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Abstract

In this thesis, two constraint random phase approximation (cRPA) methods are presented
and applied to a three-band model. The basic concept of the cRPA method is the reduction
of a multi-band model to a low-energy effective model, where the influence of the high-
energy bands is included on a RPA level via an additional energy-dependent interaction
term. The first cRPA method is based on the localization of bands, but turns out to
be inappropriate for the separation of high- and low-energy processes. In order to avoid
these difficulties, we introduce a second cRPA method. We show that for this method only
high-energy processes contribute to the effective interaction and relate the contributions
to the band structure. Applying this cRPA method to the three-band model, the resulting
effective low-energy model is a t-V model with an additional interaction term. Depending
on the band structure, this term can be repulsive or attractive, so that we can engineer
the low-energy physics indirectly by manipulating the high-energy properties.
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1 Introduction

Humans have always been interested in understanding their environment. Driven by
curiosity and the hope for advancements made by their discoveries, they have tried to
comprehend the phenomena and matters surrounding them. In the course of time, the
growing human knowledge has given rise to more and more sophisticated instruments.
With regard to the theoretical study of solids, the current research focuses on applications
of quantum mechanics and challenges the problem of many-body systems. In combination
with the quantum mechanical behavior, the interacting nature of the electrons leads to a
rich variety of physics which is a possible basis for innovative devices [1].

Many physical properties are governed by electrons energetically close to the Fermi
level, compared to the interaction strength. Hence, it makes sense to focus on these
electrons. However, the influence of the remaining high-energy bands, the so-called host
bands, should not be neglected completely. A possible method includes the host bands on
the level of a random phase approximation (RPA), whereas the low-energy bands, the so-
called target bands, are studied using a more accurate method [2]. This combined method,
which has been successfully applied to iron based superconductors [3] and 3d transition
metals [4, 5], is called constraint RPA (cRPA). In this work, two cRPA methods are
introduced and used to study one-dimensional systems. A possible application of this
procedure to real materials would be the atomic gold chains which have been grown on
germanium by Claessen et al. [6, 7]. Besides, the cRPA might be suitable for further
analysis of graphene nanoribbons. Theoretical [8, 9] and experimental studies [10] found
low-energy states located at the edges and studied the magnetic properties [11, 12].

1.1 Constraint random phase approximation

The basic idea of the cRPA is the systematic construction of low-energy effective models
starting from the consideration of a much wider energy range. Ideally, the parameters
of this effective model are calculated from first principles with high accuracy, so that it
generates an even quantitatively correct physical picture. The complete cRPA procedure
consists of three steps [13]: Firstly, the computation of the global band structure, secondly,
the downfolding of the high-energy degrees of freedom, i.e. the states related to the host
bands, using a renormalization procedure and thirdly, the solution of the remaining low-
energy effective model. Since a primary aim of this thesis is the introduction of an
alternative method for the second step, we present the common method for this step in
more detail. The following discussion is based on [13] and [2]. At first, the full Hamiltonian
is split into three parts, according to the energy range of the involved operators:

Ĥ = ĤL + ĤH + ĤHL (1.1)
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Introduction

The indices L, H and HL denote the low-energy, high-energy and the coupling part,
respectively. Similarly, this distinction can be used for the traces appearing in the partition
function Z:

Z = Tr(exp(−S)) = TrLTrH(exp(−S)), (1.2)

where S denotes the action. Performing the partial trace over the high-energy parts, we
obtain the low-energy action SL:

SL = − log (TrH exp(−S)) (1.3)

This expression may be used to define a low-energy Hamiltonian Ĥ ′L. Notice that due to
the renormalization by the high-energy parts, Ĥ ′L is not equal to ĤL: The electrons of the
target bands are dressed by the high-energy excitations, the original target band interac-
tion is screened. In order to perform the partial trace TrH over the high-energy operators,
the high-energy Hilbert space has to be distinguished from the low-energy Hilbert space.
For this purpose, one can use Wannier functions, for example the maximally localized
Wannier functions, or Wannier orbitals. If the target and host bands are entangled, the
implementation of this step has to be done more carefully [5]. For the calculation of the
screened interaction, we need the polarization P . However, for the downfolding we only
take the part of P into consideration which is not generated by low-energy degrees of
freedom:

P = PL + PH (1.4)

PL exclusively contains the low-energy contributions, whereas PH contains all the rest,
i.e. purely high-energy and mixed contributions. Standard RPA is used to calculate PH ,
but not the complete polarization P , which is why the method is called constraint RPA.
If we apply the RPA method to P starting from an original interaction strength v, the
screened interaction W has the following form:

W =
v

1− vP
(1.5)

Expressing this result with the two different contributions PL and PH , we get:

W =
v

1− vPH − vPL
=

v

(1− vPH)(1− vPL(1− PH)−1)
=

WH

1−WHPL
(1.6)

Here, we have defined

WH =
v

1− vPH
. (1.7)

This result shows that we can interpret the influence of the host bands as an effective
screening of the interaction v, which can be separated from the screening related to the
target band processes on the RPA level. This additionaly motivates the cRPA method,
where we use WH as the effective interaction for the low-energy model. Note that due to
the dependence of the polarization PH on the frequency, the new interaction parameter
WH is frequency dependent, too. This downfolding procedure is the standard scheme for
the cRPA, but extensions to a functional renormalization group scheme have already been
proposed [14].
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1.2 Summary

