∆ increases (see Fig. 5.7).
is parameter regime is known as the 0-Junction regime, because the Josephson current Ij(ϕ) = ∂Ω

∂ϕ has
a zero with positive slope at ϕ = 0, corresponding to a minimum in the grand potential Ω at ϕ = 0 (see Fig.
5 in reference [84]).
If the value of ∆ is further increased, the behavior of the Josephson current changes, as in the region

∆ ≈ 0.15 . . . 0.35 the Josephson current shows a zero between ϕ = 0 and ϕ = π. (see Fig. 5.7). is leads
to a minimum in the grand potential at π and the parameter regime is called 0′ or π′ regime depending on
which minimum of the grand potential is the global one [96]. e behavior of the Josephson current is in
accordance with the behavior of the double occupancy seen in Fig. 5.11, as in the same parameter region,
where we observe the 0′ to π′ transition, the drop of the double occupancy as a function of ϕ can be observed,
which is linked to the change of the curvature of the current-phase relation of the Josephson current.
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Figure 5.7.: Josephson current in the 0 junction regime (le panel) and in the 0′ and π′ regime (right panel)
for the parameter set β =50, U = 1, V =0.5, µ =0 and ϵd =0.

For larger values of ∆, the sign of the Josephson current changes and the grand potential shows now a
single minimum at ϕ = π, this regime is therefore called the π regime (see Fig. 5.8).
e picture for the behavior of the grand potential as a function of ϕ that we get from the current phase

relation of the Josephson current agrees very nicely with the results presented by Benjamin et al.[97].
e current phase relations for the different phases presented here were also extensively studied by Kar-

rasch et al. using the fRG and NRG methods [84], Choi et al. using the NRG method [83], as well as by
Siano and Egger using the Hirsch-Fye QMC method [88–90]. Even though the numerical exactness of cer-
tain results has been debated, the results of all numerical works show very good qualitative agreement and
are confirmed by the present results.
In the literature[84, 90], the temperature dependence of the current phase relation of the Josephson current

has been discussed. We show CT-INT results in Fig. 5.9 which look very similar to the Siano and Egger
result[90]. As CT-INT is numerically exact, our result suggests that the crossing of all curves in one single
point[84] at Ij = 0 found in the approximate finite temperature NRG is not universal.

5.5.2. Double occupancy
We learned from the toy model described in Sec. 5.3 that the system exhibits a phase transition from the
singlet phase to the doublet phase as U is increased. is picture is consistent with the NRG results of Bauer
et al. [86]. e phase transition can be observed in the double occupancy ⟨ n̂↑n̂↓ ⟩ of the quantum dot,
which is proportional to ∂Ω

∂U , where Ω is the grand potential. At T = 0, a sharp step function of the double
occupancy is expected in the case of a first order phase transition. e reason for this is illustrated easily as
in the limit of T → 0 we have³ Ω = − 1

β lnZ = E0. Clearly, if we have a level crossing associated with the
change of the ground state, the slope ofE0(U) changes as illustrated in figure 5.1 and therefore, its derivative
shows a sharp jump. While the T = 0 regime is not directly accessible to quantumMonte Carlo calculations,
we calculated the double occupancy for different temperatures using the CT-INT-method. e results are
shown in Fig. 5.10. From the data, it is obvious that with decreasing temperature the curves converge to
the step function of the limit T = 0, which is a clear sign for a first order phase transition, reflecting a level
crossing of the two ground states. is is in complete accordance with the results for the toy model.
It is interesting to correlate the Josephson current as a function of the phase difference ϕ = ϕL − ϕR for

various values of∆ (see Sec. 5.5.1), with the double occupancy on the dot. As depicted in Fig. 5.11, for very
small values of ∆ as well as for ∆ >≈ 0.4, we see that the double occupancy is a constant function of ϕ.
is corresponds to a current-phase-relation for the Josephson current fixed in either the π- or the 0-junction
regime. For intermediate values of ∆, we observe a far more interesting behavior of the double occupancy:

³Here, for simplicity, we look at the case µ = 0.
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Figure 5.8.: Josephson current in the π junction regime.

At a certain value of ϕ, the double occupancy drops to a smaller value. is drop is of course smeared out
by the finite temperature, but can be understood as a way to drive the phase transition from the 0- to the
π-junction regime by the phase difference ϕ.

5.5.3. Pair correlation
In agreement with the NRG result of Choi et al. [83] as well as with the mean field results by Salkola et. al.
[93], we obtain the local pair correlation on the quantum dot shown in Fig. 5.12. For small∆, the local pair
correlation increases because of the proximity effect, as an increasing magnitude of the pair field ∆ in the
leads induces a growing pair correlation on the quantum dot. e sharp sign change at the critical value of
∆ observed at zero temperature is smeared out at finite temperatures, but the qualitative behavior is exactly
the same as for the effective model discussed in Sec. 5.3.3. We therefore conclude, that the sign change of
the pair correlation is due to residual pairing on the quantum dot in the doublet phase which decreases with
∆.
e same qualitative behavior of the local pair correlation is also observed, ifU is changed instead of∆ as

discussed in [86, 93]. e sign change of the local pair correlation∆d is traditionally expressed as a π-phase
shi in∆d.

5.5.4. Spectral function
All quantities studied so far suggest that a first order phase transition occurs when we tune the system from
the 0-Junction to the π-Junction regime. is can be confirmed by studying dynamical quantities such as
the spectral function.
In Fig. 5.13 we show the spectral function A(ω) of the quantum dot as a function of∆. e data has been

calculated from the CT-INT data for the Green’s functionG↑↑dd(τ) using stochastic analytic continuation[42,
57]. is method works especially well for the low energy spectrum and sharp excitations while the high
energy spectrum and excitation continua are more difficult to resolve. Inside the gap, the formation of
Andreev bound states can be seen very well.
In the region of ∆ ≈ 0 we see the Kondo-resonance. As a function of growing values of ∆ and as a

consequence of the opening of the quasiparticle gap at the Fermi level, the Kondo resonance evolves to
Andreev bound state. Note that at the mean-field level, the Kondo resonance merely corresponds to a virtual
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Figure 5.9.: Josephson current for different temperatures 1/β. e current phase relations do not intersect
at one single point as suggested by the NRG results of Karrasch et al.[84].

bound state. Opening a quasiparticle gap at the Fermi level drives the lifetime of this virtual bound state to
infinity. In the parameter region which corresponds to the 0-Junction regime of the Josephson current (∆ ≈
0 . . . 0.1), we observe Andreev bound states with excitation energies approaching ω = 0. is corresponds
to the crossing point in Fig. 5.13 and has also been observed by Bauer et al. for fixed∆ and increasing U in
[86].
e comparison of the antum Monte Carlo data shown in Fig. 5.13 with the result obtained from the

effective model discussed in Sec. 5.3.4 is particularly insightful. e spectral signature is very similar except
for the lack of the Kondo resonance due to the finite size of the effective model. In the effective model, the
Andreev bound state excitation corresponds to the energy difference between the ground states of the singlet
and the doublet phase. e position∆ at which the Andreev bound states cross at ω = 0 has been identified
as a clear sign for the crossing of the ground states of the singlet and doublet phases. Hence, we interpret
the crossing of the Andreev bound states in the CT-INT data as a very strong sign for a level crossing and
hence a first order phase transition from the singlet to the doublet phase in the full model.

5.5.5. Dynamical spin structure factor

In addition to the spectral function, the dynamical spin structure factor S(ω) defined in Eq. 5.25, provides a
way of characterizing the phases of the system. For ∆ = 0, we clearly see a suppressed spectral weight at
ω = 0 and a peak which corresponds to the characteristic energy scale of the Kondo temperature TK . From
the peak position, we obtain a rough estimate for the Kondo temperature of TK ≈ 0.06.
From∆ ≈ 0.05 onwards, spectral weight is accumulated at ω = 0 ultimately forming a pronounced sharp

local moment peak for large values of ∆. As the Kondo temperature is a measure for the energy required
to break the Kondo singlet, we expect the Kondo effect to break down at a value of∆ ≈ TK . is is indeed
observed in Fig. 5.14.
e signature of the breakdown of the Kondo resonance also shows up in the spectral function ploed Fig.

5.13. Since the Kondo resonance stems from a screening of the magnetic moment by conduction electrons
in an energy window TK around the Fermi level, the opening of a single particle gap of order TK destroys
the Kondo resonance giving way to an Andreev bound state.
e breakdown of the Kondo resonance is accompanied by a change of the curvature in the current-phase-
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Figure 5.10.: Double occupancy ⟨ n̂↑n̂↓ ⟩ of the quantum dot at∆ = 1.0. e data shows a jump in the double
occupancy becoming sharper with decreasing temperature.

relation of the Josephson current which is a precursor for the transition to the 0′ phase (see the curves for
∆ = 0.05 and ∆ = 0.08 in Fig. 5.7). We also observe that aer the transition from the π′- to the π- regime
has occurred (see the current-phase-relation of the Josephson current of Fig. 5.7) the peak at finite ω vanishes
and all the spectral weight is accumulated in the very sharp local moment peak at ω = 0.

5.5.6. Charge gap
From the dynamical charge structure factor, we can determine the gap ∆c to local charge fluctuations on
the dot with two different methods ⁴. One way to extract the charge gap is to read off the peak position of
the lowest lying excitation in the dynamical charge structure factor obtained from the charge correlation
function Cc(τ) = ⟨ ñ(τ)ñ ⟩ − ⟨ ñ ⟩ ⟨ ñ ⟩ via stochastic analytic continuation. e other way of extracting the
charge gap from Cc(τ) is based on the fact, that the charge structure factorN(ω) is linked to Cc(τ) via

Cc(τ) ∝
∞∫
−∞

dω e−τωN(ω). (5.28)

IfN(ω) is sharply peaked around a certain value ωp, we can approximateN(ω) byN(ω) ≈ δ(ω−ωp). is
corresponds to Cc(τ) ≈ e−τωp . erefore, a least squares fit of an exponential function e−τωp to Cc(τ) in a
region where only one single mode dominates, can reveal the frequency ωp at which N(ω) is peaked. e
applicability of the method can be seen in the half logarithmic plot ofCc(τ), where a sharply peaked charge
structure factor N(ω) is reflected by a region, in which Cc(τ) can be well approximated by a straight line.
e data obtained using thesemethods is shown in Fig. 5.15. In the context of the effectivemodel discussed

in Sec. 5.3.6, we observe, that the behavior of the charge gap of the full model clearly differs from that of the
effective model. Especially, we do not see any signature of the phase transition in the behavior of the charge
gap.
⁴e dynamical charge structure factor itself can in principle be calculated from the CT-INT result for the charge correlation function
Cc(τ) = ⟨ ñ(τ)ñ ⟩ − ⟨ ñ ⟩ ⟨ ñ ⟩ using stochastic analytic continuation. is, however is numerically demanding and requires a
very high quality of data. In the present case, we were unable to extract more than the lowest lying excitation of the dynamical
charge structure factor, which is directly connected to the charge gap. e higher energy spectrum showed an extremely complex
structure which is difficult to capture with stochastic analytic continuation.
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Figure 5.11.: Double occupancy of the quantum dot as a function of the phase difference ϕ = ϕL − ϕR for
different values of∆.

e charge gap opens approximately linearly with ∆. It is very hard to extract the charge gap from the
numerical data at small ∆, therefore we can only extrapolate to ∆ = 0. Here, it appears, that we have a
finite charge gap even in the absence of superconductivity.
e fact that the local charge fluctuations remain gapped confirms the picture that the 0 to π transition

occurs only in the spin sector.

5.6. antitative understanding of the Josephson current

Aer the discussion of the fundamental physics of a strongly correlated Josephson junction in the previous
chapter, we will make the connection to a system realized in an experimental sample here⁵. For this, we
will make the transition from the model Hamiltonian (5.1) to an implicit action representation by adopting
the wide band limit. We will also discuss some amount of technical details required for the calculation of
experimentally observable quantities, such as the linear conductance.

5.6.1. Model and method.

For the description of an experimentally realizable single level quantum dot with superconducting leads we
use again the Anderson impurity model with Hamiltonian H = Hdot +

∑
s=L,RH

lead
s +

∑
s=L,RH

coup
s as

already introduced in slightly different notation in (5.1). e dot part reads

Hdot =
∑
σ

ϵσd
†
σdσ + U

(
d†↑d↑ −

1

2

)(
d†↓d↓ −

1

2

)
, (5.29)

in standard second quantized notation. In the presence of a Zeeman field h the single-particle energies
depend on the orientation of the spin ϵσ = ϵ + gµBhσ/2, with the Landé g-factor g = 2 [98] and σ = ±1.
e energy is shied such that for h = 0, ϵ = 0 corresponds to the point of half-filling of the dot. e le

⁵is work has been published in [28].
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(s = L) and right (s = R) superconducting leads are modeled by BCS Hamiltonians

H lead
s =

∑
kσ

ϵskc
†
skσcskσ −∆

∑
k

(
eiϕsc†sk↑c

†
s−k↓ + H.c.

)
, (5.30)

where (without loss of generality) ϕL = −ϕR = ϕ/2. e quantum dot is coupled to the leads by Hcoup
s =∑

k,σ

(
tskc

†
skσdσ + H.c.

)
.

Wide band limit

In the following, we will adopt the wide band limit as the “standard model” of impurity systems, as it has the
advantage of eliminating the details of the host material. Our results will prove later that this approximation
is indeed valid. e wide band limit is derived for the noninteracting Green’s function along the lines of [86].
Starting from equation (5.9), we need to replace the k-sum by an integration over the density of states

ρ(ω). To do that, we first calculate the lead Green’s function gk(iωn) with

gk(iωn) = (iωn1+ET
α(k))

−1 (5.31)

directly:

gk(iωn) =

(
iωn + ξk −∆e−iϕα

−∆eiϕα iωn − ξk

)−1
=

=
1

(iωn + ξk)(iωn − ξk)−∆2

(
iωn − ξk ∆e−iϕα

∆eiϕα iωn + ξk

)
=

=
1

(iωn)2 − (∆2 + ξ2k)

(
iωn − ξk ∆e−iϕα

∆eiϕα iωn + ξk

)
.

(5.32)
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Figure 5.13.: Spectral function A(ω) as a function of ∆ for the parameters β = 100, U = 1.0 and V = 0.5
at half filling and zero phase difference between the two superconductors.

Let us now sum over momenta and transform to the energy integral:

1

N

∑
k

gk(iωn) =
1

N

∑
k

1

(iωn)2 − (∆2 + ξ2k)

(
iωn − ξk ∆e−iϕα

∆eiϕα iωn + ξk

)
=

=

W
2∫

−W
2

dϵ ρ(ϵ) 1

(iωn)2 − (∆2 + (ϵ− µ)2)

(
iωn − (ϵ− µ) ∆e−iϕα

∆eiϕα iωn + (ϵ− µ)

)
=

=

W
2 −µ∫

−W
2 −µ

dϵ ρ(ϵ− µ)
1

(iωn)2 − (∆2 + ϵ2)

(
iωn − ϵ ∆e−iϕα

∆eiϕα iωn + ϵ

)
=

(5.33)

Making the approximation of a flat band with constant density of states ρ(ϵ) = 1
W , we get

1

N

∑
k

gk(iωn) =

W
2 −µ∫

−W
2 −µ

dϵ 1

W

1

(iωn)2 − (∆2 + ϵ2)

(
iωn − ϵ ∆e−iϕα

∆eiϕα iωn + ϵ

)
. (5.34)

In the limit ofW → ∞, the integrals of the form
∫∞
−∞ dϵ ϵ

(iωn)2−(∆2+ϵ2) will disappear for symmetry reasons,
which leaves us with the remaining integral

W
2 −µ∫

−W
2 −µ

dϵ 1

W

1

(iωn)2 − (∆2 + ϵ2)
=

W
2 −µ∫

−W
2 −µ

dϵ 1

W

1

−ω2
n −∆2 − ϵ2

. (5.35)

e anti derivative needed in this case is

d
dz

(
− 1

2a
log
(
a− z

a+ z

))
=

1

a2 − z2
. (5.36)
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Figure 5.14.: Dynamical spin structure factor S(ω) as a function of∆ for the parameters β = 100, U = 1.0
and V = 0.5 at half filling and zero phase difference between the two superconductors. For
∆ = 0 we can roughly estimate the Kondo-Temperature TK ≈ 0.06 from the peak position of
S(ω).

is gives us
W
2 −µ∫

−W
2 −µ

dz 1

(−∆2 − ω2
n)− z2

=

[
− 1

2
√

−∆2 − ω2
n

log
(√

−∆2 − ω2
n − z√

−∆2 − ω2
n + z

)]W
2 −µ

−W
2 −µ

=

W→∞
= − 1

2
√
−∆2 − ω2

n

2 log (−1) = − π√
∆2 + ω2

n

.

(5.37)

is gives us the final result

V 2
α

N

∑
k

gk(iωn) = −
(

iωn ∆e−iϕα

∆eiϕα iωn

)
πV 2

αρ0√
∆2 + ω2

n

(5.38)

Here ρ0 is the density of states of the flat band. Note that we have to rescale Vα properly while performing
the limitW → ∞ so that πV 2

αρ0 remains finite. We now define

Γα = πV 2
αρ0. (5.39)
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Finally, we have the wide band limit result for the dot Green’s function:

G−10,dd = (−iωn1− ϵd)−
∑
α

σz

(
iωn ∆e−iϕα

∆eiϕα iωn

)
πV 2

αρ0√
∆2 + ω2

n

σz =

= (−iωn1− ϵd)−
∑
α

Γα√
∆2 + ω2

n

(
iωn −∆e−iϕα

−∆eiϕα iωn

)
.

(5.40)

We will now use this result as the input of the CT-INT calculation in the following and therefore describe
the system in terms of an effective action containing only d Grassmann numbers as seen in chapter 3.