The cRPA scheme presented in this thesis adopts the central concept of the standard
cRPA: We develop two cRPA methods using path integration and combine them with the
continuous time Quantum Monte Carlo (ctQMC) method as the solver for the low-energy
effective model. Both procedures for the downfolding step are described in chapter 2.
Bearing in mind the localized bands of the graphene ribbons, the first cRPA method is
based on localization, whereas the second method does not require this condition. As
a consequence, it can be applied to more general band structures, but the split-up into
target and host bands has to be possible in both cases. In chapter 3, both cRPA methods
are tested numerically on a three-band model. This test reveals serious problems of the
first method which are explained subsequently. The second method is not affected by
these difficulties, we therefore use this for further studies. After the RPA conversion of
the three-band model into a low-energy effective model, we obtain a t-V model with an
additional effective interaction. We present the solution of this model and particularly
discuss the influence of the host band on the results.
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2 Path integral cRPA

The two cRPA methods which we developed in order to derive one-dimensional effective
low-energy models are quite similar and use the same starting point. As already men-
tioned, the first attempt, which will be called cRPA method 1 in the following, turns out
to be problematic, since it cannot capture the high-energy processes correctly. However,
due to the similarity to the second method, which we call cRPA method 2, and the relative
simplicity, it will be described in detail. We hope that the discussion of its failure can be
instructive for future attempts.

The common idea of both models is as follows: We start with the partition function
and treat β as imaginary time, which is then separated into M discrete time steps ∆τ
[15]:

Z = Tr
(
e−βĤ

)
= Tr

((
e−∆τĤ0(τ)−∆τĤI(τ)

)M)
+O(∆τ) (2.1)

with Ĥ0 and ĤI being the non-interacting and interacting part of the full Hamiltonian
Ĥ. The latter contains square terms of bosonic operators B̂i for which we can use the
Hubbard-Stratonovich transformation [16, 17]

eB̂
2
i =

1√
2π

∫ ∞
−∞

dφi e
−φ

2
i
2
−
√

2φiB̂i (2.2)

in order to simplify this part. Our concept presented in the subsequent sections is the
following: After a Taylor expansion of the exponent up to second order around the para-
magnetic solution, we will be able to evaluate the partial trace over the high-energy
operators B̂high. We can integrate out the corresponding φhigh and obtain the desired

effective model, which only contains the low-energy operators B̂low.

2.1 cRPA method 1

The first method is based on the assumption that we only have one low-energy target
band and that this band is localized. We express the Hamiltonian by Wannier operators
c†, c, since we can relate the low-energy regime to one set of Wannier operators c†1,k, c1,k.

The system under consideration is a ribbon of finite width in x-direction and with peri-
odic boundary conditions in y-direction. The interaction strength can in principle depend
on all four spatial coordinates n,m, n′ and m′ of the involved operators, therefore we de-
note it as vnmn′m′ . If in y-direction only the spatial difference ∆y is relevant, that means
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vnmn′m′ = vnm,n′−m′ , we can rewrite ĤI starting from a usual Coulomb-like expression

HI =
∑
n,n′

∑
m,m′

vnmn′m′

2
c†n,n′cn,n′c

†
m,m′cm,m′

=
1

2L2

∑
n,n′

∑
m,m′

∑
k,k′

∑
q,q′

vnm,n′−m′c
†
n,kcn,k+qc

†
m,k′cm,k′−q′e

i(n′q−m′q′)

=
1

2L2

∑
n,m

∑
k,k′

∑
q,q′

∑
n′,ñ

vnm,ñc
†
n,kcn,k+qc

†
m,k′cm,k′−q′e

iñq′ein
′(q−q′)

=
1

2L

∑
n,m

∑
k,k′

∑
q

vnm(q)c†n,kcn,k+qc
†
m,k′cm,k′−q

=
1

2

∑
n,m,q

vnm(q)n̂n(q)n̂m(−q) (2.3)

with

n̂n(q) =
1√
L

∑
k

c†n,kcn,k+q (2.4)

and

vnm(q) =
∑
ñ

vnm,ñe
iqñ. (2.5)

Due to the hermiticity of the Hamiltonian vnmn′m′ = vmnm′n′ has to be fulfilled for real
values of the interaction strength. This implies vnm(q) = vmn(−q) and we obtain therefore

HI =
1

2

∑
n,m

∑
q

vnm(q)n̂n(q)n̂m(−q)

=
1

2

∑
n,m

∑
q>0

(vnm(q)n̂n(q)n̂m(−q) + vnm(−q)n̂n(−q)n̂m(q))

=
1

2

∑
n,m

∑
q>0

(vnm(q)n̂n(q)n̂m(−q) + vmn(q)n̂m(q)n̂n(−q))

=
∑
n,m

∑
q>0

vnm(q)n̂n(q)n̂m(−q). (2.6)

As it is done for the Jellium-model [18], we neglect the (q = 0)-term, since this only leads
to a constant offset. Overall, the full Hamiltonian reads

Ĥ = Ĥ0 + ĤI =
∑
α,k

Eα(k)γ†α,kγα,k +
∑
n,m

∑
q>0

vnm(q)n̂n(q)n̂m(−q). (2.7)

2.1.1 Calculating the action

In order to be able to apply the Hubbard-Stratonovich transformation, we have to rewrite
the interacting part of the Hamiltonian, which should only contain square terms according
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cRPA method 1

to eq. (2.2). Since the operators n̂n(q) commute (see appendix, section A.1)

[n̂n(q), n̂m(q′)] = 0, (2.8)

we achieve this by using

ĤI =
∑
n,m

∑
q>0

vnm(q)

4

(
(n̂n(q) + n̂m(−q))2 − (n̂n(q)− n̂m(−q))2

)
. (2.9)

We insert this Hamiltonian in eq.(2.1) and do the Hubbard-Stratonovich transformation
for every q, n, m and τ , as well as for the + and −-terms:

Z = Tr

(
β∏
τ=0

e−∆τĤ0(τ)

∫ ∏
q,m,n,τ

(
dφq,n,m,τ dϕq,n,m,τ

2π

)
e−S̃(φq,n,m,τ ,ϕq,n,m,τ )

)
, (2.10)

where S̃ is defined by

S̃(φq,n,m,τ , ϕq,n,m,τ ) =∑
n,m

∑
q>0

(
φ2
q,n,m,τ

2
+ iφq,n,m,τ

√
∆τvnm(q)

2
(n̂n(q) + n̂m(−q)) (2.11)

+
ϕ2
q,n,m,τ

2
+ ϕq,n,m,τ

√
∆τvnm(q)

2
(n̂n(q)− n̂m(−q))

)
.

φq,n,m,τ and ϕq,n,m,τ are substituted by

zq,n,m,τ =

√
vnm(q)

2∆τ
(φq,n,m,τ + iϕq,n,m,τ ) (2.12)

and we obtain

S̃ =∑
n,m

∑
q>0

(
φ2
q,n,m,τ

2
+
ϕ2
q,n,m,τ

2
+

i

√
∆τvnm(q)

2
((φq,n,m,τ − iϕq,n,m,τ )n̂n(q) + (φq,n,m,τ + iϕq,n,m,τ )n̂m(−q))

)

= ∆τ
∑
n,m

∑
q>0

(
|zq,n,m,τ |2

vnm(q)
+ i (z̄q,n,m,τ n̂n(q) + zq,n,m,τ n̂m(−q))

)
. (2.13)

If we additionally take into account that the trace does not effect the auxiliary fields, the
resulting expression for the partition function is

Z =

∫ β∏
τ=0

∏
q,m,n

(
dRe(zq,n,m,τ ) dIm(zq,n,m,τ )∆τ

πvnm(q)

)
e−S(zq,n,m,τ ,z̄q,n,m,τ ). (2.14)
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Path integral cRPA

Here, we have introduced the action

S(zq,n,m,τ , z̄q,n,m,τ ) = ∆τ
∑
τ,n,m

∑
q>0

|zq,n,m,τ |2

vnm(q)
−

log

(
Tr

(
β∏
τ=0

exp

(
−∆τĤ0(τ)− i∆τ

∑
n,m

∑
q>0

(z̄q,n,m,τ n̂n(q) + zq,n,m,τ n̂m(−q))

)))
,

(2.15)

which we will use as the starting point for the following approximations.

2.1.2 Approximating the action

Within this subsection we will use a different notation, in order to distinguish between
the high- and low-energy contributions. Since zq,1,1,τ and z̄q,1,1,τ only couple to the target
band densities n̂1(q) and n̂1(−q), we relate them to the low-energy processes and refer to
them as

zq,1,1,τ = zq,τ , z̄q,1,1,τ = z̄q,τ , (2.16)

in contrast to the other auxiliary fields zq,n,m,τ and z̄q,n,m,τ with n 6= 1 or m 6= 1, which
we call

zq,n,m,τ = ζq,n,m,τ , z̄q,n,m,τ = ζ̄q,n,m,τ (2.17)

in the following. The idea of the upcoming calculation is to find an approximation for
the action, which enables us to perform the integrations in eq. (2.14) for the partition
function Z. However, we do not want to integrate out all auxiliary fields, which would
simply restore the original term, but only the high-energy auxiliary fields, thus the ζ and
ζ̄. The approximation has to ensure that no operators related to the high-energy bands, so
n̂n(q) and n̂m(−q) with n,m 6= 1, remain in the equations. Their influence on the target
band should be contained in additional terms of computable quantities, which appear in
the low-energy effective model.

We assume the interaction to mainly affect the low-energy bands, so that deviations
of the high-energy bands from the paramagnetic solution ζq,n,m,τ = ζ̄q,n,m,τ = 0 should
be small. Therefore, we approximate the action S

(
z, z̄, ζ, ζ̄

)
in a first step by its Taylor

14



cRPA method 1

expansion in ζ and ζ̄ up to second order:

S
(
z, z̄, ζ, ζ̄

)
≈

S
(
z, z̄, ζ = 0, ζ̄ = 0

)
+
∑

q,n,m,τ

∂S

∂ζq,n,m,τ

∣∣∣∣
ζ=0,ζ̄=0

ζq,n,m,τ +
∑

q,n,m,τ

∂S

∂ζ̄q,n,m,τ

∣∣∣∣
ζ=0,ζ̄=0

ζ̄q,n,m,τ

+
∑

q,n,m,τ

∑
q′,n′,m′,τ ′

∂2S

∂ζq,n,m,τ∂ζ̄q′,n′,m′,τ ′

∣∣∣∣
ζ=0,ζ̄=0

ζq,n,m,τ ζ̄q′,n′,m′,τ ′

+
1

2

∑
q,n,m,τ

∑
q′,n′,m′,τ ′

∂2S

∂ζq,n,m,τ∂ζq′,n′,m′,τ ′

∣∣∣∣
ζ=0,ζ̄=0

ζq,n,m,τζq′,n′,m′,τ ′

+
1

2

∑
q,n,m,τ

∑
q′,n′,m′,τ ′

∂2S

∂ζ̄q,n,m,τ∂ζ̄q′,n′,m′,τ ′

∣∣∣∣
ζ=0,ζ̄=0

ζ̄q,n,m,τ ζ̄q′,n′,m′,τ ′ . (2.18)