Josephson current in the wide band limit

eCT-INT is based on an interaction expansion of the partition function in which all diagrams are summed
up stochastically. e method is numerically exact and allows the calculation of thermodynamic observables
with any required precision σMC (indicated by errorbars in the figures) with the practical limitation that the
computing time grows as 1/σ2

MC. Details can be found in Ref. [24]. Here we go far beyond the proof-of-
principle study of Ref. [24] by considering ϵ ̸= 0, larger U/Γ as well as le-right coupling asymmetries.
Furthermore, we compute the normal-state linear conductance in the challenging regime kBT ≈ kBTK ≈
µBh.
e Josephson current is computed as the expectation value of the le (or right) current operator J =

ie/ℏ
∑

kσ

⟨
tLkc

†
Lkσdσ − H.c.

⟩
. e noninteracting lead degrees of freedom are integrated out and one ar-

rives at a formula for the Josephson current in terms of the imaginary-frequency Nambu-Green function
G(iωn) of the dot only (directly accessible in CT-INT) [24] which is applicable in the wide band limit:
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Performing the canonical transformation, this we can write

J = − 2Vα√
N

∑
k

ℑ
(
Gα↑↑

kd (τ = 0) +Gα↓↓
kd (τ = 0)

)
= − 2Vα√

N
Trℑ

(∑
k

Gα
kd(τ = 0)

)
=

= − 2Vα√
N

1

β
Trℑ

(∑
iωn

∑
k

Gα
kd(iωn)

) (5.41)

Of course, in the wide band limit Gα
kd(iωn) does not even exist. We hence make use of the fact that the

irreducible self energy Σfull(iωn) is only non-zero in the 2 × 2 block Σ(iωn) corresponding to Gdd(iωn).
is gives us the 2× 2 Dyson equation:

Gα
kd(iωn) = G0,α

kd (iωn) +G0,α
kd (iωn)Σ(iωn)Gdd(iωn). (5.42)

Using the expression (5.10) and using (5.31) as in [86], we obtain:

Gα
kd(iωn) =

Vα√
N

gk(iωn)σzG
0
dd(iωn) (1+Σ(iωn)Gdd(iωn))

=
Vα√
N

gk(iωn)σzGdd(iωn)

(5.43)

Now, we can obtain an expression which can be translated to the wide band limit:

Vα√
N

∑
k

Gα
kd(iωn) =

(
V 2
α

N

∑
k

gk(iωn)

)
σzGdd(iωn) (5.44)

We obtain for the Josephson current

J = −2Trℑ
(
1

β

∑
iωn

[
V 2
α

N

∑
k

gk(iωn)

]
σzGdd(iωn)

)
(5.45)

e frequency sum converges quickly enough for a numerical calculation without further tricks, as we are
dealing with the off-diagonal Green’s functionGα

kd, which has an asymptotic form proportional to 1
iω2

n
. Aer

adopting the wide band limit, this result can be transformed to

J = 2ℑTr
[
1

β

∑
iωn

ΓL√
∆2 + ω2

n

(
iωn −∆e−i

ϕ
2

∆ei
ϕ
2 −iωn

)
G(iωn)

]
. (5.46)

Conductance

As our second observable we investigate the normal-state linear conductanceG =
∑

σ Gσ with

Gσ =
e2

ℏ
2ΓLΓR

ΓL + ΓR

∫ ∞
−∞

Aσ(ω)

(
−df(ω)

dω

)
dω, (5.47)

where Aσ denotes the normal-state dot spectral function and f the Fermi function. e computation of Aσ

from the (normal-state) imaginary frequency Green function Gσ(iωn) obtained numerically by CT-INT is
based on analytical continuation. It is found that the calculation of Gσ is much more reliable if the method
detailed in Ref. [99] is used. As shown there the conductance can be wrien as

Gσ =
e2

ℏ
2ΓLΓR

ΓL + ΓR

2

β

∑
α>0

Rαℑ
dGσ(iω̃α)

dω̃α
, (5.48)
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where the frequency derivative of the Green function has to be evaluated at imaginary frequencies iω̃α

which can differ from the Matsubara ones ⁶ given together with the weights Rα in Ref. [99]. Within CT-
INT Gσ is accessible only at the Matsubara frequencies. erefore, we introduce a (real) Padé approximant
GP(ω) =

∑M−1
j=0 ajω

j
/∑M

j=0 bjω
j of degree (M,M + 1) and minimize the function

χ2({ai}, {bi}) =
∑
n,m

{GP(ωn)−ℑ[Gσ(iωn)]}

×C−1n,m {GP(ωm)−ℑ[Gσ(iωm)]} ,

where C is the carefully bootstrapped estimate of the covariance matrix of the QMC data ℑ
[
Gσ(iωn)

]
. e

degree of the Padé approximant (M,M + 1) is chosen such that the minimal χ2 is not smaller than the
number of degrees of freedom to obtain a statistically consistent fit and is found to be surprisingly small
withM = 3, . . . , 6. e Padé approximant may now be safely evaluated at the positions iω̃α and Eq. (5.48)
can be used.

5.6.2. Comparison to the experiment.
In experiments the charging energy U can be determined accurately from the height of the Coulomb block-
ade diamonds obtained by bias spectroscopy in the normal state. e same type of measurement in the
superconducting state reveals sharp features at the gap position from which∆ can be extracted [65, 66]. In
addition, T and h are known within tight bounds. e parameters which are most delicate to determine but
strongly affect J are the level width Γ and the asymmetry ΓL/ΓR. Based on this insight, we proceed as fol-
lows: (i) e parameters∆, U, T and h are taken directly from the experiment. ose and the comparison of
theoretical curves for the normal-state conductanceG(ϵ) with the experimental ones are used for obtaining
accurate estimates of Γ, ΓL/ΓR, and the gate conversion factor αwhich relates the change of ϵ to a variation
of the gate voltage Vg according to Vg = αϵ ⁷. (ii) For the complete parameter set determined this way, we
compute the Josephson current and compare to the measured Jc.
We focus on the most symmetric conductance double peak presented in Fig. 4d) of Ref. [65]. e exper-

imental parameter estimates with errors of approximately 10% are U ≈ 3meV, ∆ ≈ 0.1meV, T ≈ 75mK,
and h ≈ 150mT. In Fig. 5.16 a) we show our best fit ofG(ϵ) to the experimental result fromwhich we extract
Γ = 0.27meV, ΓL/ΓR = 9.3, and α = 0.011V/meV. At fixed U the peak separation and the peak to valley
ratio are determined by Γ while the overall height is given by ΓL/ΓR, as can be inferred from Eq. (5.48) (in
Gσ only Γ = ΓL + ΓR enters). Note that Γ turns out to be significantly smaller and ΓL/ΓR significantly
larger than the values extracted in Ref. [65] based on the assumption that the dot is in the Coulomb blockade
regime. However, our analysis allowing for Kondo correlations clearly reveals that those are relevant for
U/Γ ≈ 11.15 and the Kondo scale kBTK ≈ 8µeV. It is roughly an order of magnitude smaller than Γ and
of the order of the temperature (kBT = 6.5µeV) as well as the Zeeman energy (µBh = 8.7µeV). erefore
neither T nor h can be neglected when considering the normal state; the conductance is characterized by
a split Kondo plateau (ridge) [101], not to be mistaken with the Coulomb blockade peaks which would be
located at larger energies ϵ ≈ ±U/2 ≈ ±1.5meV. As an inset we show, for illustration, the normal-state
spectral function at ϵ = 0 for the extracted parameters obtained from analytic continuation of CT-INT data
onto the real frequency axis by the maximum entropy method [42]. e appearance of a sharp zero energy
resonance is a hallmark of Kondo correlations [1]. e spliing of the Kondo resonance by the Zeeman field
is too small to be observable on the scale of the plot (but present in the data).
In the experiments [65, 66] Jc, defined as the maximum of |J(ϕ)| over ϕ ∈ [0, π], is extracted from current-

voltage characteristics of the on-chip circuits using an extension of the standard RSJ model [102]. In this
analysis it is assumed that J(ϕ) is purely sinusoidal with its maximum at ϕ = π

2 . At first glance this appears
to be at odds with what is known theoretically for the current-phase relation of a Josephson quantum dot

⁶e choice of the frequency grid is not unique, an optimal one being proposed by H. Monien [49, 100]. For the problem at hand
however, the additional computational effort is minor if the slightly less efficient method of Ref. [99] is used instead of the optimal
version, as the (real) Padé approximant of ℑ[Gσ(iωn)] may be evaluated at any frequency at virtually no cost.

⁷Oen α is extracted from the ratio of the width and the height of the Coulomb blockade diamonds [65] — a procedure which is not
applicable in the Kondo regime as the separation of the linear conductance peaks is less than U [101].
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Figure 5.16.: Comparison of experimental data [65] with the numerically exact solution of the superconduct-
ing Anderson model. a) Best fit of the normal-state linear conductance with applied magnetic
field used for extracting values of Γ and ΓL/ΓR (for details see the main text). b) Measured crit-
ical current vs. theoretically calculated Josephson current at ϕ = π

2 (CT-INT: symbols with line;
self-consistent Hartree-Fock: thin lines). e arrows indicate the level positions for which the
current phase relation is presented in Fig. 5.17. Inset: Normal-state spectral function at ϵ = 0.
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(1.1meV and 0.8meV) and the critical current is thus well approximated by J(ϕ = π

2 ).

in the 0-phase (half-sinusoidal with maximum at ϕ → π) and the transition region (jump from J > 0 to
J < 0 at T = 0, smeared out by T > 0) [3, 82–84, 88]. However, as it was shown already in Ref. [65]
for an effective noninteracting model, the sizable le-right asymmetry and the finite temperatures of the
experimental setups imply sinusoidal currents in the 0- and π-phase apart from very narrow ranges around
the 0-π transitions. is conclusion is confirmed by the numerically exact CT-INT in Fig. 5.17, where we
present J(ϕ) for the above given parameters at the level positions indicated by the arrows in Fig. 5.16 b)
showing |J(ϕ = π

2 , ϵ)|. Apparently only for ϵ very close to the transition the ϕ-position of the maximal
current |J | deviates observably from π

2 and yet the maximal value is still very close to that of |J(ϕ = π
2 )|.

is gives an a-posteriori justification of the extraction of Jc using the extended RSJ model and allows us
to focus on the current at ϕ = π

2 when comparing to the gate voltage dependence of the critical current, as
done in Fig. 5.16 b). Without any additional fiing parameters we achieve excellent agreement in both the 0-
(to the le and right of the peaks) and the π-phase (central region with nearly ϵ-independent Jc). In addition
we show |J(ϕ = π

2 , ϵ)| obtained for the same parameters using the HF approach [80, 84]. Whereas in the
empty dot and doubly occupied regime |ϵ| ≳ 2meV this mean-field approximation gives decent agreement
with the exact result (CT-INT; see also Fig. 5.18) it apparently fails in the mixed valence regime and for
half dot filling (ϵ ≈ 0) in which Kondo correlations are crucial. Important features like the smoothing of
the phase transition by the finite temperature and the smooth crossing through zero of J(π2 ) cannot even
be obtained qualitatively. is emphasizes that Kondo correlations are relevant even in the presence of
prevailing superconductivity (∆ ≈ 10TK) ⁸.

5.6.3. Increasing TK.
Considering Γ = 0.4meV and 0.5meV with all the other parameters fixed at the values given above, we
finally investigate the regime ∆ ≈ kBTK of the strongest competition between superconductivity and (pre-
cursors o) Kondo correlations. In Fig. 5.18 |J(ϕ = π

2 , ϵ)| obtained by CT-INT is compared to HF results.
Obviously, the singlet (0) phase is stabilized by the correlations — an effect which HF is unable to describe.
For the largest TK (at Γ = 0.5) |J(ϕ = π

2 , ϵ)| computed by CT-INT only shows a precursor of the π-phase
(the slight suppression close to ϵ = 0) while HF gives a spurious π-phase. It would be very interesting to
measure the gate voltage dependence of the critical current for dots falling into this parameter regime, which
would confirm the predictive power of our calculations.

⁸Besides the failure of HF to quantitatively describe J(ϕ = π
2
, ϵ) it suffers from the severe artifact that the π phase is produced by a

spurious spin-symmetry breaking. We furthermore emphasize that the HF normal-state linear conductance does not capture Kondo
physics and thus cannot be used to extract Γ and ΓL/ΓR from the measuredG(ϵ) as is done here using CT-INT.
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Figure 5.18.: Josephson current at ϕ = π
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TK. Self-consistent Hartree-Fock is obviously unable to describe the strong competition between
superconductivity and Kondo correlations in this parameter regime and leads to a spurious π-
phase for parameters for which the numerical exact solution only shows a precursor close to
half dot filling ϵ = 0.

5.7. DMFT

5.7.1. Periodic Anderson Model with BCS conduction band
In the previous sections, we have studied the first order phase transition in the impurity model (5.1). As the
dynamical mean field theory (DMFT) provides a link between impurity models and laice models, we can
ask the question if the singlet to doublet phase transition observed in the impurity model is also realized in
a corresponding laice model.
An appropriate laice model will of course include a U(1) symmetry breaking term like the impurity

model (5.1) does, and in fact in the framework of the DMFT, a periodic Anderson model extended by the BCS
mean field Hamiltonian (BCS-PAM) for the conduction band electrons corresponds to the impurity model
presented in the previous sections ⁹. e Hamiltonian of the BCS-PAM is given by:

H = Hc +Hf +HV (5.49)

with
Hc =

∑
k,σ

ξ(k)c̃†k,σ c̃k,σ −∆
∑
k

(
c̃†k,↑c̃

†
−k↓ + h.c.

)
(5.50)

Hf =
∑
k,σ

ξf f̃
†
k,σ f̃k,σ + U

∑
if

(
ñif ,↑ −

1

2

)(
ñif ,↓ −

1

2

)
(5.51)

HV = −V
∑
k,σ

(
c̃†k,σ f̃k,σ + h.c.

)
(5.52)

We have considered a square laice with hopping matrix element t between the conduction electrons such
that:

ξ(k) = −2t (cos(kax) + cos(kay)) . (5.53)

⁹ Strictly speaking, the reference model in the DMFT only has one superconducting bath, while we introduced a le and a right bath
in the Hamiltonian (5.1). However, in the CT-INT, the reference model is entirely encoded in the bare Green’s function, which
can be understood as an action representation in the path integral formalism. e explicit number of the superconducting baths is
therefore unimportant.
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Note, that the impurity model (5.1) has a large range of applications in the DMFT ranging from the arac-
tive Hubbard model with U(1) symmetry broken solutions studied in references [103, 104] to the BCS-PAM,
which is considered here.
e treatment of this model within DMFT involves the same steps as for the impurity model (5.1), intro-

ducing a particle-hole transformation for the spin down operators. e Hamiltonian can then be cast in the
formH = H0 +HU with

H0 =
∑
k

c†kE(k)ck − V
∑
k

(
c†kσzfk + h.c.

)
+
∑
k

f†kϵf fk (5.54)

andHU = −U
∑

if

(
nif ,↑ − 1

2

) (
nif ,↓ − 1

2

)
. Here, we have used the same Nambu-spinor notation as in Sec.

5.2 with the exception, that d operators have been renamed f to be consistent with the literature [15, 95].

5.7.2. DMFT with superconducting medium
e standard DMFT can be easily adapted to a superconducting bath using the Nambu formalism [15]. We
obtain the self consistency equation for a finite laice withN sites expressed by a 2× 2 matrix equation:

Gff (iωn) =
1

N

∑
k

[
G0,ff

kk

−1
(iωn)−Σff (iωn)

]−1
. (5.55)

Here, Gff (iωn) = −
β∫
0

dτ e−iωnτ ⟨T f(τ)f† ⟩ is the full Matsubara Green’s function of the reference model,

G0,ff
kk (iωn) is the Matsubara f -Green’s function of the bare laice model andΣff is the self energy. Equation

(5.55) can be solved by iteration starting usually at a self energyΣff ≡ 0. FromGff (iωn), the bare Green’s
function Gff

0 (iωn) of the reference model, can be calculated using Dyson’s equation Gff
0

−1
= Gff−1 +

Σff . e reference model, which is now described by Gff
0 and the interaction part of the Hamiltonian can

subsequently be solved using the CT-INT method yieldingGff (iωn) for the next DMFT iteration.

5.7.3. Hysteresis

In the DMFT, we can calculate the double occupancy ⟨ f̃†↑,if̃↑,if̃
†
↓,if̃↓,i ⟩ of the f -sites, which is together with

the assumption of a homogeneous system proportional to ∂Ω
∂U . erefore, we expect a jump in the double

occupancy to appear at a critical value of U , if we have a first order phase transition as in the impurity
problem.
Figure 5.19 shows our result for the double occupancy of the f sites as a function of U . Depending on the

initial choice of the self energy in the DMFT cycle, we obtain two different solutions. If we start with the
local Green’s function of the bare laice model, which corresponds to a self energy Σ ≡ 0, we obtain the
upper branch of the hysteresis. e lower branch is obtained by taking the self energy of the solution in the
strong coupling phase at U = 0.44 as starting point for the DMFT cycle. e coexistence of two solutions is
a strong hint that a first order phase transition occurs.
It should be noted that beginning at a value of U ≈ 0.34, the upper branch of the hysteresis becomes

unstable, i.e. the inherent fluctuations of the Monte Carlo results suffice to drop from the upper branch of
the hysteresis to the lower branch aer a certain number of iterations. Increasing the number of Monte
Carlo measurements delays the drop to the lower branch to a higher number of iterations. is behavior
can be understood in the following way: In the coexistence region, the grand potential Ω of the upper and
lower branch of the hysteresis cross at a certain value ofU . For small values of U , Ω is minimal on the upper
branch, while the lower branch is metastable, for larger values ofU , however, the stable solution is the lower
branch.
In the strong coupling phase and on the lower branch of the hysteresis, the Monte Carlo results suddenly

develop a finite magnetization corresponding to a frozen spin. is is due to divergent autocorrelation times
in the Monte Carlo simulation and is linked to the physical formation of a local moment.
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starting point of the DMFT iterations.

5.7.4. Local dynamical spin structure factor

To further classify the weak and strong coupling phases, we calculate the local dynamical spin structure
factor S(ω) = 1

N

∑
q S(q, ω). e Lehmann representation for S(ω) is given by Eq. (5.25), where in this

case S+ = Sf,i
+ .

As in the impurity case, S(ω) is a measure for the energy needed to flip the spin on an f -site. Figure
5.20 shows the result for the local dynamical spin structure factor on both branches of the hysteresis. e
solution corresponding to the upper branch of the hysteresis is linked to the weak coupling regime and shows
a characteristic energy scale required for flipping a spin.
e lower branch of the hysteresis represents the strong coupling phase and shows a clear local moment

peak in the dynamical spin structure factor at ω = 0.
is behavior reflects exactly the single impurity physics discussed in the previous section where we

observed the Kondo effect in the weak coupling phase and the formation of a local moment in the strong
coupling phase.

5.7.5. f-Density of states

In order to investigate the behavior of the f -bands at the phase boundary and to be able to compare with the
single impurity model, we calculate the density of states for the f -sites ρff directly from the local Green’s
function G(τ) using the stochastic analytic continuation method for different values of U . From Fig. 5.21,
one can recognize the signature of the impurity physics (see Sec. 5.5.4), namely the crossing of Andreev
bound states in the vicinity of the first order transition at U ≈ 0.35. Note, that we have only shown the
level crossing for the impurity model if∆ is changed, but for varying U , the crossing of the Andreev bound
states in the impurity model (5.1) has been observed by Bauer et al. [86]. Clearly in the laice model, one
expects the Andreev bound states to acquire a dispersion relation which shows up as a finite width in ρff.
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Figure 5.20.: Dynamical spin structure factor for the upper and the lower branch of the hysteresis in Fig. 5.19.
Clearly, the upper branch of the hysteresis corresponds to a singlet solution, while the lower
branch shows a local moment.

5.7.6. Dispersion relation of Andreev bound states
We have seen in the previous subsections, that the local physics of the single impurity model can be carried
over to the laice case within the DMFT approximation. Here, we concentrate on unique features of the
laice model (5.49), namely the dispersion relation of the f-bands as obtained by analyzing the single particle
spectral function.
Using the local self-energy of the DMFT,Σff (iωn), this quantity is extracted from the Green functions

Gff
kk(iωn) =

[
G0,ff

kk (iωn)
−1 −Σff (iωn)

]−1
. (5.56)

and
Gcc

kk(iωn) = G0,cc
kk (iωn)−G0,cf

kk (iωn)G
ff
kk(iωn)G

0,fc
kk (iωn). (5.57)

whereG0,cc
kk (iωn), G0,ff

kk (iωn), G0,cf
kk (iωn), G0,fc

kk (iωn) denote the noninteracting Green functions for the
corresponding orbitals in the unit cell.
Using the stochastic analytic continuation, these Green’s functions can be rotated to real frequencies,

yielding in principle the spectral function A(k, ω). For each k-point and real frequency this quantity is a
4 × 4 matrix since we have a 2 × 2 Nambu spectral function for each combination of f and c orbitals. Our
analysis of the spectral function is based on the basis independent quantity A(k, ω) = TrA(k, ω).
Fig. 5.22 plots this quantity in the singlet phase. e overall structure of the spectral function is similar to

the structure observed for the bare BCS-PAM characterized by the four bands:

E±,±(k) = ±
√
V 2 + E2(k)/2± E(k)

√
V 2 + E2(k)/4 (5.58)

whereE(k) =
√
ϵ2(k) + ∆2. e bandswith dominant c-character,Ec

±(k) ≡ E±,+(k), at high frequencies
are well separated from the bands of dominant f -character at low frequencies, Ef

±(k) = E±,−(k). For the
considered bare parameters, V is the smallest scale and sets the magnitude of the dispersion relation of the
f -band. In particular expanding in V gives:

Ef
±(k) = ± V 2

E(k)
+O

(
V 4

E(k)3

)
(5.59)
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Figure 5.21.: Density of states for the f-electrons as a function of U for the parameters V = 0.5, ∆ = 2,
µ = ϵf = 0 and β = 100.

Starting from the point of view of the impurity model, which as seen above accounts very well for the
overall form of the k-integrated f -spectral function, Ef

±(k) may be perceived as the dispersion relation of
the Andreev bound states.
e singlet phase is continuously connected to the U = 0 point. Starting from this limit, we can account

for the HubbardU within a slave boson approximation [105] which will renormalize the hybridizationmatrix
element to lower values. Owing to Eq. 5.59 this suppresses the dispersion relation of the f -electrons. is
aspect is clearly observed in Fig. 5.23.
In the doublet phase, U > Uc, the paramagnetic slave-boson mean-field approach fails. In this state, the

f -spin is frozen and in the DMFT cycle we have imposed spin symmetric baths thereby inhibiting magnetic
ordering. e QMC data of Fig. 5.24 points to a very incoherent f -spectral function. It is therefore tempting
to model this state in terms of spin disorder: the spin of the f -electrons on each site is static and points in a
random direction. To provide some support for this picture we stay in the dynamical mean field framework
but consider a mean-field decomposition of the Hubbard term in the action of the impurity problem:

U

(
ñf,↑ −

1

2

)(
ñ↓ −

1

2

)
→ −Umz

2
(ñf,↑ − ñf,↓) (5.60)

is mean field approximation, accounts for the local moment formation with z-component of spinmz . e
corresponding mean-field action of the impurity model now reads:

SMF =

β∫
0

dτ
β∫

0

dτ ′f̃†(τ)G−1(τ − τ ′)f̃(τ ′)

− Umz

2

β∫
0

dτ f̃†(τ)f̃(τ)

(5.61)

where f̃† =
(
f̃†↑ , f̃↓

)
and G(τ − τ ′) corresponds to the bath Green function. To account for disorder, the

z-component of the f-spin is sampled from the box distributionmz ∈ [−Mz,Mz]. Averaging over disorder
at each iteration in the DMFT cycle yields the spectral function shown in Fig. 5.25. As apparent, the disorder
average generates a finite lifetime.
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Trace of the spectral function A(k, ω) at U = 0.125
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Figure 5.22.: Trace of the spectral function A(k, ω) at β = 100 in the singlet regime. e parameters of the
simulation were given by U = 0.125, V = 0.5,∆ = 2 and µ = ϵf = 0.

5.8. Conclusion
Wehave shown that theweak-coupling CT-INT algorithm is an extremely powerful unbiased tool to compute
thermodynamic as well as dynamical quantities of impurity models in superconducting environments. e
method can cope very well with a complex phase of the superconducting order parameter thereby allowing
for the calculation of the Josephson current. Our detailed results for the impurity problem confirm the picture
of a first order phase transition between a single and doublet state. It is accompanied by a π phase shi in
the Josephson current.
A quantitative agreement to the measured dependence of the critical current on the gate voltage for a dot

with Kondo correlations but prevailing superconductivity was achieved. is shows that our minimal model
is sufficient to quantitatively capture the relevant physics and qualifies the CT-INT as a theoretical tool with
predictive power for transport properties of correlated quantum dots. We further studied the regime of the
strongest competition between superconductivity and Kondo correlations confirming qualitatively that the
laer stabilize the singlet state and thus the 0-phase and predicting quantitatively the supercurrent, which
can be experimentally verified.
Within DMFT, the physics of the BCS-PAM is mapped onto the single impurity Anderson model sup-

plemented by a self-consistency loop. We have shown that within this approximation, the physics of the
impurity model can be carried over to the laice. In particular at fixed superconducting order parameter
∆ the first order transition between a singlet and local moment state as a function of growing values of U
shows up in a hysteresis behavior of the double occupancy. Furthermore, the low energy features of the lo-
cal f -spectral function are reminiscent of the Andreev bound states with vanishing excitation energy (i.e. a
crossing point) at the critical coupling. Within the DMFT approximation, we can look into the single particle
spectral function. In the singlet phase, the low energy features can be interpreted in terms of a dispersion
relation of Andreev bound states. is state is continuously linked to the U = 0 limit. In the doublet state
or local moment regime, the low energy features of the spectral functions are incoherent. We propose to
understand this in terms of models of disorder. In particular in this state, the spin dynamics of the f -electron
is frozen and since we are considering paramagnetic states it points in a random different direction in each
unit cell. A simple model of disorder following this picture accounts very well for the observed incoherent
spectral function.
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Figure 5.23.: Trace of the spectral function A(k, ω) at β = 100 in the singlet regime for increasing interac-
tion U . e width of the f -bands clearly decreases and the dispersion becomes weaker. e
parameters of the simulations were given by V = 0.5,∆ = 2 and µ = ϵf = 0.
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Figure 5.24.: Trace of the spectral function A(k, ω) at β = 100 in the doublet regime for different values of
U . Here, we only show the f -bands. e parameters of the simulation were given by V = 0.5,
∆ = 2 and µ = ϵf = 0.
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Disorder average of the trace of the spectral function A(k, ω)
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Figure 5.25.: Trace of the spectral function A(k, ω) as obtained from using Eq. 5.61 for the impurity action.
e z-component of the local moment is sampled from the box distributionmz ∈ [−Mz,Mz].
e parameters used for this plot were given by V = 0.5, U = 0.5, ∆ = 2 andMz = 0.0375.
Here, the calculations are carried out on the real time axis such that no analytical continuation
is required.
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6. Edge magnetism in graphene
is section is an extended reproduction of work published in reference [106]. is work was done in col-
laboration with Manuel J. Schmidt and Fakher F. Assaad.

6.1. Introduction
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Figure 6.1.: Part (a) shows the half-infinite honeycomb laice. e solid ellipses (green) are the complete
unit cells in the bulk region and the dashed elipses indicate the cut unit cells at the α edge. e n
andm directions are indicated as well as the sublaice indices A, B. Part (b) shows the modulus
square of the transverse (in n direction) edge state wave function |ψp(n)|2 on the B sublaice
sites in the reduced Brillouin zone 2π

3 ≤ p ≤ 4π
3 . e extreme momentum dependence of the

localization of ψp in n direction is crucial for the magnetic properties of edge states.

Since it has first been isolated in the laboratory,[107] graphene, a two-dimensional honeycomb laice of
carbon atoms,[108] aracts much aention. In fact, graphene has multiple amazing properties. To name only
a few of them, it ranges among the mechanically strongest materials,[109] it shows a quantum Hall effect
at room temperature,[110] and, due to its unusual Dirac band structure, it allows the study of relativistic
quantum physics in a solid state environment.[111] Furthermore, its potential application as the basis of
the next generation of electronic devices stimulated great efforts to gain experimental control as well as
theoretical understanding of this astonishing material.
Usually a strong electron confinement increases the strength of electron-electron interactions by pushing

the electrons close together. However, in spite of the extreme electron confinement to only one single layer
of atoms, many experiments in graphene may be explained by assuming the electrons to be non-interacting.
is is especially true for experiments probing the bulk properties of graphene, as the bulk density of states
vanishes at the Fermi level, suppressing the manifestation of interaction effects. On the other hand, the
properties of zigzag edges differ greatly from the bulk properties. So-called edge states, i.e. one-dimensional
states with very small bandwidth, localized at these edges, give rise to a peak in the local density of states
at the Fermi energy.[112] e enhanced density of states allows the electron-electron interaction to drive
the zigzag edges to a ferromagnetic state with a magnetic moment localized at the edge.[113–118] is phe-
nomenon is known as edge magnetism.

95



6. Edge magnetism in graphene

At normal graphene edges the electron-electron interaction is so strong and the bandwidth of the edge
states is so small that the spins of all electrons in the edge states are completely aligned. However, as has been
proposed recently, graphene/graphane interfaces provide means to tune the bandwidth of the edge states to
regimes in which the edge starts to depolarize and the edge magnetism is gradually suppressed until, for a
critical edge state bandwidth, the magnetism disappears.[119]
In Ref. [119] it was argued that this interaction-induced magnetism can be understood on the basis of

an effective model, describing the interacting one-dimensional edge states only, while the bulk states are
neglected. What at first glance appears to be a contradiction to the Lieb-Mais theorem,[120] stating that the
ground state of interacting electrons in one dimension cannot be spin polarized, can be resolved by noting
that the effective edge state model does not fulfill the prerequisites of the Lieb-Mais theorem.[119] e
deeper reasons for the existence of a ferromagnetic ground state in a one-dimensional interacting electron
system, however, remained elusive. e present work is devoted to this issue.
In this chapter we present a systematic exact diagonalization analysis of interacting edge states. Two

striking features of edge states turn out to be most important for their magnetic properties: (a) the edge
states exist only in a restricted part of the Brillouin zone and (b) the transverse edge state wave function has a
strong characteristic momentum dependence. ese features have consequences for the effective low-energy
theory, namely (a) no umklapp processes are allowed in the interaction Hamiltonian and (b) the interaction ver-
tex acquires an unusually strong momentum dependence. In order to be able to study the consequences of
these two features, we introduce a generalized model in which we add an artificial interaction term describ-
ing umklapp processes and allow the momentum-dependence of the interaction vertex to be tuned from
a momentum-independent vertex, as in usual metals, to the full momentum-dependence, as it is found in
edge states. erefore, the generalized model can be tuned continuously from the limit in which it describes
edge states to a limit which corresponds to usual one-dimensional metals such as the Hubbard chain. We
solve this generalized model for graphene zigzag edges of finite length L = 48 unit cells (i.e. ∼12 nm) by
exact diagonalization using the Lanczos method for the determination of the ground state of the effective
model¹.[22, 121, 122]
e section is organized as follows. In Sec. 6.2 we review the direct model as it has been derived in Ref.

[119] and introduce the more versatile generalized model with additional tunability. In Sec. 6.3 the exact
diagonalization analysis of the generalized model is presented. Finally, the results are discussed in Sec. 6.6.

6.2. Edge state models
In this section we introduce the models on which our analysis is based. e edge state model obtained from
the direct projection of the honeycomb laice Hubbard model to the Fock space spanned only by the edge
states has been discussed in Ref. [119]. ismodel will be called the direct model in the following. We identify
two important features of the direct model: (a) the restriction of the Brillouin zone for the edge states and (b)
the strong dependence of the transverse localization length on the momentum along the edge. Aer having
analyzed the consequences of these features for the effective interaction vertex, we propose a generalized
edge state model in which these features can be tuned. is allows us to investigate the impact of each
of these edge state features on the magnetic properties. In particular, the generalized model can be tuned
continuously from a Hubbard chain limit, i.e., a usual one-dimensional metal without any ferromagnetic
ground state, to the edge state limit with its ferromagnetic ground state.

6.2.1. Direct derivation from the honeycomb model
We start from the simplest possible non-interacting tight-binding model of electrons in graphene zigzag
ribbons, taking into account only nearest neighbor hoppings of π electrons H =

∑
⟨i,j⟩,σ c

†
iσcjσ , where

¹ At L/3 filling, and Sz = 0, we could access edges of length L = 48 with a dimension of the corresponding Hilbert space of
2 594 212 aer exploiting all symmetries. For nearly maximal Sz = L/6 − 2 and L/3 filling, we were able to calculate the
groundstate energy of an edge with length L = 180 with a Hilbert space dimension of only 26 580. In this case we were limited
only by the 64 bit limit of the internal storage of the basis vectors and longer edges are in principle accessible by a modification of
our code.
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⟨i, j⟩ runs over nearest neighbor sites of a half-infinite honeycomb laice, i ≡ (m,n, s) is a collective site
index for the (m,n)th unit cell and the s = A,B sublaice (see Fig. 6.1), and ciσ annihilates an electron at
site i with spin σ. Since we are exclusively interested in the zero energy eigenstates ofH, the actual energy
scale ofH is unimportant so that we may drop it.² e zero energy states are created by the fermionic edge
state operator

e†pσ =
∑
n

ψp(n)c
†
pnσ, ψp(n) = Npu

n
p (6.1)

where up = −1− eip, p is the momentum inm direction (along the edge), and

cpnσ = L−
1
2

∑
m

e−ipmc(m,n,B)σ, (6.2)

with the number of unit cells L inm direction, i.e., along the edge. e p-dependent normalization constant
Np =

√
2 cos(p− π)− 1 can be interpreted as the weight of the edge state wave function right at the edge

atoms where n = 0. It is easily seen that He†pσ = 0. As the edge state wave function is only non-zero on
the B sublaice we omit the sublaice index, seing it to s = B.
e two most important features of the edge state wave function [Eq. (6.1)] are : (a) e edge state only

exists for momenta 2π
3 < p < 4π

3 . In the rest of the Brillouin zone the edge state wave function is not
normalizable, as |up| > 1 for these momenta. (b) In n direction the edge state is sharply localized at the edge
for p = π, wereas for p close to one of the Dirac pointsK = 2π

3 andK ′ = 4π
3 , the wave function delocalizes

into the bulk [see also Fig. 6.1(b)]. ese two edge state properties are stable against addingmore details, such
as second-nearest neighbor hopping or various edge passivations, to the honeycomb Hamiltonian H.[119,
123] e detailed analysis presented in this chapter will clarify that the existence of edge magnetism and in
particular its tunability are consequences of these two edge state properties.
e p-dependence of the localization length of ψp has consequences for the edge states’ self-energy ϵ0 as

well as for their interaction vertex function Γ. Neglecting the bulk state contributions,[119] the self-energy
correction due to a perturbation V , which is invariant along the edge, is given by ϵ0(p) = ⟨ψp|V |ψp⟩. Due to
the delocalization of ψp(n) for p nearK,K ′, edge-localized perturbations V lead to self-energy corrections
for which ϵ0(K) = ϵ0(K

′) = 0 while ϵ0(π) ∼ ||V ||. For sufficiently well behaved perturbations the self-
energy correction gives rise to a smooth edge state energy dispersion with a bandwidth ∆ ∼ ||V ||. For a
large class of these edge-localized perturbations, the self-energy correction approximately has the form