Furthermore, we assume that the interplay between high- and low-energy physics is small,
which is reasonable if both energy regimes are clearly separated. This means that if the
behavior of one energy regime is not very sensitive to the other one, we can approximate
the first derivatives with respect to the high-energy auxiliary fields in first order by

∂S

∂ζq,n,m,τ

∣∣∣∣
ζ=0,ζ̄=0

≈ ∂S

∂ζq,n,m,τ

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

+

∑
q′,τ ′

(
∂2S

∂ζq,n,m,τ∂zq′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

zq′,τ ′ +
∂2S

∂ζq,n,m,τ∂z̄q′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

z̄q′,τ ′

)
(2.19)

∂S

∂ζ̄q,n,m,τ

∣∣∣∣
ζ=0,ζ̄=0

≈ ∂S

∂ζ̄q,n,m,τ

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

+

∑
q′,τ ′

(
∂2S

∂ζ̄q,n,m,τ∂zq′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

zq′,τ ′ +
∂2S

∂ζ̄q,n,m,τ∂z̄q′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

z̄q′,τ ′

)
(2.20)

and similarly the second derivatives in zeroth order by

∂2S

∂ζq,n,m,τ∂ζ̄q′,n′,m′,τ ′

∣∣∣∣
ζ=0,ζ̄=0

≈ ∂2S

∂ζq,n,m,τ∂ζ̄q′,n′,m′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

(2.21)

∂2S

∂ζq,n,m,τ∂ζq′,n′,m′,τ ′

∣∣∣∣
ζ=0,ζ̄=0

≈ ∂2S

∂ζq,n,m,τ∂ζq′,n′,m′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

(2.22)

∂2S

∂ζ̄q,n,m,τ∂ζ̄q′,n′,m′,τ ′

∣∣∣∣
ζ=0,ζ̄=0

≈ ∂2S

∂ζ̄q,n,m,τ∂ζ̄q′,n′,m′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

. (2.23)

Overall, we have to consider three types of expressions: A ζ-independent first term, first
derivatives of the action with respect to ζ and ζ̄ as well as second derivatives with respect
to ζ, ζ̄, z and z̄.
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Path integral cRPA

First term

If we simply write down the first term of the Taylor expansion by setting ζ and ζ̄ equal
to zero, we obtain

S0 ≡ S
(
z, z̄, ζ = 0, ζ̄ = 0

)
=
∑
τ

∆τ
∑
q>0

|zq,τ |2

v11(q)

− log

(
Tr

(
β∏
τ=0

exp

(
−∆τĤ0(τ)− i∆τ

∑
q>0

(z̄q,τ n̂1(q) + zq,τ n̂1(−q))

)))
(2.24)

As we could easily confirm by reversing the Hubbard-Stratonovich transformation, this
expression contains the full Hamiltonian of the target band. The influence of the high-
energy bands is completely neglected, which is not surprising if we bear in mind the
construction of this term. However, this is no problem, since this influence should be
incorporated in the higher order terms.

First derivatives

Previous to the calculation of the first derivatives, it is useful to introduce the quantity

Û(τ1, τ2) =

τ2∏
τ=τ1

exp

(
−∆τĤ0(τ)− i∆τ

∑
q>0

(z̄q,τ n̂1(q) + zq,τ n̂1(−q))

)
, (2.25)

which always appears when we set ζ = 0 and ζ̄ = 0. Note that Û(τ1, τ2) is simply the
time evolution operator of the non-interacting system if z = 0 and z̄ = 0.

Expressing the derivative of S with respect to ζq,n,m,τ by Û and explicitely writing down
the time dependence of n̂m(−q, τ), which has been omitted so far for simplicity, we get

∂S

∂ζq,n,m,τ

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

=(
∆τ ζ̄q,n,m,τ
vnm(q)

+
i∆τ

Tr(Û(β, 0))
Tr(Û(β, τ)n̂m(−q, τ)Û(τ, 0))

)∣∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

. (2.26)

The first term vanishes at ζ̄ = 0 and for z = 0 and z̄ = 0, the second term is just the
expectation value of the non-interacting system

〈. . . 〉0 =
1

Z0

Tr
(
e−βĤ0 . . .

)
(2.27)

for n̂m(−q, τ). If we use the definition of n̂m(−q, τ) (see eq. (2.4)), we have

∂S

∂ζq,n,m,τ

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

= i∆τ〈n̂m(−q, τ)〉0 =
i∆τ√
L

∑
k

〈c†m,k(τ)cm,k−q(τ)〉0 (2.28)

which vanishes due to momentum conservation, since q > 0.
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cRPA method 1

In the same way, we can show that the derivative of S with respect to ζ̄q,n,m,τ vanishes:

∂S

∂ζ̄q,n,m,τ

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

=
∆τζq,n,m,τ
vnm(q)

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

+ i∆τ〈n̂n(q, τ)〉0 = 0 (2.29)

Since both derivatives vanish, ζq,n,m,τ = ζ̄q,n,m,τ = 0 defines a local extremum of S, if
we neglect z and z̄. This reflects that ζq,n,m,τ = ζ̄q,n,m,τ = 0 is one solution of this
system, more precisely, the paramagnetic solution. The result of the above calculation
is the confirmation of this solution, without proving its stability. The actual type of
approximation we apply in this subsection is an expansion around the saddle point of the
partition function.