ϵ0(p) ≃ N 2
p∆, (6.3)

with N 2
p the p-dependent weight of the edge state wave function right at the edge. Eq. (6.3) expresses that

an edge state which is more localized at the edge experiences a stronger self-energy correction from an
edge-localized perturbation than an edge state which is delocalized into the bulk region. Examples of such
perturbations are edge passivations, graphane termination,[123] or local interactions with the substrate.
Note that the edge state bandwidth∆ is experimentally tunable in various ways so that we consider∆ as a
free parameter. erefore, the noninteracting part of the direct model (dm) edge state Hamiltonian is given
by:

Hdm
0 = −∆

∑
σ

∑′

p

N 2
p e
†
p,σep,σ, (6.4)

where the sum is restricted such that only edge state operators epσ with 2π
3 ≤ p ≤ 4π

3 appear.
e effective interaction of the edge states, derived by projecting the Hubbard Hamiltonian on the two-

dimensional honeycomb laice HU = U
∑

i c
†
i↑ci↑c

†
i↓ci↓ to the Fock space spanned by the edge states,

reads[119]

Hdm
1 =

U

L

∑′

p,p′,q

Γ(p, p′, q)e†p+q↑ep↑e
†
p′−q↓ep′↓. (6.5)

²It is only important to assume that this energy scale is large enough so that the restriction to the zero energy sector of H is well
justified. e validity of this assumption has been checked in Ref. [119].
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Together, we have the effective Hamiltonian Hdm = Hdm
0 + Hdm

1 . e interaction vertex is given by the
overlap of the wave functions of all four fermions (with momenta p + q, p, p′ − q, p′) participating in the
interaction

Γ(p, p′, q) =

∞∑
n=0

ψ∗p+q(n)ψp(n)ψ
∗
p′−q(n)ψp′(n) =

Np+qNpNp′−qNp′

1− u∗p+qupu
∗
p′−qup′

. (6.6)

While the denominator, resulting from the geometric series over n, turns out to lead only to unimportant
quantitative corrections, the numerator of Γ, which is the product of the wave function weights at the edge
Np for each of the four fermion operators, leads to the momentum-dependence of the interaction strength
which is important for the stability of the weak edge magnetism. Essentially, the effective interaction be-
comes stronger the more localized the participating fermions are, i.e., the closer their momenta are to p = π.
If one or more of the momenta are close to the Dirac points 2π

3 ,
4π
3 , where the edge state wave functions de-

localize into the bulk, the effective interaction is suppressed (see Fig. 6.1). Note that seing the denominator
in Eq. (6.6) to unity corresponds to assuming that the Hubbard interaction is only present at the outermost
line of carbon atoms right at the edge. Such an approximation has been used in Ref. [124]. We find that this
approximation is inessential for the edge magnetism, leading only to quantitative corrections.
An important consequence of the restriction of the p summation in Eq. (6.5) is the absence of umklapp

processes. As explained above, edge states only exist in one third of the Brillouin zone, i.e. for 2π
3 ≤ p ≤ 4π

3 ,
so that no four fermion process with momentum ±2π exists. Indeed, within the restricted Brillouin zone,
the process with the largest possible total momentum ptot is e†4π/3↑e2π/3↑e

†
4π/3↓e2π/3↓, i.e. ptot =

4π
3 < 2π.

Processes with larger total momentum leave the restricted Brillouin zone and are therefore suppressed, as
they involve the overlap of edge states and bulk states, which is small. Also, most of the bulk states live in a
different energy regime than the edge states.[119]
us, we have identified two properties of edge states which make them fundamentally different from

usual one-dimensional conductors:

(a) Due to the restricted Brillouin zone, umklapp processes are forbidden.

(b) e transverse localization Np of the edge state wave function gives rise to a tunable band width
ϵ0(p) ≃ N 2

p∆. Furthermore, the interaction vertex becomes weaker if the momenta of the participat-
ing fermions approach a Dirac point, i.e. Γ(p, p′, q) ∝ Np+qNpNp′−qNp′ .

We will show that these properties are the basis for the magnetism at graphene edges.

6.2.2. Generalized model
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Figure 6.2.: Le: e self-energy∼ N 2
p of the direct model (dashed line) and the linearized self-energy (solid

lines). Right: e four possible interaction processes. e g3 process is not allowed for graphene
edge states.

We now introduce a generalized model in which the different aspects of the effective electron-electron
interaction, found in the previous subsection, may be tuned independently. For this, we map the edge state
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6.2. Edge state models

operators ep,σ which correspond to right (le) movingmodes for π < p < 4π
3 (2π3 < p < π), to fermionic op-

erators ckrσ in which r = R,L specifies the direction of motion and −π
6 ≤ k ≤ π

6 , i.e. ckrσ = ek+π+rπ/6,σ

and p = k + π + rπ/6. e direction of motion r = R,L corresponds to r = ±1 when used in formulas.
Note that the zero point of k has been shied so that k = 0 corresponds to p = π ± π/6 for right and le
movers, respectively (see Fig. 6.2).
For the non-interacting part of the generalized edge state model we assume a linear spectrum with slope

±vF

H0 = vF
∑

r=R,L
σ=↑,↓

π/6∑
k=−π/6

(rk)c†krσckrσ. (6.7)

is linearization of the self-energy [Eq. (6.3)] only leads to inessential quantitative corrections (see also
Appendix 6.5). e partitioning into le- and right-movers always gives rise to four terms in the interaction
partH1 of the Hamiltonian involving different combinations of le- and right-moving modes. Convention-
ally, these terms are called g1, g2, g3, g4 processes (see Fig. 6.2 and Ref. [125]). g2, g4 correspond to forward
scaering, involving processes that scaer only between modes with the same direction of motion, g1 refers
to backward scaering, and g3 are the umklapp terms which are forbidden in edge states. Note that, unlike
in usual g-ology,[125] we may not assume that the coupling constants for the individual gi processes are
constant. e momentum-dependence of the gi must be taken into account.
e two forward scaering processes g2 and g4 may be merged together into one Hamiltonian³

H fs
1 =

U

L

∑
r,r′

∑′

k,k′,q

Sr
k+qS

r
kS

r′

k′−qS
r′

k′ : c
†
k+qr↑ckr↑c

†
k′−qr′↓ck′r′↓ :, (6.8)

where : A : enforces the normal order[125] of the operator A. e primed sum is restricted such that
|k| < π/6 for all momentum arguments k in the electron operators. In order to be able to change the
amplitude of the momentum-dependence of the interaction vertex Γ(p, p′, q) [see Eq. (6.6)], we introduce
the factors

Sr
k =

√
1− rΓ1k, (6.9)

from which we build the interaction vertex for the generalized model. e factor Γ1 ∈ [0, 6/π] quantifies
the momentum-dependence. For Γ1 = 0 the interaction is momentum-independent. is limit corresponds
to usual one-dimensional Hubbard chains. For Γ1 = 6/π the interaction goes to zero if at least one of
the fermions is close to the upper band edge (k = rπ/6). is corresponds to the direct model, where the
trigonometric term under the square root in Np has been replaced by a linear approximation. e differ-
ences between the generalized model in the edge state limit and the direct model only lead to quantitative
renormalizations of the critical point, as shown in Appendix 6.5. e essential property of the interaction
vertex is that it approaches zero if one of the fermion momenta gets close to the Dirac points. is feature
is present in the direct and in the generalized model with Γ1 = 6/π.
e form of the backscaering (g1)HamiltonianHbs

1 is similar toH fs
1 . However the scaering takes place

between le- and right-movers

Hbs
1 = λbs

U

L

∑
r

∑
k,k′,q

Sr
k+qS

−r
k S−rk′−qS

r
k′c
†
k+q,r,↑ck,−r,↑c

†
k′−q,−r,↓ck′,r,↓. (6.10)

We have introduced the additional parameter λbs which allows us to tune the overall strength of the g1
processes relative to the g2, g4 processes. λbs = 1 corresponds to the physical backscaering strength which
is required by SU(2) invariance.[125] Nevertheless, we will investigate the consequences of a suppression of
backscaering since this will be important for a bosonization analysis of the generalized model which will
be presented in an upcoming paper.[126]
As already pointed out, an important feature of edge states is the absence of umklapp processes in the

effective electron-electron interaction. However, in order to be able to compare the edge state model to a

³e equal strength of the g2 and g4 processes is due to the symmetry property Γ(−kF , kF , 2kF ) = Γ(±kF ,±kF , 0), which is a
consequence of the origin of Γ in the 2D honeycomb Hubbard model (see Ref. [119]).
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6. Edge magnetism in graphene

Hubbard chain, we add an artificial umklapp process with relative strength λus to the Hamiltonian of the
generalized model

Hus
1 = λus

U

L

∑
r

∑
k,k′,q

Sr
k+qS

−r
k Sr

k′−qS
−r
k′ c
†
k+q,r,↑ck,−r,↑c

†
k′−q,r,↓ck′,−r,↓. (6.11)

Varyingλus between 1 (Hubbard chain limit) and 0 (edge state limit) allows us to investigate the consequences
of the presence of umklapp processes for one-dimensional ferromagnetism.
Alltogether, the four parameters vF /U , λbs, λus, and Γ1 define the phase space of the generalized model

H = H0 +H fs
1 +Hbs

1 +Hus
1 . (6.12)

e following limits of this model may be identified:

1. Edge state limit: the generalized model with the parameters λbs = 1, λus = 0, and Γ1 = 6/π, is a good
approximation of the direct model.

2. Hubbard chain limit: for λbs = 1, λus = 1, and Γ1 = 0, the generalized model essentially describes a
one-dimensional Hubbard chain. e only difference is the assumption of a linearized single-particle
spectrum instead of the 2 cos(k) dispersion.

Note that it is important to work in the k-space formulation because it is difficult to control the umklapp
scaering or the momentum dependence of the interaction vertex in a real space formulation. One reason
for this is that an interaction vertex Γ(p, p′, q) with a nontrivial p, p′ dependence does not transform to a
real space interaction of the form V (x − x′) but to a complicated non-local interaction. is also hampers
the application of DMRG methods to this problem.

6.3. Exact diagonalization
e exact ground state of the generalized model is calculated numerically for finite sized zigzag edges up to
L = 48 by the Lanczos exact diagonalization method,⁴[22, 121, 122, 127] which relies on the projection of
the HamiltonianH to an orthonormal basis of the Krylov subspace

K = span{|ϕs ⟩ ,H |ϕs ⟩ ,H2 |ϕs ⟩ , . . . ,Hm−1 |ϕs ⟩} (6.13)

with a random start vector |ϕs ⟩ of nonzero overlap with the true groundstate. e groundstate energy of
the projected Hamiltonian in this basis converges very quickly to the groundstate energy in the complete
Hilbert space with increasing dimension of the Krylov space m, typically a size of m ≈ 102 . . . 103 was
found to be sufficient for this work. Computationally, the operationH |ϕ ⟩ for a state vector |ϕ ⟩ is the most
expensive one. We store |ϕ ⟩ in an occupation number basis {|n ⟩} of the full Hilbert space in k space and
are then confronted with calculatingH |ϕ ⟩ =

∑
n ⟨n |ϕ ⟩H |n ⟩, where the outcome ofH |n ⟩ is calculated

on the fly.
Separating le and right movers as well as the two spin sectors, the many body basis states can be wrien

in the form

|ψ ⟩ = |nk1 . . . nkN
⟩R,↑ |nk1 . . . nkN

⟩R,↓ |nk1 . . . nkN
⟩L,↑ |nk1 . . . nkN

⟩L,↓ . (6.14)

For the generalized model, neither the number of le/rightmovers, nor the total momentum is conserved,
thus leaving only

Nσ =
∑
k,r

c†kr,σckr,σ (6.15)

as a conserved quantity, making the Hamiltonian block diagonal. We encode one basis state as a pair of 64
bit integer numbers (i↑, i↓). Here, we use the N/2 lowest bits to encode the momenta of the right movers

⁴An edge with L unit cells in length corresponds to only L/3 k-space points in the reduced Brillouin zone in which the edge states
are defined.
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6.3. Exact diagonalization

and the nextN/2 bits to encode the momenta of the le movers. us, we can easily keep the number of set
bits constant while generating the basis states and therefore stay in the same block of the Hamiltonian.
e application of the Hamiltonian to a basis state can be performed implicitly without the knowledge

of its matrix form. However, we will only obtain a set of resulting basis states represented by the integer
pairs (i↑, i↓). is is inconvenient for the calculation of the actual resulting state H |ψ ⟩ and we need to
find the indices of the basis states contained in H |n ⟩ in the basis state array. is reverse search is an
expensive operation, slowing down the code substantially. A huge performance gain can be obtained by the
introduction of a hash table which allows the quick deduction of the index of a basis state (i↑, i↓).
emagnetic properties of the ground state depend on the ratio between the kinetic energy and the poten-

tial energy vFπ/U , which is experimentally tunable at graphene/graphane interfaces.[119] ree additional
tuning parameters Γ1, λus, λbs, which are not accessible experimentally, have been added in order to be
able to study the significance of the momentum dependence of the interaction vertex (Γ1), the influence
of the absence of umklapp scaering (λus) in edge states, and also the importance of backscaering (λbs).
With those artificial parameters, the generalized model may be tuned continuously from a Hubbard chain
limit to the edge state limit. In both limits the model describes an interacting one-dimensional metal. e
magnetic properties in these two limits, however, differ strongly: while the usual Hubbard chain (with umk-
lapp scaering and without momentum dependence) does not give rise to a ferromagnetic ground state, the
edge states (without umklapp scaering and with momentum-dependent interactions) show two magnetic
phases in addition to the non-magnetic Luinger liquid phase: for strong interactions the saturated edge
magnetism[113–115] is recovered, while for intermediate interaction strengths, a ferromagnetic Luinger
liquid appears.
e Hamiltonian H [Eq. (6.12)] conserves the numbers N↑, N↓ of up-spin and down-spin electrons, so

thatH is block diagonal in the Sz subspaces, which we define by the total spin-polarization in z direction

Sz =
1

2
(N↑ −N↓) = 0, 1, 2, ..., N/2. (6.16)

e total number of electronsN = N↑ +N↓ = L/3 is kept constant. is corresponds to half-filling. Note,
however, that the filling is physically relevant only if umklapp scaering is present (i.e. λus > 0). For the
edge states in which we are finally interested, umklapp scaering is forbidden so that the filling is irrelevant
as it only leads to quantitative renormalizations of the interaction strength and the Fermi velocity. In the
following, we determine the ground state ofH in each Sz subspace separately.
Note that by the definition of the Sz subspaces we have chosen a spin quantization axis. e Hamiltonian

H , however, is SU(2) symmetric if the backscaering is at its physical strength λbs = 1. Furthermore, since
we are dealing with finite systems, there will be no spontaneous rotational symmetry breaking. us, edge
magnetism will become manifest in a (2S + 1)-fold ground state degeneracy, corresponding to a high spin
(S) state. For instance, if in a system with N = 2 electrons the lowest energy states in the subspaces
Sz = −1, 0, 1 are the degenerate ground states, then the 1

2 spins of two electrons point into the same
direction, building an S = 1 super spin. Because the SU(2) symmetry of the individual electron spins is
not broken, also this composite super spin has full rotational symmetry. e Sz quantum numbers of the
degenerate Sz subspaces then correspond to the magnetization of this composite spin system. Note that
the spin-orbit interaction lowers the symmetry of the super spin, as it breaks the SU(2) invariance of the
individual electron spins which form the super spin.
For practical reasons, we extract the total spin quantum number S of the ground state from its ground

state degeneracy (2S+1), which is obtained from the Sz subspace ground state energies. We have checked
that this is equivalent to calculating the total spin S of the ground state directly.

6.3.1. Hubbard chain vs. edge states
First we study the crossover from a usual Hubbard chain to interacting edge states. As explained above, the
generalized model can be tuned continuously between these two limiting cases by means of the parameters
λus and Γ1. We postpone the analysis of backscaering to the next subsection and set λbs = 1 here.
It is most instructive to beginwith theHubbard chain limit of the generalizedmodel, which is characterized

by the full umklapp process strength λus = 1 and a suppressed momentum dependence of the interaction
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Figure 6.3.: Lowest eigen energies in different Sz subspaces for N = 12 in the Hubbard limit with λbs = 1,
λus = 1, Γ1 = 0, and U = 1. e inset shows the lowest eigen energies of the Sz = 0, 6
subspaces (zero and full spin-polarization) as the umklapp scaering is suppressed. e lower
lines correspond to λus = 1 and the higher lines to λus = 0. For the lines in between, λus
decreases in steps of 0.2.

Γ1 = 0. With this parameter set the direct model resembles a one-dimensional metal with a linear single
particle dispersion instead of a cos-dispersion. ⁵ e lowest eigen energies in the different Sz subspaces
for the parameter set described above are shown in Fig. 6.3. Obviously, the ground state is non-degenerate
and resides in the Sz = 0 subspace for arbitrary vFπ/U , except for the limit of infinitely large U . us,
as expected, no ferromagnetic phase transition exists for the Hubbard chain limit of the generalized model
at finite vFπ/U , in consistence with the Lieb-Mais theorem[120] which states that the ground state of a
system of one-dimensional interacting electrons has zero total spin and is non-degenerate with higher spin
subspaces. ⁶
Next, the generalized model is tuned away from the Hubbard chain limit by suppressing the umklapp

scaering λus < 1. Suppressed umklapp scaering is one of the properties of edge states which makes them
fundamentally different from usual one-dimensional metals. In the inset of Fig. 6.3, the lowest eigen energies
of the Sz = 0 and the Sz = ±N/2 (full spin-polarization) subspaces are shown as λus is reduced from 1 to 0
in steps of 0.2. For any λus < 1 there is a nonzero critical value for vFπ/U below which the lowest energy
states of these two subspaces and also for all Sz in between (not shown in the inset of Fig. 6.3) are equal.
is corresponds to a high spin state of size S = 6 in which the spins of all electrons point into the same
direction. e critical point at which the transition between S = 0 and S = N/2 takes place depends on
the umklapp scaering strength [vFπ

U

](Γ1=0)

crit.
∝ (1− λus)

y
. (6.17)

ForN = 12 we find for the exponent y ≃ 0.5± 0.02. Obviously, the absence of umklapp scaering allows a
high spin ground state. However, for λus < 1 and Γ1 = 0, the system instantly jumps from zero polarization
S = 0 to the maximal possible polarization S = N/2 at the critical point [vFπ/U ]

(Γ1=0)
crit. . is is a first

order phase transition. For the case of completely suppressed umklapp scaering λus = 0 this is shown in

⁵We have checked that the linearization of the single particle spectrum does not change the results qualitatively.
⁶e point vF π/U = 0 corresponds to a pathologic potential in Ref. [120], as it can be reached by U → ∞. At this point, all sectors
with total spin 0 ≤ S ≤ Smax are degenerate.
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Figure 6.4.: Lowest eigen energies with completely suppressed umklapp scaering λus = 0 and different
momentum-dependencies Γ1. Furthermore,N = 16, λbs = 1, andU = 1. Part (a) shows the case
of a momentum-independent interaction vertex (Γ1 = 0), where the ground state degeneracy
jumps from 17 (= 2Smax + 1) directly to 1 at the position indicated by the arrow. Part (b) shows
the case of an interaction vertex with maximal momentum-dependence Γ1 = 6/π. e arrows
indicate a change in the ground state degeneracy.

Fig. 6.4 (a), where the lowest eigen energies of all subspaces are ploed as a function of vFπ/U : the Sz = 0
subspace contains the non-degenerate ground state until at the critical point the lowest energy eigenstates
of all subspaces form the degenerate ground state; no intermediate regime of vFπ/U exists in which there
is only a degeneracy between some of the Sz subspaces.
e reason for the instant jump in the total spin is as follows: once the Stoner criterion vFπ/U >

[vFπ/U ]
(Γ1=0)
crit. is met, the interaction energy gain δEU (S) associated with developing a certain spin po-

larization S is larger than the corresponding kinetic energy penalty δEkin(S). Unlike in two or three
dimensions, however, for one-dimensional systems with momentum-independent interactions, δE(S) =
δEU (S) + δEkin(S) has no minimum, i.e. δE(S +1) < δE(S), for all S < Smax. us, the system instantly
’flows’ to the highest possible polarization Smax, once the Stoner criterion is met. is is a rather common
feature of one-dimensional systems with a constant interaction vertex (such as the Hubbard interaction) and
can easily be observed in a variational calculation of the ground state properties (see Appendix 6.4).
e momentum-dependence of the interaction vertex (Γ1 > 0) reduces the interaction energy gain as the

spin-polarizationS becomes larger. is is because for largerS, the Fermi level of the spin-up right-movers is
shied to higher momenta where the interaction is suppressed by the Sr=R

k factors [see Eq. (6.8)]. Similarly,
for the spin-up le-movers, the Fermi level is then shied to smaller momenta, where the Sr=L

k suppress the
interaction.⁷ As a result, δE(S) develops a minimum at S = Smin < Smax, and the system is stable there.
Intuitively, this may be understood on the basis of a variational calculation (see Appendix 6.4). Within exact
diagonalization one finds that with Γ1 = 6/π, the ground state degeneracy increases successively from 0 to
2Smax + 1 by first adding the lowest energy eigenstates of the Sz = ±1 subspaces to the ground space, and
then the Sz = ±2 subspaces and so forth. is is shown in Fig. 6.4 (b).
If the total spin S is ploed as a function of vFπ/U , S decreases from Smax to 0 in steps. ese steps

⁷Note that the increase in the interaction vertex for the spin-down electrons with lowered Fermi level is overcompensated by the
suppression due to the higher Fermi level of the spin-up electrons, so that in total the interaction is reduced as S grows.
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Figure 6.5.: Dependence of the spin-polarization S on vFπ/U for different strengths of the momentum-
dependence Γ1 from Γ1 = 0 (rightmost curve) to Γ1 = 6

π (lemost curve) in steps of∆Γ1 = 6
10π .

e length of the edge is L = 48, λbs = 1 and λus = 0. e smooth curve is a power law fit to
the plateau centers of the Γ1 = 6

π steps with exponent β = 0.5 (see text).

correspond to the positions vFπ/U , where the degree of the ground state degeneracy changes, indicated by
arrows in Fig. 6.4. For Γ1 = 0, there is one step where the spin-polarization jumps from S = Smax = N/2
to S = 0, while for the maximal Γ1 = 6/π, there are N/4 steps at each of which the spin-polarization is
decreased by ∆S = 2.⁸ Fig. 6.5 shows these two limiting cases and how the steps evolve as Γ1 is varied
from 0 to 6/π. e momentum-dependence must have a minimum strength Γ1 > Γc

1 ≃ 1, in order to break
the one big spin- polarization step of heightN/2 into many small steps of height 2. us, for Γ1 > Γc

1 there
is a regime of weak edge magnetism, meaning that the total spin S of the ground state is smaller than the
maximal spin Smax, in addition to the usual saturated edge magnetism for small vFπ/U (i.e. S = Smax) and
the Luinger liquid regime for large vFπ/U with S = 0. Figure 6.6 shows a diagram in which the phase
boundaries between the Luinger liquid (LL), the saturated edge magnetism (SEM) and the novel weak edge
magnetism (WEM) are shown for different system sizesN = 8, 12, 16.
Note that the non-zero Γc

1 found in the exact diagonalization reveals a weakness of the fermionic mean-
field theory in which this minimum momentum dependence, above which a WEM regime appears, is zero
(see Appendix 6.4). A non-zero Γc

1 means that the small momentum-dependencies which always follow from
a dependence of the Bloch wave functions in usual one-dimensional conductors on the momentum are not
necessarily sufficient to stabilize the weak edge magnetism; the momentum-dependence of the interaction
vertex must be sufficiently strong for this.
In the limit L → ∞, which cannot be accessed within exact diagonalization, of course, S/Smax becomes

a smooth function of vFπ/U . We approximate this smooth function by a power law

S/Smax ∼
[(vFπ

U

)
crit.

− vFπ

U

]β
. (6.18)

Fermionic mean-field theory (see Appendix 6.4) predicts β = 0.5. Because the exact diagonalization study is
limited to small systemsN ≤ 16, it is difficult to obtain a decent estimate of the exact exponent β within this
work. Fiing the edge state limit of the generalized model to the center of the plateaus of theN = 16 results

⁸is decrease of 2 inS is due to the contribution of the le- and right-moving branch to the spin-polarization: each branch contributes
one spin flip.
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Figure 6.6.: Phase diagram for lengths L = 24, L = 36 and L = 48 . For small velocity dependence Γ1

of the interaction, only the Luinger liquid (LL) phase and the saturated edge magnetism (SEM)
phase exist, whereas above the critical value of Γ1 = Γc

1 the weak edge magnetism (WEM) phase
appears.

of the exact diagonalization, we obtain 0.44 < β < 0.61, dependent on how many plateaus are included in
the fit. e critical point

(
vFπ
U

)
crit. ≃ 0.760 for this fit is obtained by extrapolating the rightmost step from

the data sets N = 4, 8, 12, 16 to N = ∞.
Interestingly, Γ1 not only affects the order of the transition but also the critical vFπ/U . is is also

not correctly predicted by the mean-field approach (see Appendix 6.4), which, independently of Γ1, finds
vFπ/U = 1 to be the critical point. For small Γ1 and N = 16 the exact diagonalization gives[vFπ

U

]
crit.

≃ 0.84− 0.17Γ2
1. (6.19)

For the maximal Γ1 = 6/π, the position of the lemost step can be calculated by exact diagonalization for
very large systems.[127] We performed calculations for system sizes up to L = 180 in order to extrapolate
this step position. Within the limits of the accuracy of this extrapolation, the critical point vFπ/U = 0.5±
0.001 between the SEM and the WEM regime coincides with the mean-field prediction (see Appendix 6.4).
is extrapolation to the thermodynamic limit, in combination with the extrapolation of the critical point
between the WEM and the LL regime, is a strong evidence for the existence of the WEM phase for 0.5 ≤
vFπ/U ≤ 0.760 in the thermodynamic limit.
For completeness we note that our exact diagonalization analysis shows that a SEM phase also exists in

the general model with umklapp scaering λus = 1 if Γ1 > 0. However even for Γ1 = 6/π there is no weak
edge magnetism phase between the Luinger liquid and the saturated edge magnetism as long as λus = 1.

6.3.2. The relevance of backscaering
ebackscaeringHamiltonianHbs

1 is important for the SU(2) invariance of the Hamiltonian. It is easily seen
that only for λbs = 1 the SU(2) symmetry is preserved. At real graphene edges, of course, the backscaering
cannot be tuned experimentally. Nevertheless it is interesting to study the consequences of a suppression of
Hbs

1 since in a bosonization treatment of the generalized modelHbs
1 translates to a sine-Gordon term which

is difficult to analyze. erefore, some insight into the relevance ofHbs
1 is helpful from a theoretical point of
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Figure 6.7.: e lowest eigen energies of different Sz subspaces with (blue) and without (green) backscaer-
ing calculated for an edge of length L = 48. e broken SU(2) symmetry in the case of λbs ̸= 1
lis the degeneracy of the ground states in the different Sz subspaces.

view. Following the philosophy of the previous subsection, we restrict the discussion to the spin polarization
properties of the ground state. e analysis of more complicated observables such as spin-spin correlation
functions is beyond the scope of this work and will be discussed in another paper.

Fig. 6.7 compares the lowest eigen energies of the Sz subspaces from calculations with and without
backscaering. e most striking feature of the suppression of backscaering is the liing of the ground
state degeneracy in the SEM regime. is effect is easily understood by noting that the very reason for the
ground state degeneracy in the λbs = 1 case was the SU(2) symmetry, which, however, is broken for λbs < 1.
Interestingly, the liing of the degeneracy is such that the lowest energy states of the subspaces with high-
est |Sz|, in the ground space for λbs = 1, form the ground state for λbs < 1. is means that suppressing
backscaering introduces an Ising anisotropy along the spin quantization axis chosen in the definition of
the model.

Apart from this degeneracy liing, the evolution of the ground state properties with vFπ/U is very similar
for calculations with and without backscaering. e positions of the highest spin-polarization steps are
practically unchanged. Only at the steps close to the phase transition between the LL and the WEM regime,
a deviation of the λbs = 0 results from the λbs = 1 results can be observed. A handwaving explanation
of this behavior can be given in terms of the bosonization analysis of the WEM regime in Ref. [119]. As
soon as the Fermi levels for the up-spin electrons and the down-spin electrons are split, the backscaering
process for electrons right at the Fermi surface is forbidden because it is not momentum-conserving. us,
in order to conserve momentum, the electrons are forced to scaer to higher energies if there is a non-
zero spin-polarization. is mechanism suppresses the backscaering. In the bosonization language the
backscaering Hamiltonian acquires a spatially oscillating phase which makes the corresponding operator
irrelevant in the renormalization group. us in the WEM regime, not too close to the critical point,Hbs

1 is
suppressed and does not give an important contribution.

Close to the critical point, however, Fig. 6.7 indicates thatHbs
1 becomes more important. is observation

is consistent with the qualitative bosonization argument: Close to the critical point the phase oscillations in
the bosonic backscaering Hamiltonian get slower until they completely disappear at the critical point.
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6.4. Variational analysis of the generalized model
We calculate the magnetic ground state properties of the generalized model within a fermionic mean-field
approximation. It is assumed that only the averages

⟨
c†krσckrσ

⟩
are non-zero, so that the umklapp Hamil-

tonian Hus
1 and the backscaering Hamiltonian Hbs

1 drop out of the mean-field treatment. e resulting
non-interacting Hamiltonian is diagonal in the momentum k, in the direction of motion r and in the z-spin
projection, so that the mean-field theory is equivalent to a variational ansatz based on the trial wave function

|M⟩ =
∏
σ

[ ∏
k<kFσ

c†kRσ

][ ∏
k>−kFσ

c†kLσ

]
|0⟩ (6.20)

with an asymmetric occupation of spin-up and spin-down states. e variational parameterM ∈ [0, 1] is
related to the spin-dependent Fermi levels by

kFσ = σ
π

6
M, (6.21)

and to the spin-polarization S, used in Sect. 6.3, byM = S/Smax. For finite size systems, as discussed in the
main part of this chapter, the Fermi level cannot be varied continuously so that alsoM is a discrete variable
in this case. However, within mean-field theory it is easy to perform the calculations in the thermodynamic
limit, so that we will consider M to be a continuous variable and interpret it as the magnetization order
parameter.
e variational energy E(M) is easily calculated from the HamiltonianH in Eq. (6.12)

E(M) = ⟨M |H |M⟩ = 1

36
(πvF − U)M2 + Γ2

1

Uπ2

5184
M4. (6.22)

For U < πvF , the minimum of E(M) is atM = 0, while for U > πvF the mean-field ground state has a
finite magnetization

M = min
[√

72

πΓ1

√
1− vFπ

U
, 1

]
(6.23)

Note that by definition the magnetization cannot become larger than 1. From Eq. (6.23) it becomes obvious
that a non-zero momentum-dependence Γ1 is required to stabilize the regime of weak edge magnetism. For
Γ1 = 0, the magnetization would jump from 0 to 1 at the critical point U = vFπ.
e existence of the weak edge magnetism can be traced back to the M4 term in Eq. (6.22) which is

generated by the momentum-dependence Γ1 of the interaction vertex. In dimensions higher than one, such
M4 terms emerge also frommomentum-independent interactions or directly from the kinetic energy, so that
at least on the mean-field level Γ1 > 0 is required for the stabilization of weak ferromagnetism only in one
dimension.

6.5. Exact diagonalization of the direct model
e direct model Hamiltonian Hdm defined by Eqs. (6.4 - 6.5) and the edge state limit of the generalized
model Hamiltonian H [Eq. (6.12) with λbs = 1, λus = 0 and Γ1 = 6/π] are not exactly equal, as the
general model linearizes the single particle dispersion and replaces the factorsNp by the approximation Sr

k .
Nevertheless, the most important properties of graphene edge states, i.e. the momentum-dependence of the
interaction vertex and the absence of umklapp scaering, are properly described by both, the direct model
and the general model in the edge state limit.
In this section, we check that the direct model has qualitatively the same magnetic properties as the

general model in the edge state limit. In Fig. 6.8, we present the spin-polarization S as a function of ∆/U ,
obtained from the exact diagonalization of the direct model. e bandwidth parameter∆ of the direct model
corresponds to the Fermi velocity vF of the general model.

107



6. Edge magnetism in graphene

Clearly, for larger∆/U , which corresponds to the parameter vFπ/U in the generalized model, we obtain
a Luinger liquid phase with a ground state of total spin S = 0. An intermediate regime with weak edge
magnetism exists, where the total spin of the ground state S < Smax is not maximal. As in the exact diag-
onalization analysis of the general model, only some of the lowest eigen energies in different Sz subspaces
are degenerate and form the ground state. For small ∆/U , the saturated edge magnetism phase is reached
and the spin of the ground state is maximal, i.e., the lowest eigen energies in all Sz subspaces are degenerate.
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Figure 6.8.: Lowest eigen energies in the Sz = 0, ±2, ±4, ±6, ±8 subspaces (from boom to top) for the
direct model calculated for an edge of length L = 48. e inset shows the dependence of the
spin-polarization S as a function of∆/U determined from the degeneracy of the ground state.

Note that the energy of the fully spin polarized eigenstate of the direct model Hamiltonian has a finite slope
(see Fig. 6.8). is is because the direct model lacks a symmetry of H0 of the generalized model leading to
ESmax

0 (vF ) = const (cf. Fig. 6.4). As only the degeneracy of the lowest eigen energies are important, but not
their absolute values, this difference does not have any physical consequences.