Second derivatives

Since we need the second derivatives of S with respect to every combination of ζ, ζ̄, z and
z̄ except z and z̄ exclusively, we have to consider seven different possibilities. The first
expression we calculate is ∂2S

∂ζ∂ζ̄
:

∂2S

∂ζq,n,m,τ∂ζ̄q′,n′,m′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

=
∆τ

vn,m(q)
δnn′δmm′δq,q′δττ ′

+ ∆τ 2
(
〈T̂ n̂m(−q, τ)n̂n′(q

′, τ ′)〉0 − 〈n̂m(−q, τ)〉0〈n̂n′(q′, τ ′)〉0
)

=

∆τ

vn,m(q)
δnn′δmm′δq,q′δττ ′ + ∆τ 2〈T̂ n̂m(−q, τ)n̂n′(q, τ

′)〉0δqq′ (2.30)

Here, we have introduced the time ordering operator T̂ . 〈n̂m(−q, τ)〉0 and 〈n̂n′(q′, τ ′)〉0
vanish because of momentum conservation, just like the first derivatives. For the same
reason, 〈T̂ n̂m(−q, τ)n̂n′(q

′, τ ′)〉0 is only nonzero if q = q′. While the first term of the
result simply refers to the square interaction term of S, the second one is worth being
discussed in some more detail. It is responsible for the coupling between two different
auxiliary fields and thus for the coupling between different bands. Since we are interested
in the influence of the high-energy bands on the target band, this is exactly the effect we
are looking for. Note that this coupling requires the same value of q and q′, but not the
same value of the imaginary times τ and τ ′. We use the coupling prefactor to define the
generalized susceptibility

χ0,nm(q, τ, τ ′) ≡ 〈T̂ n̂n(q, τ)n̂m(−q, τ ′)〉0. (2.31)

The index 0 reminds us, that it can be calculated within the non-interacting system.
χ0,nm(q, τ, τ ′) only depends on the time difference, which is easily verified by applying the
invariance of the trace under cyclic permutations, assuming τ > τ ′:

χ0,nm(q, τ, τ ′) =
1

Z0

Tr
(
e−(β−τ)Ĥ0n̂n(q)e−(τ−τ ′)Ĥ0n̂m(−q)e−τ ′Ĥ0

)
(2.32)

Therefore, we can write χ0,nm(q, τ − τ ′) ≡ χ0,nm(q, τ, τ ′). Due to its dependence on q and
∆τ , this susceptibility contains the effects of both spatial and temporal fluctuations.
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Path integral cRPA

The next expression we look into is ∂2S
∂ζ∂ζ

:

∂2S

∂ζq,n,m,τ∂ζq′,n′,m′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

=

∆τ 2
(
〈T̂ n̂m(−q, τ)n̂m′(−q′, τ ′)〉0 − 〈n̂m(−q, τ)〉0〈n̂m′(−q′, τ ′)〉0

)
= 0 (2.33)

Again, both terms vanish because of the momentum conservation. For ∂2S
∂ζ̄∂ζ̄

, the calcula-
tion is quite similar:

∂2S

∂ζ̄q,n,m,τ∂ζ̄q′,n′,m′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

=

∆τ 2
(
〈T̂ n̂n(q, τ)n̂n′(q

′, τ ′)〉0 − 〈n̂n(q, τ)〉0〈n̂n′(q′, τ ′)〉0
)

= 0 (2.34)

We still need the derivatives with respect to z and z̄. Since the calculation is completely
equivalent to the corresponding ones above, we can simply write down the result, using
the index 1 at the appropriate places:

∂2S

∂ζq,n,m,τ∂zq′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

= 0 (2.35)

∂2S

∂ζq,n,m,τ∂z̄q′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

= ∆τ 2χ0,1m(q, τ ′ − τ)δqq′ (2.36)

∂2S

∂ζ̄q,n,m,τ∂zq′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

= ∆τ 2χ0,n1(q, τ − τ ′)δqq′ (2.37)

∂2S

∂ζ̄q,n,m,τ∂z̄q′,τ ′

∣∣∣∣
ζ=0,ζ̄=0,z=0,z̄=0

= 0 (2.38)

Now we have explicit expressions for all terms that appear in the approximation scheme.

2.1.3 Fourier transformation of the susceptibility

Before we insert the results of the last subsection into the approximated expression of the
action S and go on with the calculation of the partition function Z, we can use a property
of the susceptiblity in order to simplify further steps. This property is the periodicity of
χ0,nm(q, τ) with respect to τ , which we can verify, choosing τ ∈ ]− β, 0]:

χ0,nm(q, β + τ) = 〈T̂ n̂n(q, τ + β)n̂m(−q, 0)〉0

=
1

Tr(U0(β, 0))
Tr
(
e−βĤ0e(τ+β)Ĥ0n̂n(q)e−(τ+β)Ĥ0n̂m(−q)

)
=

1

Tr(U0(β, 0))
Tr
(
e−βĤ0n̂m(−q)eτĤ0n̂n(q)e−τĤ0

)
= 〈n̂m(−q, 0)n̂n(q, τ)〉0 = 〈T̂ n̂n(q, τ)n̂m(−q, 0)〉0 = χ0,nm(q, τ) (2.39)
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cRPA method 1

Due to this periodicity, it makes sense to define the Fourier transform of the susceptibility

χ0,nm(q,Ωm) =

∫ β

0

dτ eiΩmτχ0,nm(q, τ), (2.40)

where Ωm = 2πm
β

are the bosonic Matsubara frequencies [19]. In order to distinguish both
m indices, we always write sums over Ωm if we refer to the Matsubara frequencies in
contrast to the position index m. The inverse transformation therefore is

χ0,nm(q, τ) =
1

β

∑
Ωm

e−iΩmτχ0,nm(q,Ωm). (2.41)

We now return to the previous notation using zq,n,m,τ . We can express the complete result
for the second derivatives with Matsubara frequencies instead of imaginary time using
δττ ′ = 1

M

∑
Ωm

e−iΩm(τ ′−τ):

∂2S

∂zq,n,m,τ∂z̄q′,n′,m′,τ ′

∣∣∣∣
z=0,z̄=0

=
∆τ

vnm(q)
δnn′δmm′δq,q′δττ ′ + ∆τ 2〈T̂ n̂m(−q, τ)n̂n′(q, τ

′)〉0δqq′

= ∆τ 2 δq,q′

β

∑
Ωm

(
δnn′δmm′

vnm(q)
e−iΩm(τ ′−τ) + e−iΩm(τ ′−τ)χ0,n′m(q,Ωm)

)
(2.42)

If we look at the total approximated action S(z, z̄), the advantage of this procedure
becomes obvious:

S(z, z̄) = S0 +
∑
q>0

∑
q′>0

′∑
n,m,n′m′

∫ β

0

dτ

∫ β

0

dτ ′
∑
Ωm

δq,q′

β
e−iΩm(τ ′−τ)×

zq,n,m,τ

(
δnn′δmm′

vnm(q)
+ χ0,n′m(q,Ωm)

)
z̄q′,n′,m′,τ ′

= S0 +
∑
q>0

′∑
n,m,n′m′

∑
Ωm

zq,n,m,Ωm

(
δnn′δmm′

vnm(q)
+ χ0,n′m(q,Ωm)

)
z̄q,n′,m′,Ωm (2.43)

Here, we have used

′∑
{nα}

: sum over {nα} with at least one nα 6= 1 (2.44)

and

zq,n,m,Ωm =
1√
β

∫ β

0

dτ eiΩmτzq,n,m,τ

z̄q,n,m,Ωm =
1√
β

∫ β

0

dτ e−iΩmτ z̄q,n,m,τ . (2.45)
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Path integral cRPA

We managed to reduce the two integrations over τ and τ ′ to only one sum over Ωm. It is
useful to sort the appearing terms according to their indices. We split up the sum, one
part of the sum containing the square terms, i.e. auxiliary fields with the same indices,
the other one containing the mixed terms. Furthermore, we add a term with low-energy
indices n = 1 and m = 1 in order to omit the restriction of the sums:

S(z, z̄) +
∑
q>0

∑
Ωm

|zq,1,1,Ωm|2
(

1

v11(q)
+ χ0,11(q,Ωm)

)
=

S0 +
∑
q>0

∑
Ωm

(∑
n,m

|zq,n,m,Ωm |2
(

1

vnm(q)
+ χ0,nm(q,Ωm)

)

+
∑
n,m

∑
n′,m′ 6=n,m

zq,n,m,Ωmχ0,n′m(q,Ωm)z̄q,n′,m′,Ωm

)
(2.46)

With this expression, we can continue the calculation.

2.1.4 Integration

The quantity from which we originally started our calculations is the partition function
Z. Applying the approximations and using the results of the previous subsections, we
obtain

Z =

∫ ∏
q,Ωm

∏
n,m

(
dRe(zq,n,m,Ωm) dIm(zq,n,m,Ωm)∆τ

πvnm(q)

)
e−S0×

∏
q,Ωm

exp

(
|zq,1,1,Ωm|2

(
1

v11(q)
+ χ0,11(q,Ωm)

))
×

∏
q,Ωm

exp

(
−
∑
n,m

|zq,n,m,Ωm|2
(

1

vnm(q)
+ χ0,nm(q,Ωm)

)

−
∑
n,m

∑
n′,m′ 6=n,m

zq,n,m,Ωmχ0,n′m(q,Ωm)z̄q,n′,m′,Ωm

)
. (2.47)

There are two important points that we notice about this expression: Firstly, we can easily
perform the integrations over the auxiliary fields, since these are all Gaussian integrations.
Secondly, we can perform the integrations independently for all different values of q and
Ωm. Therefore, we can write

Z =

∫ ∏
q,Ωm

(
dRe(zq,1,1,Ωm) dIm(zq,1,1,Ωm)∆τ

πv11(q)

)
×

∏
q,Ωm

exp

(
|zq,1,1,Ωm|2

(
1

v11(q)
+ χ0,11(q,Ωm)

))
e−S0

∏
q,Ωm

Zq,Ωm (2.48)
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and with zq,n,m,Ωm = xq,n,m,Ωm + iyq,n,m,Ωm

Zq,Ωm =

∫ ′∏
n,m

(
dxq,n,m,Ωm dyq,n,m,Ωm∆τ

πvnm(q)

)
×

exp

(
−
∑
n,m

((
x2
q,n,m,Ωm + y2

q,n,m,Ωm

)( 1

vnm(q)
+ χ0,nm(q,Ωm)

)))
×

exp

(
−
∑
n,m

∑
n′,m′ 6=n,m

χ0,n′m(q,Ωm) (xq,n,m,Ωmxq,n′,m′,Ωm + yq,n,m,Ωmyq,n′,m′,Ωm)

)
×

exp

(
−
∑
n,m

∑
n′,m′ 6=n,m

χ0,n′m(q,Ωm) (iyq,n,m,Ωmxq,n′,m′,Ωm − ixq,n,m,Ωmyq,n′,m′,Ωm)

)
.