6.6. Discussion
On the basis of a generalized class of effective models for one-dimensional interacting electrons we have
studied the magnetic properties of a graphene zigzag edge. Using exact diagonalization we confirmed the
existence of three phases within these models, namely the saturated edge magnetism phase which is present
at normal graphene edges, the Luinger liquid phase which appears for edge states with strongly enhanced
bandwidth, and an intermediate regime of weak edge magnetism. e laer phase is a realization of a
ferromagnetic Luinger liquid, a one-dimensional itinerant ferromagnet. We presented evidence that the
transition between the Luinger liquid and theweak edgemagnetism phase becomes a second order quantum
phase transition in the limit of long edges.
Beyond the identification of the magnetic properties of edge states, we examined the question why elec-

trons in one-dimensional edge states have such a rich phase diagramwith two types of ferromagnetic ground
states, while usual one-dimensional electrons do not show any ferromagnetism. In view of the Lieb-Mais
theorem,[120] which actually forbids a spin-polarized ground state for interacting electrons in one dimen-
sion, this question becomes even more pressing.
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A closer inspection of the edge state model, whichwas derived directly from the graphene crystal structure
[119], revealed two unusual features of edge states which cannot be found in other one-dimensional elec-
tronic systems, such as quantum wires, for instance. ese are (a) the total absence of umklapp processes in
the effective electron-electron interaction, independently of the filling factor, and (b) a strong momentum
dependence of the effective interaction vertex. Each of these features precludes the applicability of the Lieb-
Mais theorem. emomentum-dependence gives rise to a complicated non-local interaction, which cannot
be wrien as V (x, y)n̂(x)n̂(y), with n̂(x) an electron density operator, as it is required for the Lieb-Mais
theorem. And even in the limit of momentum-independent interactions (Γ1 = 0 in the general model) the
suppressed umklapp scaering makes the reformulation as a density-density interaction in real space impos-
sible. In order to further track down the particular consequences of these special features for the magnetic
properties of graphene edges, we replenished the direct model with a tunable umklapp scaering term and
replaced the interaction vertex by a generalized vertex function in which the momentum-dependence can
be switched on and off.
e study of this generalized model, which can be tuned continuously between its edge state limit and

a regime in which it describes normal one-dimensional metals, revealed the significance of the two edge
state features: the absence of umklapp processes is responsible for the existence of a spin-polarized ground
state, and the strong momentum dependence of the interaction vertex stabilizes a regime of weak edge
magnetism and gives rise to a second order phase transition between the paramagnetic Luinger liquid and
the ferromagnetic Luinger liquid.
It is interesting to note that the stabilization of the weak edge magnetism phase seems to be very robust

against changes in the details of the interaction vertex function. Apparently it is only important that the
vertex is suppressed as one of the four momenta of the participating fermions gets close to one of the Dirac
points. e exact functional form of this suppression, however, seems to be irrelevant, since the qualitative
behavior of the spin-polarization did not depend on whether we used the interaction vertex of the direct
model or the interaction vertex of the generalized model with maximal momentum dependence. ese two
vertex functions have in common that they vanish as one of themomenta approaches a Dirac point. However,
their functional forms are very different.
Finally we note that one-dimensional itinerant magnetism has also been studied in Hubbard chains with an

additional second neighbor hopping,[128, 129] showing that it is indeed possible to define one-dimensional
models which, at first sight, seem to comply with the prerequisites of the Lieb-Mais theorem, but never-
theless have a high spin ground state. e physical picture behind the model discussed in Refs. [128, 129],
however, is much different from the present work. Interestingly, the sign of the hopping amplitude to the
nearest neighbor must be different from the sign of the next-nearest neighbor hopping for the system to
have a ferromagnetic ground state.
Also, we emphasize that the model discussed here is the low-energy theory of a realistic system which

may be studied experimentally. It has been derived in direct line from a two-dimensional laice model of
graphene/graphane interfaces.[119, 123]
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7. Conclusion
e present thesis is an aempt of portraying three large projects as examples of computational research in
strongly correlated electron systems. For most topics, special care has been taken to provide a pedagogical
presentation so that an interested reader is equippedwith a sufficient level of detail to actually use themethod
and further develop it on his own. Furthermore a methodologically intriguing way of tackling problems has
always been preferred.
A rather general introduction to the CT-INT method including implementation details, mathematical as

well as numerical foundations and tricks has been given in chapter 3 as this method is central to the problems
addressed in this thesis.
In chapter 4, the treatment of two particle quantities represented byG⊥4 (Q;K,P ) in CT-INT has been dis-

cussed in great detail. e goal was the reliable extraction of dynamical susceptibilities fromG⊥4 (Q;K,P ),
which is of crucial importance in DCA. We presented a method for summing out the internal momenta and
fermionic frequencies K and P without the introduction of a systematic error and show how this method
can be carefully checked against exactly known results from exact diagonalization. We argue that it is im-
portant to eliminate the cutoff error to avoid an incorrect asymptotic behaviour of dynamical susceptibilities
on the imaginary (bosonic) frequency axis. Our data forG⊥4 show that the frequency structure is reproduced
in every momentum sector and differs only by momentum dependent weights of the different features.
In addition to the discussion of laice calculations, we have used the CT-INT extensively for the study of

a correlated Josephson junction in chapter 5. We have shown that the method is extremely well suited for
this kind of problem and that the introduction of complex phase factors stemming from superconducting
Green’s functions do not introduce any further problems. e non spin diagonal Green’s functions can be
incorporated in the formalism in a natural way. e in depth study of the system leads to a complete picture
of the mechanism driving the π phase shi of the Josephson current by means of a first order quantum phase
transition from a singlet to a doublet phase reflected by the formation of a local moment on the correlated
quantum impurity.
We have been able to develop a strategy for the extraction of experimental model parameters from the

Josephson current and normal state conductance measurement of a real experiment and could reproduce
experimental data from a model calculation — thus proving the applicability of the model for the description
of a single well carbon nanotube coupled to superconducting leads. is allowed us to improve existing
data analysis strategies based on the evaluation of Coulomb diamonds — which are strictly speaking not
applicable in the presented case as Kondo correlations are important. Furthermore Kondo correlations could
be detected by the calculation of the single particle spectral function.
A third project is the study of edge magnetism in graphene. Using the Lanczos method for the calculation

of a finite size Hamiltonian in addition to the introduction of a generalized model for the edge states, we
discussed the various effects of different terms in the Hamiltonian on the magnetic properties of the ground
state.
e variety of different methods applicable for the study of strongly correlated systems should give the

reader an idea of different methodological approaches to tackle this class of problems.
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A. Appendix

In this appendix, we present fragments of unpublished or yet to be published work. Section A.1 is of partic-
ular documentary importance, as it documents the status of work done on the application of the Legendre
polynomial basis for two particle Green’s functions within the framework of CT-INT. is project has been
abandoned in the mean time due to severe performance issues of the approach as will be explained below. If
the reader plans to further explore this topic, this section in addition to reference [50] should provide a solid
starting point and give an idea of difficulties one might face without having the ambition of being complete.
In section A.2 a pedagogical introduction of the analytical continuation of the self energy is given. While

the idea is not novel, the author has found it worthwhile to do the derivation on his own. Details on the
application of the method to the Single impurity Kane-Mele model are given and a condensed version of this
work will be part of an upcoming article [130].
Finally, some notes on the generation of test data with an analytically known covariance matrix are pro-

vided. is has proved useful for sanity tests of data analysis codes in general and the bootstrap code in
particular.

A.1. Efficient representation of two particle quantities: Polynomial
basis

Whenever we calculate two particle Green’s functions G4(Q;K,P ), we realize that the information con-
tained in the huge tensor is not stored in an efficient way. Especially the high frequency part ofG4(Q;K,P )
decays arithmetically and the high frequency part has to be partly calculated for a reliable extrapolation to
infinite cutoff frequency.
erefore, we make use of an idea by Lewin Boehnke et al. [50] namely the representation ofG4(Q;K,P )

in a mixed basis which is based on the representation of an imaginary time Green’s function in terms of
Legendre polynomials. Here, we will restrict ourselves to a problem that has all the symmetries of the
Hubbard model. is will allow some important simplifications.
e idea is particularly intriguing as Lewin Boehnke argued that two particle quantities in a mixed¹ basis

decay exponentially and therefore sums over the internal (Legendre) indices should converge for a finite
number of indices without the need of extrapolation as in the case of frequencies discussed in chapter 4.
While Boehnke et al. showed the feasibility of the approach for an impurity problem using the CT-HYB

algorithm, it remained unclear how well it can be transported to a cluster problem, for which the applica-
tion of CT-INT is beer suited. e fragment presented here discusses the difficulties we faced during the
aempt of adapting the idea for a cluster calculation in CT-INT and tries to provide a conclusion judging the
feasability.

A.1.1. Calculating G4(Q;L,L′) in the spin channel in CT-INT directly in the
Legendre Basis

We define Q = {Q, iνm} with a cluster (laice) momentum Q indicated by a bold face upper (lower) case
leer and a bosonic Matsubara frequency iνm. Analogously, let us define L = {K, l} as well as L′ = {P, l′}
with cluster momentaK andP and Legendre polynomial indices l and l′. Legendre polynomial indices will
only replace fermionic Matsubara frequencies iωn and iω′n.

¹e bosonic transfer frequency is kept, while the two fermionic frequencies are transformed into the basis of Legendre polynomials
and thus replaced by Legendre indices l and l′.
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e transformation for the single particle Green’s function from Matsubara frequencies to the Legendre
basis can be wrien in the following form:

G2(K) =
∞∑
l=0

Tn,lG2(L) and G2(L) =
∞∑

n=−∞
T ∗n,lG2(K). (A.1)

e transformation matrix is given by

Tn,l =

√
2l + 1

β

β∫
0

dτ eiωnτPl(x(τ)) = (−1)nil+1
√
2l + 1 jl

(
2n+ 1

2
π

)
. (A.2)

Here, x(τ) = 2τ/β − 1 and jl(x) denotes the spherical Bessel function of order l.
e transformation Tn,l is unitary, as

∞∑
n=−∞

T ∗n,lTn,l′ = δl,l′ and
∞∑
l=0

Tn,lT
∗
n′,l = δn,n′ . (A.3)

e two identities (A.3) can be shown by virtue of the identities²∫ 1

−1
dxPl(x)Pl′(x) =

2

2l + 1
δl,l′ and

∞∑
l=0

(2l + 1)Pl(x)Pl(y) = 2δ(x− y). (A.4)

We also note the particular property of the transformation matrix element Tn,l
T−n−1,l = T ∗n,l = (−1)l+1Tn,l. (A.5)

Measurement of G⊥4 (Q;K,P ) in CT-INT

In order to understand how G⊥4 (Q;L,L′) should be calculated most efficiently, let us begin with the equa-
tions for the calculation of G⊥4 (Q;K,P ) detailed in section 4.4.1.
At this point, one might be inclined to think that a transformation of the accumulation equation (4.42)

to the Legendre basis is already possible. Unfortunately, this is not a good idea, as the involved sums over
Matsubara frequencies cannot be carried out analytically. erefore, we have to manipulate the equations in
another way. Let us multiply out the accumulation equation to get a beer understanding of how this should
be done. To keep the equations readable, we defineXi = (τi,Xi)

T for the vertex i. We also define a scalar
product with the metric g = diag(1,−1) yielding K · Xi = KT gXi = ωnτi − KTXi. Hence, equation
(4.43) reads:

⟨⟨c̄σ,Kcσ,P ⟩⟩Cn = δK,PG
0
2(K)− 1

βN
G0

2(K)G0
2(P )

∑
r,s

ei(K·Xr−P ·Xs)
(
M−1σ

)
r,s
. (A.6)

en,

⟨⟨c̄↑,Kc↑,P−Q⟩⟩Cn⟨⟨c̄↓,P c↓,K+Q⟩⟩Cn = δP,K+QG
0
2(K)G0

2(P )

− 1

βN
δK,P−QG

0
2(K)G0

2(P )G
0
2(K +Q)

∑
r,s

ei(P ·Xr−(K+Q)·Xs)
(
M−1↓

)
r,s

− 1

βN
δP,K+QG

0
2(P )G

0
2(K)G0

2(P −Q)
∑
r,s

ei(K·Xr−(P−Q)·Xs)
(
M−1↑

)
r,s

+
1

β2N2
G0

2(K)G0
2(P −Q)G0

2(P )G
0
2(K +Q)×

×
∑

r,s,r′,s′

ei(K·Xr−(P−Q)·Xs+P ·Xr′−(K+Q)·Xs′ )
(
M−1↑

)
r,s

(
M−1↓

)
r′,s′

.

(A.7)

²http://functions.wolfram.com/05.03.21.0006.01 and http://functions.wolfram.com/05.03.23.0009.01
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Let us now rewrite this equation in the following way:

βN⟨⟨G⊥4 (Q;K,P )⟩⟩Cn = A(Q;K,P ) +
∑

K′,K′′

B(Q;K,K ′)C(Q;K ′,K ′′)D(Q;K ′′, P ). (A.8)

Apparently, we can choose the matrices A(Q), B(Q), C(Q) and D(Q) in the following way:

B(Q;K,K ′) =
1

βN
δK,K′G0

2(K)G0
2(K +Q). (A.9)

C(Q;K ′,K ′′) =
∑

r,s,r′,s′

ei(K′·Xr−(K′′−Q)·Xs+K′′·Xr′−(K
′+Q)·Xs′ )

(
M−1↑

)
r,s

(
M−1↓

)
r′,s′

. (A.10)

D(Q;K ′′, P ) =
1

βN
δP,K′′G0

2(P )G
0
2(P −Q). (A.11)

us, A(Q;K,P ) is uniquely defined by the first three terms of equation (A.7). e transformation to the
Legendre basis is now straightforward:

TK,L = δK,PTn,l, with
∑
L

T ∗K,LTP,L = δK,P . (A.12)

Hence, we have

βN⟨⟨G⊥4 (Q;L,L′)⟩⟩Cn = A(Q;L,L′) +
∑

L′′,L′′′

B(Q;L,L′′)C(Q;L′′, L′′′)D(Q;L′′′, L′), (A.13)

with Z(Q;L,L′) =
∑

K,P T
∗
K,LZ(Q;K,P )TP,L′ , where Z ∈ {A,B,C,D}.

Now, we can treat the transformation of the different terms separately. First, we note that onlyC(Q;L,L′)
has to be accumulated during the CTQMC simulation. B(Q;L,L′) and D(Q;L;L′) do not depend on the
QMC configuration and may be calculated in the very end of the Monte Carlo simulation. A(Q;L,L′) seems
to depend on the configuration of vertices in the Markov chain. is dependence, however, is only on the
one particle level, which can be assumed to be known at a stage of the calculation at which we are interested
in two particle quantities. erefore, the Monte Carlo average ofA(Q;K,P ) can be calculated exactly using
the identity⟨

1

βN
G0

2(K)G0
2(P )

∑
r,s

ei(K·Xr−P ·Xs)
(
M−1σ

)
r,s

⟩
= δK,P

[
G0

2,σ(K)−G2,σ(K)
]
. (A.14)

Note again, that we usedG0
2,↑(K) = G0

2,↓(P ) here to simplify the equations. In situations, where we have
a magnetic field which breaks this symmetry, the equations have to be derived including the spin index.

Ā(Q;K,P ) = ⟨A(Q;K,P )⟩ = δP,K+Q

[
G0

2(K)G2(P ) +G0
2(P )G2(K)−G0

2(P )G
0
2(K)

]
. (A.15)

In the Legendre basis, we obtain:

Ā(Q;L,L′) =
∑
K,P

T ∗K,LδP,K+Q

[
G0

2(K)G2(P ) +G0
2(P )G2(K)−G0

2(P )G
0
2(K)

]
TP,L′ =

=
∑
K

T ∗K,LTK+Q,L′
[
G0

2(K)G2(K +Q) +G0
2(K +Q)G2(K)−G0

2(K +Q)G0
2(K)

]
.

(A.16)

For B(Q;L,L′), we have:

B(Q;L,L′) =
∑
K,P

T ∗K,L

1

βN
δK,PG

0
2(K)G0

2(K +Q)TP,L′ =
∑
K

1

βN
T ∗K,LTK,L′G0

2(K)G0
2(K +Q).

(A.17)
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and for D(Q;L,L′) = B(−Q;L,L′):

D(Q;L,L′) =
∑
K,P

T ∗K,L

1

βN
δP,K′′G0

2(P )G
0
2(P −Q)TP,L′ =

∑
K

T ∗K,LTK,L′
1

βN
G0

2(K)G0
2(K −Q).

(A.18)

Accumulation of C(Q;L,L′) Apparently, we only need to calculate C(Q;L,L′) during the QMC, sim-
ilarly to the method we use in the case of the frequency representation discussed in chapter 4. Let us write
down the equations in the Legendre basis:

C(Q;L,L′) =
∑
K,P

T ∗K,L

∑
r,s,r′,s′

ei(K·Xr−(P−Q)·Xs+P ·Xr′−(K+Q)·Xs′ )
(
M−1↑

)
r,s

(
M−1↓

)
r′,s′

TP,L′ .

(A.19)
We will shortly see that carrying out the sums over K and P is possible but requires the evaluation of

Pl(x(τ)) for τ ∈ [−β, β], as this is the codomain of τs − τ ′r . Strictly, this is not allowed and we have to
extend the definition of Pl(x(τ)) in a consistent way. Most importantly, we require G(−τ) = −G(β − τ).
Wrien in terms of Legendre coefficients, this yields:

G(−τ) =
√
2l + 1

β

∑
l≥0

P̃l(x(−τ))Gl
!
= −G(β − τ) = −

√
2l + 1

β

∑
l≥0

Pl(x(β − τ))Gl. (A.20)

It is clear that the definition

P̃l(x(τ)) =

{
Pl(x(τ)) if τ ∈ [0, β]

−Pl(x(β + τ)) if τ ∈ [−β, 0]
(A.21)

will fulfill the requirement. We shall use P̃l from now on. Note that using this result, we can rewrite Tn,l in
the following way:

Tn,l =

√
2l + 1

2β

β∫
−β

dτ eiωnτ P̃l(x(τ)). (A.22)

Let us now reduce equation (A.19) analytically as far as possible, spliing the calculation in two steps:

∑
P

e−iP (Xs−Xr′ )TPL′ =
∑
p,iωn

e−iωn(τs−τr′ )eip(xs−xr′ )δp,l′

√
2l′ + 1

2β

∫ β

−β
dτ eiωnτ P̃l′(x(τ))

=

√
2l′ + 1

2
eil′(xs−xr′ ) P̃l′(x(τs − τr′)).

(A.23)

Here, we used
∑
iωn

eiωnτ = βδ(τ). Performing the same calculation for the second term of the same form, we

get: ∑
K

T ∗KLeiK(Xr−X′
s) = e−il(xr−xs′ )

√
2l + 1

2
P̃l(x(τr − τs′)). (A.24)

Consequently, we obtain:

C(Q;L,L′) =
∑

r,s,r′,s′

eiQ(Xs−Xs′ )
(
M−1↑

)
r,s

(
M−1↓

)
r′,s′

√
(2l + 1)(2l′ + 1)

4
×

× ei[l′(xs−xr′ )−l(xr−xs′ )]P̃l(x(τr − τs′))P̃l′(x(τs − τr′))

(A.25)

As the imaginary times τr and τs of the vertices in the CT-INT live on the interval τr, τs ∈ [0, β], we have
to evaluate the antisymmetrized Legendre Polynomials P̃l(x(τ)) for τ ∈ [−β, β].
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In order to efficiently perform these nested loops in a numerical calculation, we rewrite C(Q;L,L′) in
the following way by first noting that P̃l(x(τ)) = sgn(τ)Pl

(
2τ
β − sgn(τ)

)
:

C(Q;L,L′) =

√
(2l + 1)(2l′ + 1)

4

∑
s,s′

eiQ(Xs−X′
s)eil

′xs+ilxs′
∑
r,r′

e−il′xr′−ilxrP rs′

l P sr′

l′

(
M−1↑

)
r,s

(
M−1↓

)
r′,s′

.

(A.26)
Streamlineing inner loops as far as possible yields:

C(Q;L,L′) =

√
(2l + 1)(2l′ + 1)

4

∑
s

eiντseil
′xs−iqxs

∑
s′

e−iντs′ eiqxs′+ilxs′×

×
∑
r

e−ilxrP rs′

l

(
M−1↑

)
r,s

∑
r′

e−il′xr′P sr′

l′

(
M−1↓

)
r′,s′

.