(2.49)

Similarly to the notation for the sums, we introduced

′∏
{nα}

: product over {nα} with at least one nα 6= 1 (2.50)

here. It is possible to use a matrix formulation for this integration, but since we always
have to distinguish between xq,1,1,Ωm and yq,1,1,Ωm and the other auxiliary fields, a descrip-
tion of this method runs the risk of being rather confusing. We will adopt this method
for the second cRPA scheme presented later. We compute the integration for the cRPA
method 1 simply by performing the integrations consecutively, starting with xq,ñ,m̃(Ωm)
and yq,ñ,m̃(Ωm), with ñ 6= 1 or m̃ 6= 1. Since we know that the integration is the same for
all q and Ωm, we will omit this indices for simplicity. The integration is essentially the
inverse of the Hubbard-Stratonovich transformation (see eq. (2.2)), if we identify

φx =

√
2

vñm̃
+ 2χ0,ñm̃ xñ,m̃ (2.51)

B̂x =

√
vñm̃

4 + 4vñm̃χ0,ñm̃

∑
n,m 6=ñ,m̃

χ0,ñm(xn,m + iyn,m) + χ0,nm̃(xn,m − iyn,m)

=

√
vñm̃

4 + 4vñm̃χ0,ñm̃

∑
n,m 6=ñ,m̃

(χ0,ñmzn,m + χ0,nm̃z̄n,m) (2.52)

φy =

√
2

vñm̃
+ 2χ0,ñm̃ yñ,m̃ (2.53)

B̂y =

√
vñm̃

4 + 4vñm̃χ0,ñm̃

∑
n,m 6=ñ,m̃

χ0,ñm(−ixn,m + yn,m) + χ0,nm̃(ixn,m + yn,m)

= −i
√

vñm̃
4 + 4vñm̃χ0,ñm̃

∑
n,m 6=ñ,m̃

(χ0,ñmzn,m − χ0,nm̃z̄n,m) . (2.54)
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Therefore, the integration of the first pair of auxiliary fields is very easy. After this
integration step, we are left with

Zq,Ωm =
1

1 + vñm̃χ0,ñm̃

∆τ

∫ ′∏
n,m

(
dxn,m dyn,m∆τ

πvnm

)
×

exp

(
−
∑
n,m

|zn,m|2
(

1

vnm
+ χ0,nm

)
−
∑
n,m

∑
n′,m′ 6=n,m

zn,mχ0,n′mz̄n′,m′

)
×

exp

(
vñm̃

1 + vñm̃χ0,ñm̃

∑
n,m

∑
n′,m′

χ0,ñmχ0,n′m̃zn,mz̄n′,m′

)

=
1

1 + vñm̃χ0,ñm̃

∆τ

∫ ′∏
n,m

(
dxn,m dyn,m∆τ

πvnm

)
×

exp

(
−
∑
n,m

|zn,m|2
(

1

vnm
+ χ0,nm −

vñm̃χ0,nm̃χ0,ñm

1 + vñm̃χ0,ñm̃

))
×

exp

(
−
∑
n,m

∑
n′,m′ 6=n,m

zn,m

(
χ0,n′m −

vñm̃χ0,n′m̃χ0,ñm

1 + vñm̃χ0,ñm̃

)
z̄n′,m′

)
, (2.55)

where all sums and products are restricted to (n,m) 6= (ñ, m̃). Note that no substantially
new term appears, it is still a Gaussian integration. We can include the additional term
in the susceptibility by defining

χ′0,nm = χ0,nm −
vñm̃χ0,nm̃χ0,ñm

1 + vñm̃χ0,ñm̃

. (2.56)

This procedure is repeated for all remaining zn,m except z1,1. Naturally, the result has to
be independent of the sequence of the integration, which is shown in the appendix, section
A.2. Applying this method, the sums will get shorter in every step, but the susceptibilities
will become more and more complicated, since we always have to redefine them according
to eq. (2.56). In the end, we will only have to consider one auxiliary field, z1,1, and
therefore only one final susceptibility χ̃0,11, so

Zq,Ωm ∝ exp

(
−|z1,1|2

(
1

v11

+ χ̃0,11

))
. (2.57)

The contribution of the high-energy bands leads to the screenig of the target band inter-
action v11, which is the typical result of the RPA-method. If we return to the partition
function, we can read off the complete expression of this screening term:

Z ∝
∫ ∏

q,Ωm

(
dRe(zq,1,1,Ωm) dIm(zq,1,1,Ωm)∆τ

πv11(q)

)
×

exp (−S0)
∏
q,Ωm

exp
(
−|zq,1,1,Ωm |2 (χ̃0,11(q,Ωm)− χ0,11(q,Ωm))

)
, (2.58)
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so we finally obtain

χeff(q,Ωm) = χ̃0,11(q,Ωm)− χ0,11(q,Ωm). (2.59)

We will analyze this result in section 3.1 by applying it to a simple three-band model.
Before that, we will present an alternative cRPA method.