(A.27)

Here, the exponentials may be tabelized and the rank 3 tensors P rs
l should also be precalculated. ey are

given by:

P rs
l = sgn(τr − τs)Pl

(
2(τr − τs)

β
− sgn(τr − τs)

)
, (A.28)

with the obvious symmetry
P sr
l = (−1)l+1P rs

l . (A.29)

Of course, P rs
l+1 is related to P rs

l and P rs
l−1 through the well known Rodriguez Formula. Further, because of

Pl(−1) = (−1)l, we have P rr
l = (−1)l, as we use the convention sgn(0) = 1.

Most efficiently, C(Q;L,L′) is calculated in the following way:

C(Q;L,L′) =

√
(2l + 1)(2l′ + 1)

4

∑
s

eiντs−iqxs

∑
s′

e−iντs′+iqxs′ hs,s
′

↑,L h
s,s′

↓,L′ , (A.30)

with

hs,s
′

↑,L =
∑
r

eilxs′ e−ilxrP rs′

l

(
M−1↑

)
r,s

and hs,s
′

↓,L′ =
∑
r

eil′xse−il′xrP sr
l′

(
M−1↑

)
r,s′

. (A.31)

Dealing with the constant in C(Q;K,P ) AK and P independent constant in C(Q;K,P ) leads to the
problem that C(Q;L,L′) does not decay as a function of increasing L or L′. is may not be desired, as we
have to perform a sum over L and L′ and wish the summands to decay, so that the truncation of the sum is
valid. e origin of the constant comes from summands where τr = τ ′s and τ ′r = τs. is part of the sum
may be subtracted and transformed separately. en, Tnl matrices will cancel out and we are able to perform
some sums analytically.
We know that in the Matsubara frequency representation, C(Q;K,P ) has the form (A.10), which can be

rewrien as

C(Q;K,P ) =
∑
rsr′s′

ei[K·(Xr−Xs′ )+P ·(Xr′−Xs)+Q·(Xs−Xs′ )]
(
M−1↑

)
rs

(
M−1↓

)
r′s′

. (A.32)

In this representation, it is obvious that summands with r = s∨r′ = s′ yieldK- or P -independent contribu-
tions toC(Q;K,P ). ese terms imply the complication of dangling sums overK and P once we transform
to the Legendre basis leading to increasing coefficients as a function of l or l′. As an example, take a term
c(Q;P ) that does not depend onK . e transformation to the Legendre basis looks like:

c(Q;L,L′) =
∑
K,P

T ∗K,Lc(Q;P )TP,L′ =

(∑
P

c(Q;P )TP,L′

)(∑
K

T ∗K,L

)
. (A.33)
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e dangling frequency sum yields

∑
K

T ∗K,L =
∑
K,iωn

δK,LT
∗
nl =

∑
iωn

√
2l + 1

2β

β∫
−β

dτeiωnτ P̃l(x(τ)) =
√
2l + 1P̃l(−1) =

√
2l + 1(−1)l.

(A.34)

A.1.2. Symmetries of C(Q;L,L′)

In the case of SU(2) symmetry, which will be taken as a prerequisite here, we know thatG⊥,↑↓↓↑4 (Q;K,P ) =

G⊥,↓↑↑↓4 (Q;K,P ). Transforming this identity to the Legendre basis, we obtain two quantities playing the
role of C(Q;L,L′), namely:

Cσσ̄(Q;L,L′) =
∑
K,P

TK,LT
∗
P,L′

∑
r,s,r′,s′

ei(K·Xr−(P−Q)·Xs+P ·Xr′−(K+Q)·X′
s)
(
M−1σ

)
r,s

(
M−1σ̄

)
r′,s′

.

(A.35)
As the other quantitiesA(Q;K,P ) andB(Q;K,P ) do not depend on the Monte Carlo configuration nor on
the spin index³, we observe that in the Monte Carlo average ⟨C↑↓(Q;L,L′)⟩MC = ⟨C↓↑(Q;L,L′)⟩MC must
hold. us, we can enforce this symmetry already on the level of Monte Carlo configurations by replacing
C↑↓(Q;L,L′) by C↓↑(Q;L,L′) for certain values of L and L′. is has to be done consistently throughout
the whole simulation, though. With this idea, we can reduce the number of points that have to be calculated
roughly by a factor of 2 by using

C↑↓(Q;L,L′) = (−1)l+l′C↓↑(−Q;L′, L) = (−1)l+l′C↓↑(Q;L′, L)∗. (A.36)

e easiest way to exploit this is to only calculate C↑↓(Q;L,L′) for l′ ≤ l and index(l′) ≤ index(l) and
reconstruct the full quantity aer the simulation by virtue of equation (A.36).
As memory has to be economized, we use a compact linearized storage of C(Q;L,L′) in the following

way:

C(Q;L,L′) →

c_table
[
l′ +

l(l + 1)

2
+

(
ν + ind (l′)nν +

ind (l) (ind (l) + 1)

2
nν + ind (q)nν

Nc(Nc + 1)

2

)
nl(nl + 1)

2

]
.

(A.37)

is corresponds of course to a triangular storage in the l − l′-Hyperplane and in the l − l′-Hyperplane of
the rank 6 tensor. Note that in the C++-valarray c_table the indices start at 0. We have 0 ≤ l′ ≤ l < nl

and 0 ≤ ind (l′) ≤ ind (l) < Nc. e total required storage for one bin of C(Q;L,L′) in the compact
representation amounts to:

c_table.size() = Ncnν
Nc(Nc + 1)

2

nl(nl + 1)

2
. (A.38)

A.1.3. Conclusion

We presented the current status of our aempt to adapt the Legendre polynomial basis to a cluster calculation
using CT-INT. Note that this work is not complete so a final answer on the feasibility can not be given as the
use of further transformations and tricks might improve the method.
e calculation of the two particle Green’s function G4(Q;L,L′) directly in the (mixed) Legendre poly-

nomial basis faces two major difficulties:

³ Because of SU(2) symmetry,G↑(K) = G↓(K) = G(K).
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• e accumulation formula (A.30) does not factorize in two vertex independent terms and is therefore
extremely expensive to calculate. is is a very severe problem and renders the method unusable for
practical applications. is can be understood best from equation (A.27), where the matricesM↑ (M↓)
connect the unprimed (primed) indices r and s (r′ and s′), while primed and unprimed indices are
entangled by the Legendre tables P rs

l . is stands in contrast to the situation of a pure frequency
basis as used in chapter 4, where theXσ(K,P )matrices have to be calculated only once and are then
used for the generation of ⟨⟨T (Q;K,P )⟩⟩Cn .

• Because of the complicated convolution of the original frequency variables, frequency symmetries can
hardly be transported to the Legendre basis in a constructive way. us a reduction of calculation
times from this should not be expected.

Certainly, the first problem is the most severe and renders the present formulation so inefficient that it is
not usable. e only way out would be a separation of P rs

l into two terms depending only on l and r or l and
s respectively. In any case, performing sums over all vertices in Cn for every combination of outer indices
(Q;L,L′) is illusionary to a degree that we could not obtain satisfactory results using an implementation of
equation (A.30).

A.2. Analytic continuation of the self energy
Especially in the context of the dynamical mean field theory or within impurity problems it is convenient to
analytically continue the self energy rather than the Green’s function to the real frequency axis. e reason
for this is that for this kind of problems the only nonzero elements of the self energy correspond to laice
sites with an interaction term which is only one single site in DMFT and impurity problems.
We will follow the lines of reference [23] for the description of the procedure and focus on how the

asymptotic behaviour of the self energy may be obtained accurately in a Monte Carlo simulation.

A.2.1. Asymptotic behaviour of the self energy for impurity problems

Let us start with a laice system described by a Hamiltonian

H = H0 +H1. (A.39)

Here, H0 does not contain any interaction and H1 will denote interaction terms acting exclusively on one
single laice site (i.e. the impurity). We will denote creation (annihilation) operators for a particle with spin
σ on the impurity site with d†σ (dσ).
By virtue of Dyson’s equation

G(iωn) = G0(iωn) +G0(iωn)Σ(iωn)G(iωn) (A.40)

and using the fact that the self energy matrix is only nonzero in its block Σdd(iωn) corresponding to the
impurity laice site, we obtain trivially Dyson’s equation for the impurity site:

Gdd(iωn) = Gdd
0 (iωn) +Gdd

0 (iωn)Σ
dd(iωn)G

dd(iωn) (A.41)

and hence
Σdd(iωn) = Gdd

0 (iωn)
−1 −Gdd(iωn)

−1 (A.42)

In the case of a SU(2) invariant problem, the Green’s functions are diagonal and spin independent matrices
and we are le with the scalar equation

Σdd(iωn) =
1

Gdd
0 (iωn)

− 1

Gdd(iωn)
. (A.43)
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From here, it is easy to construct the high frequency expansion for the self energy starting from the asymp-
totic form of the Green’s function⁴:

Gdd(iωn) =
a

iωn
+

b

(iωn)2
+

c

(iωn)3
+O

(
1

(iωn)4

)
and Gdd

0 (iωn) =
a

iωn
+

b0
(iωn)2

+
c0

(iωn)3
+O

(
1

(iωn)4

)
(A.44)

Inserting this expression in equation (A.43) and expanding in powers of 1
iωn

yields⁵:

Σdd(iωn) = (b− b0) +
1

iωn

b20 − b2 + ac− ac0
a

+O
(

1

(iωn)2

)
. (A.45)

It is important to note that the first two terms in this expansion do not change if we take into account more
terms in the high frequency expansion of the Green’s function.
As a next step, we will see how the coefficients of high frequency expansion of the self energy may be cal-

culated. As a start, we remember the well known fact that the constants a, b, c etc. are given by themoments
of the spectral function A(ω) which is obvious, if we perform a high (Matsubara) frequency expansion of
the integral kernel 1

−iωn−ω :

1

−iωn − ω
= − 1

iωn
+

ω

(iωn)2
− ω2

(iωn)3
+O

(
1

(iωn)4

)
, (A.46)

yielding:

Gdd(iωn) =

∞∫
−∞

dω Add(ω)

−iωn − ω
=

− 1

iωn

∞∫
−∞

dωAdd(ω) +
1

(iωn)2

∞∫
−∞

dω ωAdd(ω)− 1

(iωn)3

∞∫
−∞

dω ω2Add(ω) +O
(

1

(iωn)4

)
.

(A.47)

Apparently,

a = −
∞∫
−∞

dωAdd(ω), b =

∞∫
−∞

dω ωAdd(ω), and c = −
∞∫
−∞

dω ω2Add(ω). (A.48)

Moments of the spectral function Similar relations hold for b0 and c0. As Add(ω) is usually unknown,
we use the Lehmann representation of Add(ω) to obtain an expression accessible in CT-INT:

Add(ω) =
1

Z

∑
n,m

∣∣⟨n | d†σ |m ⟩
∣∣2 e−βEm

(
1 + e−βω

)
δ(ω − En + Em). (A.49)

Multiplication by powers of ω and integration yields readily the Lehmann representation for the moments:
∞∫
−∞

dω ωαAdd(ω) =
1

Z

∑
n,m

(En − Em)α
(
e−βEm + e−βEn

)
⟨n | d† |m ⟩ ⟨m | d |n ⟩ . (A.50)

By comparison of the Lehmann representations of right and le hand sides, it is clear that
∞∫
−∞

dωAdd(ω) = ⟨
[
d†, d

]
+
⟩ . (A.51)

⁴Note that for generality we keep a as a variable, as depending on the definition of the Green’s function, a may be either 1 or -1 but
is in any case equal forG and G0.

⁵exploiting the fact that a2 = 1
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∞∫
−∞

dω ωAdd(ω) = ⟨
[
[ d, H ]− , d

† ]
+
⟩ . (A.52)

Or in general terms:
∞∫
−∞

dω ωαAdd(ω) =
α∑

k=0

(
α

k

)
(−1)

α−k ⟨
[
Hkd†Hα−k, d

]
+
⟩ . (A.53)

is expression can be rewrien as:
∞∫
−∞

dω ωαAdd(ω) = (−1)α ⟨

[[ [ [
d†, H

]
− , H

]
−
, . . . , H

]
−
, d

]
+

⟩ = (−1)α ⟨
[ [
d†,H

]
−,α , d

]
+
⟩

(A.54)
with the definition

[A,B]−,α =
[
[A,B]−,α−1 , B

]
−

and [A,B]−,1 = [A, B ]− . (A.55)

Proof of equation (A.54) We demonstrate that
α∑

k=0

(
α

k

)
(−1)α−kHkd†Hα−k =

[
d†,H

]
−,α (A.56)

by induction in α. Starting from α = 1, we have trivially

d†H −Hd† = (−1)α
[
d†,H

]
−,1 . (A.57)

In the following step, we assume that eq. (A.56) is fullfilled for a given α and prove that this leads to eq.
(A.56) for α+ 1.

(−1)α+1
[
d†, H

]
−,α+1

= (−1)
[
(−1)α

[
d†, H

]
−,α , H

]
−
=

= −
α∑

k=0

(
α

k

)
(−1)α−kHkd†Hα−k+1 −

α∑
k=0

(
α

k

)
(−1)α−k−1Hk+1d†Hα−k =

= −
α∑

k=0

(
α

k

)
(−1)α−kHkd†Hα−k+1 −

α+1∑
l=1

(
α

l − 1

)
(−1)α−lH ld†Hα−l+1 =

= (−1)α+1d†Hα+1 −
α∑

l=1

[(
α

l

)
−
(

α

l − 1

)]
(−1)α−lH ld†Hα−l+1 − (−1)Hα+1d† =

=
α+1∑
l

(
α+ 1

l

)
(−1)α+1−lH ld†Hα+1−l.

(A.58)

A.2.2. Application to the Anderson-Kane-Mele Model
As an application of the general discussion of the asymptotic form presented in section A.2.1 we proceed to
a specific form of the Hamiltonian and study the self energy of the Anderson-Kane-Mele model. It is given
by fermionic operators a and b acting on the A and B sublaices of a hexagonal laice and an additional
impurity site d which is coupled to the laice by a hybridization term of strength V :

HKM = Ht −Hλ, (A.59)
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Ht = −t
∑
iσ

a†iσ(biσ + bi+a1−a2,σ + bi−a2,σ) + h.c. (A.60)

Hλ = λ
∑
iσ

σ
[
ia†iσ (ai+a1,σ + ai−a2,σ + ai+a2−a1,σ)− ib†iσ (bi+a1,σ + bi−a2,σ + bi+a2−a1,σ)

]
+ h.c.

(A.61)

Himp = ϵd
∑
σ

d†σdσ + V
∑
σ

(a†0,σdσ + d†σa0,σ) + U

(
nd↑ −

1

2

)(
nd↓ −

1

2

)
. (A.62)

e total Hamiltonian is thus given byH = HKM +Himp.
Let us now proceed to the calculation of the moments of the spectral function:

∞∫
−∞

dωAdd
σ (ω) = ⟨

[
d†σ, dσ

]
+
⟩ = 1. (A.63)

For the first moment, we need to calculate
[
d†σ, H

]
−. Using the fact that

[
d†σ, HKM

]
− = 0, we obtain:

[
d†σ, H

]
− = −V a†0,σ − ϵdd

†
σ +

U

2
d†σ + Ud†−σd

†
σd−σ. (A.64)

Continuing the calculation, we obtain:

∞∫
−∞

dω ωAdd
σ (ω) = −⟨

[ [
d†σ, H

]
− , dσ

]
+
⟩ = ϵ+ U ⟨d†−σd−σ ⟩ −

U

2
. (A.65)

For the second moment, the calculation becomes somewhat more involved but can be partially done us-
ing Rok Žitko’s SNEG [131] aer reducing the terms by hand as much as possible. Let us begin with the
commutator[ [

d†σ, H
]
− , H

]
−
=

[
−V a†0,σ − ϵdd

†
σ +

U

2
d†σ + Ud†−σd

†
σd−σ, HKM +Himp

]
−
. (A.66)

Employing the fact, that all d operators commute withHKM, we obtain[ [
d†σ, H

]
− , H

]
−
= −V

([
a†0,σ, HKM

]
−
+
[
a†0,σ, Himp

]
−

)
+

[
−ϵdd†σ +

U

2
d†σ + Ud†−σd

†
σd−σ, Himp

]
−
.

(A.67)
In order to calculate

[
a†0,σ, HKM

]
−
we observe that a†0,σ commutes with every term of HKM that does not

contain a0,σ . e remaining terms are

HKM(a0,σ) = −t
(
b†0,σ + b†a1−a2,σ + b†−a2,σ

)
a0,σ+

+ λσi
(
a†−a1,σ

+ a†a2,σ + a†a1−a2,σ − a†a1,σ − a†−a2,σ − a†a2−a1,σ

)
a0,σ.

(A.68)

us, we obtain[
a†0,σ, HKM

]
−
= iλσ

(
a†−a2,σ − a†a1−a2,σ − a†a2,σ + a†a2−a1,σ

)
+ t
(
b†0,σ + b†−a2,σ + b†a1−a2,σ

)
. (A.69)

e second term in equation (A.67) yields readily:[
a†0,σ, Himp

]
−
= −V d†σ. (A.70)
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e last commutator in (A.67) reduces to the form:[
−ϵdd†σ +

U

2
d†σ + Ud†−σd

†
σd−σ, Himp

]
−
=

= −UV
2
a†0,σ + V ϵda

†
0,σ +

U2

4
d†σ − Uϵdd

†
σ + ϵ2dd

†
σ − UV a†0,−σd

†
σd−σ+

+ UV a0,σd
†
−σd−σ + UV d†−σd

†
σa0,−σ − 2Uϵdd

†
−σd

†
σd−σ.

(A.71)

With these intermediate results, we can nowmove on to calculate the secondmoment of the spectral function,
evaluating the anticommutator[ [ [

d†σ, H
]
− , H

]
−
, dσ

]
+

= V 2 +
U2

4
− Uϵd + ϵ2d + UV a†0,−σd−σ − UV d†−σa0,−σ + 2Uϵdd

†
−σd−σ.

(A.72)
We obtain:
∞∫
−∞

dω ω2Add
σ (ω) = ⟨

[ [ [
d†σ, H

]
− , H

]
−
, dσ

]
+

⟩ =

= V 2 +
U2

4
− Uϵd + ϵ2d + UV ⟨a†0,−σd−σ ⟩ − UV ⟨d†−σa0,−σ ⟩+ 2Uϵd ⟨d†−σd−σ ⟩ .

(A.73)

Asymptotic behaviour of the self energy Collecting all the above results, we are finally able to present
the asymptotic behaviour of the self energy of the Kane-Mele-Anderson model.

b− b0 = U ⟨d†−σd−σ ⟩ −
U

2
. (A.74)

b20 − b2 + ac− ac0
a

= UV
(
⟨a†0,−σd−σ ⟩ − ⟨d†−σa0,−σ ⟩

)
+ U2 ⟨d†−σd−σ ⟩ − U2 ⟨d†−σd−σ ⟩

2
. (A.75)

A.2.3. Analytic continuation of the self energy
In order to employ the stochastic maximum entropy method for Σ(z) directly, we introduce a slightly dif-
ferent quantity as already shown in [23]:

Σ′(z) =

[
Σ(z)−

(
a2 − a02

)]
a1

a22 − (a02)
2
+ a1a3 − a1a03

. (A.76)

is quantity has exactly the same properties as the Green’s function itself, namely that its asymptotic series
starts with 1

iωn
, the corresponding spectral function has a sum rule

∫
dωAΣ(ω) = 1 and that it does not have

a constant term.
In principle, these properties could be corrected for in the maximum entropy procedure but the quantities

a2 and a3 can only be obtained up to a statistical errorbar and therefore the correct inclusion of these errors is
very cumbersome. Performing the transformation A.76 is therefore a very straightforward procedure, as the
thoroughly bootstrapped covariance matrix of Σ′ will contain all uncertainties stemming from the CT-INT
calculation.

A.3. Generation of test data

A.3.1. Data with given covariance
In order to test the maximum entropy code, it might be helpful to generate random data with a given covari-
ance matrix. is can be done in the following way. Let us define a vector yexact ∈ Rn which contains exact
data. We now want to add noise with a given covariance matrixC ∈ Rn×n. We make the following ansatz
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y = yexact +Ar

Here, y is the data with the noise having a covariance matrix C as required and r ∈ Rn is a vector
of statistically independent gaussian random variables with mean µ = ⟨ri ⟩ = 0 and standard deviation
σ =

√
⟨riri ⟩ − µ2 = 1. is means that ⟨rirj ⟩ = δij . Our task is now to find an appropriate matrix A.

Let us calculate the covariance matrix of the data y: ⁶

Cij = Cov(yi, yj) = ⟨yiyj ⟩ − ⟨yi ⟩ ⟨yj ⟩ = ⟨ (yexact,i +Ailrl)(yexact,j +Ajkrk) ⟩ − yexact,iyexact,j =

= yexact,iyexact,j +AilAjk ⟨rlrk ⟩ − yexact,iyexact,j =

= (AAT )ij

Of course, the covariance matrix C has to be positive semidefinite and symmetric, so a positive semidefi-
nite and symmetric matrix A can be determined that obeys the condition C = AA. is can be done by
diagonalizingC and taking the square root of the diagonal matrix, then rotating back to the original basis.

A.3.2. Sums of random numbers
e central limit theorem gives an inspiring idea for the generation of well defined test data that may be used
for testing the accuracy of data analysis code for the calculation of the covariance matrix. Suppose we have
a sequence of statistically independent random variables xi, i ∈ [1, N ] distributed at the uniform probability
density p(xi) = Θ(xi)Θ(1− xi). From this, we can define new random variables

Xj =
1

N −M + 1

j+N−M∑
i=j

xi, j ∈ [1,M ] . (A.77)

Clearly, the random variables Xj will not be completely independent from each other, as their values
originate partly from the same underlying data xi. erefore, the covariance matrix can not be diagonal. Let
us calculate its value analytically in the following.
e average value forXj is independent of j and evaluates to

⟨Xj ⟩ =
1

N −M + 1

j+N−M∑
i=j

⟨xi ⟩ =
1

N −M + 1
(N −M + 1)

1

2
=

1

2
. (A.78)

For the covariance matrix, we find:

Cov(Xi, Xj) = ⟨XiXj ⟩ − ⟨Xi ⟩ ⟨Xj ⟩ = ⟨XiXj ⟩ −
1

4
. (A.79)

In order to calculate the correlation term ⟨XiXj ⟩, we have to keep in mind that for statistically independent
random variables xi and xj — i.e. if i ̸= j — the expectation value factorizes: ⟨xixj ⟩ = ⟨xi ⟩ ⟨xj ⟩ = 1

4 . On
the other hand, if i = j, we need to calculate ⟨x2i ⟩ = ⟨x2 ⟩:

⟨x2 ⟩ =
∞∫
−∞

dx p(x)x2 =

1∫
0

dxx2 =
1

3
. (A.80)

Obviously, the calculation of ⟨XiXj ⟩ is now only a maer of counting the occurence of the case i = j

⟨XiXj ⟩ =
(

1

N −M + 1

)2 i+N−M∑
l=i

j+N−M∑
k=j

⟨xlxk ⟩ . (A.81)

⁶Note that we use the Einstein summation convention that repeated indices imply a summation over the index
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We already know, that in this expression the summand ⟨xixj ⟩ can only take the values 1
4 or

1
3 . Further, the

total number of terms is of course (N −M + 1)
2, while the number of terms for which l = k is given by

max (N −M + 1− |i− j| , 0). us, the result for the covariance matrix Cov(Xi, Xj) is given by

Cov(Xi, Xj) = ⟨XiXj ⟩ − ⟨Xi ⟩ ⟨Xj ⟩

=

(
1

N −M + 1

)2{
1

4

[
(N −M + 1)

2 −max (N −M + 1− |i− j| , 0)
]
+

+
1

3
max (N −M + 1− |i− j| , 0)

}
− 1

4

=

(
1

N −M + 1

)2 max (N −M + 1− |i− j| , 0)
12

.

(A.82)
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Figure A.1.: Graphical representation of the sample covariance as an estimate for Cov(Yi, Yj) [cf. (A.83)]
(le panel) together with the difference between the sample covariance and the exact value of
Cov(Yi, Yj) given by equation (A.86) (right panel). For this illustration, L = 7, N = 30 and
M = 20 was used. Note that the estimate of the covariance matrix is best on the main diagonal
and that the quality decreases with the distance from it. Naturally, the overall quality of the
sample covariance imporves with the size of the sample, which is Nsample = 2000000 in this
case.

In order to mimic the work with Monte Carlo bins, we introduce yet another set of random variables Yi,
which consist of the average of L realizations of the random variablesXi:

Yi =
1

L

L∑
l=1

X
(l)
i . (A.83)

e expectation value of the random variables Yi is trivial: ⟨Yi ⟩ = ⟨Xi ⟩ = 1
2 . For the covariance matrix,

we obtain the following expression:

Cov(Yi, Yj) = ⟨YiYj ⟩ − ⟨Yi ⟩ ⟨Yj ⟩ =
1

L2

L∑
l,k=1

⟨X(l)
i X

(k)
j ⟩ − 1

4
. (A.84)

As the underlying sequence of random variables xn is different for X(l)
i and X(k)

j if l ̸= k, the expectation
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value factorizes for this case. In the case of l = k, we obtain

⟨X(l)
i X

(l)
j ⟩ = ⟨XiXj ⟩ = Cov(Xi, Xj) + ⟨Xi ⟩2 . (A.85)

is leads to

Cov(Yi, Yj) =
1

L2

 L∑
l ̸=k

⟨X(l)
i ⟩ ⟨X(k)

j ⟩+
L∑
l

(
Cov(Xi, Xj) + ⟨Xi ⟩2

)− ⟨Xi ⟩ ⟨Xj ⟩

=
1

L2

[
(L2 − L) ⟨Xi ⟩2 + LCov(Xi, Xj) + L ⟨Xi ⟩2

]
− ⟨Xi ⟩2 =

1

L
Cov(Xi, Xj).

(A.86)

e result is illustrated by a numerically generated sample covariance matrix in figure A.1.
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B.1. Block matrix operations

B.1.1. Block matrix inversion
As the inversion of a big N × N matrix is an expensive O(N3) operation, it is oen useful to use already
known information, such as the inverse matrix of a (large) sub-block. e inverse of a block matrix M ∈
C(n+m)×(n+m) can be obtained in the following way:

MM−1 =

(
A B
C D

)(
E F
G H

)
=

(
1 0
0 1

)
. (B.1)

Multiplying out this equation and solving for the unknown matrices E,F,G,H, we obtain easily:

E = A−1 +A−1B
(
D−CA−1B

)−1
CA−1.

F = −A−1B
(
D−CA−1B

)−1
.

G = −
(
D−CA−1B

)−1
CA−1.

H =
(
D−CA−1B

)−1
.

(B.2)

Or in compressed form saving matrix multiplications and inversions:

H =
(
D−CA−1B

)−1
.

G = −HCA−1.

F = −A−1BH.

E = A−1 − FCA−1

= A−1 −A−1BG.

(B.3)

B.1.2. Block determinant
LetM ∈ Cn×n, u,v ∈ Cn×m andα ∈ Cm×m be matrices,M having full rank. en, the following identity
holds:

det
(
M u
vT α

)
= detM det

(
α− vTM−1u

)
. (B.4)

e proof can be found easily:

det
(
M u
vT α

)
= det

{(
M 0
0 1

)[
1+

(
M−1 0
0 1

)(
u
0

)(
0 1

)
+

(
M−1 0
0 1

)(
0
1

)(
vT [α− 1]

)]}
.

(B.5)
Next, we make use of the fact that det(AB) = detA detB in addition to

det
(
M 0
0 1

)
= detM,

(
M−1 0
0 1

)(
0
1

)
=

(
0
1

)
(B.6)

and obtain
det
(
M u
vT α

)
= detM det

[(
1 M−1u
0 1

)
+

(
0
1

)(
vT [α− 1]

)]
(B.7)
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Using the block matrix inversion technique discussed in B.1.1, it is trivial to obtain(
1 M−1u
0 1

)−1
=

(
1 −M−1u
0 1

)
(B.8)

and therefore

det
(
M u
vT α

)
= detM det

(
1 M−1u
0 1

)
det
[
1+

(
1 −M−1u
0 1

)(
0
1

)(
vT [α− 1]

)]
. (B.9)

Noting that

det
(
1 M−1u
0 1

)
= 1 (B.10)

and exploiting Sylvester’s theorem¹, we can reduce equation (B.9) to

det
(
M u
vT α

)
= detM det

[
1+

(
vT [α− 1]

)(1 −M−1u
0 1

)(
0
1

)]
. (B.12)

Multiplying out the block matrix product yields trivially equation (B.4) □.

B.1.3. Determinant lemma
Another well known identity follows directly from Sylvester’s theorem mentioned in the previous section:
e so called determinant lemma. It states that for an invertible matrix A ∈ Cn×n and two rectangular
matricesU,V ∈ Cn×m the following equation holds:

det(A+UVT ) = detA det(1+VTA−1U). (B.13)

B.1.4. Block matrix determinant identity
In this section a general determinant identity is proven, which can be used to derive Wick’s theorem for
contributions of a configuration Cn to physical observables. Let us define the vectors ui, vi ∈ Cm and the
numbers αij ∈ C. Further, let A ∈ Cm×m be a matrix of rank m. We define the non-singular matrices
Mn ∈ C(m+n)×(m+n) andAij ∈ C(m+1)×(m+1) by:

Mn =


A u1 . . . un

v1
T α11 . . . α1n

...
...

. . .
...

vn
T αn1 . . . αnn

 , Aij =

(
A uj

vi
T αij

)
. (B.14)

With these definitions, the following determinant identity holds:

detMn(detA)n−1 = det

detA11 . . . detA1n

...
. . .

...
detAn1 . . . detAnn

. (B.15)

e identity can be proven by induction in n. It is trivial for n = 1, so we have to start with n = 2, where
we have to show

detM2

detA
=

detA11

detA
detA22

detA
−

detA12

detA
detA21

detA
. (B.16)

¹ For two appropriately sized matrices A and B, it states

det(1+AB) = det(1+BA). (B.11)

A collection of proofs is provided in [34].
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For the following calculations, we introduce several vectors:

u1
ij =

(
uj

αij − 1

)
, v2

ij =

(
vi

0

)
, u2 = v1 =

(
0
1

)
∈ Cm+1. (B.17)

u1
M =

 u2

α12

α22 −1

,v2
M =

 v2

α21

0

,u2
M = v1

M =

(
0
1

)
∈Cm+2. (B.18)

Let us define the expanded matrix Cex of a square matrix C as the matrix C expanded by one row and one
column containing a unit vector:

Cex =

(
C 0
0T 1

)
. (B.19)

As a last definition, we introduce the abbreviation bij = vi
TA−1uj. Using these notations, we can write the

matricesAij as
Aij = Aex + u1

ijv
1T + u2v2

ij

T
. (B.20)

To calculate the determinant detAij, we use the matrix determinant lemma

det(A+ uvT ) = (1 + vTA−1u) detA (B.21)

(cf. section B.1.3), yielding

detAij

detAex
=
[
1+ v2

ij

T
(Aex + u1

ijv
1T )−1u2

]
(1 + v1TA−1ex u1

ij). (B.22)

e inverse matrix of (Aex + u1
ijv

1T ) can be obtained from the Sherman-Morrison formula and a tedious
calculation making use of the special form of the vectors and matrices gives the result

detAij

detA
= αij − bij . (B.23)

From this, the right hand side of Eq. (B.16) can be easily obtained. For the le hand side, we have to perform
an analogous calculation using the decomposition of the matrixM2:

M2 = A11ex + u1
Mv1

M

T
+ u2

Mv2
M

T
. (B.24)

Again, we apply the matrix determinant lemma two times and insert the Sherman-Morrison formula to
calculate the inverse matrix of (A11ex+u1

Mv1
M

T
). Simplifying the result as far as possible, we finally arrive

at
detM2

detA
= (α11 − b11) (α22 − b22)− (α12 − b12) (α21 − b21) . (B.25)

If we compare (B.25) with (B.23), it is clear, that Eq. (B.16) holds.
We now assume that for a certain value n ∈ N Eq. (B.15) holds. For n+ 1, we can cast the matrixMn+1

in a form, where we can make use of Eq. (B.15) holding for n:

Mn+1 =


Ã ũ2 . . . ũn+1

ṽ2
T α2,2 . . . α2,n+1

...
...

. . .
...

ṽn
T αn,2 . . . αn,n+1

ṽn+1
T αn+1,2 . . . αn+1,n+1

 , (B.26)

where we have introduced the new matrix Ã and the vectors ũi and ũj with:

Ã =

(
A u1

v1
T α11

)
, ũi =

(
ui

α1i

)
, ṽi =

(
vi

αi1

)
. (B.27)
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Further, we need the matrices Ãij defined analogously to (B.14):

Ãij =

(
Ã ũj

ṽi
T αij

)
=

 A u1 uj

v1
T α11 α1j

vi
T αi1 αij

 (B.28)

With these definitions, and with the abbreviations aij = detAij and ãij = det Ãij, we are now able to apply
Eq. (B.15) holding for n:

detMn+1(det Ã)(n−1) = det

 ã2,2 . . . ã2,n+1

...
. . .

...
ãn+1,2 . . . ãn+1,n+1

 . (B.29)

For ãij , we make use of Eq. (B.15) with n = 2, which we have proved above:

ãij =
1

detA
(a11aij − ai1a1j) . (B.30)

Inserting this result in (B.29) yields a determinant with entries of the form a11aij − ai1a1j . We make use of
themulti linearity of the determinant to decompose this expression andwe obtain a sum of determinants with
prefactors of the form aij . Eliminating zero contributions, the resulting expression corresponds precisely to
the Laplace-expansion of a larger determinant, and we finally obtain

detMn+1 detAn = det


a1,1 a1,2 . . . a1,n+1

a2,1 a2,2 . . . a2,n+1

...
...

. . .
...

an+1,1 an+1,2 . . . an+1,n+1

 . (B.31)

is is the identity (B.15) for n + 1. Hence we have derived the determinant identity for n + 1 using only
the identity for n and n = 2. By induction, the identity (B.15) therefore holds for every n ∈ N, as it is trivial
for n = 1.

B.2. Matsubara sums
Using the standard summation trick employing complex analysis and the residue theorem, presented in detail
in section 4.5.2 by studying the complex contour integral

∮
dz nF (z)

1
z for the evaluation of

∑
iωn

1
iωn

, we
obtain²:

1

β

∑
iωn

1

iωn
=

1

2
. (B.33)

Using this identity, we can formally write:

1

β

∑
iωn

e−iωnτ = δ(τ). (B.34)

For the closure of the Fourier transforms for example in equation (2.5), the other direction is obtained trivially
as

1

β

β∫
0

dτeiντ = δν,0. (B.35)

²Note that this sum only converges, if we introduce a conversion inducing factor eiωn0+ , this is understood implicitly when writing
sums of this form, i.e.: ∑

iωn

1

iωn
:=

∑
iωn

eiωn0+

iωn
. (B.32)
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Note the use of the bosonic Matsubara frequency here, as differences of fermionic Matsubara frequencies are
always bosonic and fulfill therefore the identity

eiν = 1. (B.36)

B.3. Dirac identity
A very important mathematical identity is the so called Dirac identity, which provides the link between
Green’s functions and spectral functions³:

1

x+ i0+ = −iπδ(x) + P
(
1

x

)
, (B.37)

where P is the principal value of 1
x .

³is is apparent when thought about in terms of Lehmann representations.
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