2.2 cRPA method 2

This second method is formulated for the more general case of a system, where no local-
ization of the low-energy band is necessary. Without localization, we cannot work with
the Wannier operators c†, c, but have to rewrite the interacting part of the Hamiltonian
using the band operators γ†, γ:

ĤI =
1

L

∑
l,l′

∑
k,k′

∑
q>0

vll′(q)c
†
l,kcl,k+qc

†
l′,k′cl′,k′−q

=
1

L

∑
n,m

∑
n′,m′

∑
k,k′

∑
q>0

vnmn′m′kk′(q)γ
†
n,kγm,k+qγ

†
n′,k′γm′,k′−q (2.60)

Here, we have absorbed the transformation of the operators from c†, c to γ†, γ in the
interaction strength:

vnmn′m′kk′(q) =
∑
l,l′

vll′(q)U
†
ln(k)Uml(k + q)U †l′n′(k

′)Um′l′(k
′ − q) (2.61)

Because of the large number of indices, it is useful to abbreviate the notation by defining
α = (n,m, k) and n̂α(q) = 1√

L
γ†n,kγm,k+q. Therefore, the full Hamiltonian reads

Ĥ = Ĥ0 + ĤI =
∑
n,k

En(k)γ†n,kγn,k +
∑
α,α′

∑
q>0

vα,α′(q)n̂α(q)n̂α′(−q) (2.62)

with an arbitrary band structure expressed by En(k).

2.2.1 Calculating the action

Just like for the first method, we start with the partition function (eq. (2.1)) and do the
Hubbard-Stratonovich transformation (eq. (2.2)). For this purpose, we have to create
square terms for ĤI . However, in contrast to n̂n(q), the densities n̂α(q) do not commute:

[n̂α(q), n̂α′(q
′)]

=
1

L
[γ†n,kγm,k+q, γ

†
n′,k′γm′,k′+q′ ]

=
1

L

(
γ†n,kγm′,k+q+q′δm,n′δk′,k+q − γ†n′,k′γm,k′+q+q′δm′,nδk,k′+q′

)
(2.63)
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Nevertheless, we can write ĤI as

ĤI =
∑
q>0

∑
α,α′

vα,α′(q)

4

(
(n̂α(q) + n̂α′(−q))2 − (n̂α(q)− n̂α′(−q))2)

=
∑
q>0

∑
α,α′

vα,α′(q)

(
n̂α(q)n̂α′(−q) +

1

2
[n̂α′(−q), n̂α(q)]

)
, (2.64)

since the commutation term vanishes, if we consider the sums over α and α′ (see appendix,
section A.3). The expression for the partition function we obtain after the Hubbard-
Stratonovich transformation is

Z = Tr

(
β∏
τ=0

e−∆τĤ0(τ)

∫ ∏
q,α,α′,τ

(
dφq,α,α′,τdϕq,α,α′,τ

2π

)
e−S̃(φq,α,α′,τ ,ϕq,α,α′,τ )

)
(2.65)

with

S̃(φq,α,α′,τ , ϕq,α,α′,τ ) =
∑
α,α′

∑
q>0

(
φ2
q,α,α′,τ

2
+ iφq,α,α′,τ

√
∆τvα,α′(q)

2
(n̂α(q) + n̂α′(−q))

+
ϕ2
q,α,α′,τ

2
+ ϕq,α,α′,τ

√
∆τvα,α′(q)

2
(n̂α(q)− n̂α′(−q))

)
.

(2.66)

Again, we substitute φq,α,α′,τ and ϕq,α,α′,τ by

zq,α,α′,τ =

√
vα,α′(q)

2∆τ
(φq,α,α′,τ + iϕq,α,α′,τ ). (2.67)

With this definition, we have

S̃ =
∑
α,α′

∑
q>0

(
φ2
q,α,α′,τ

2
+
ϕ2
q,α,α′,τ

2
+

i

√
∆τvα,α′(q)

2
((φq,α,α′,τ − iϕq,α,α′,τ )n̂α(q) + (φq,α,α′,τ + iϕq,α,α′,τ )n̂α′(−q))

)

= ∆τ
∑
α,α′

∑
q>0

(
|zq,α,α′,τ |2

vα,α′(q)
+ i (z̄q,α,α′,τ n̂α(q) + zq,α,α′,τ n̂α′(−q))

)
. (2.68)

The trace does not effect the auxiliary fields, so we can write

Z =

∫ β∏
τ=0

∏
q,α,α′

(
dRe(zq,α,α′,τ ) dIm(zq,α,α′,τ )∆τ

πvα,α′(q)

)
e−S(zq,α,α′,τ ,z̄q,α,α′,τ ). (2.69)
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The action S(zq,α,α′,τ , z̄q,α,α′,τ ) is given by

S(zq,α,α′,τ , z̄q,α,α′,τ ) = ∆τ
∑
τ,α,α′

∑
q>0

|zq,α,α′,τ |2

vα,α′(q)
−

log

(
Tr

(
β∏
τ=0

exp

(
−∆τĤ0(τ)− i∆τ

∑
α,α′

∑
q>0

(z̄q,α,α′,τ n̂α(q) + zq,α,α′,τ n̂α′(−q))

)))
.

(2.70)

The approximation procedure for the calculation of an appropriate effective model starts
from this expression.

2.2.2 Approximating the action

Our considerations are basically not very different from the first approximation method:
Again, we assume that the interplay between high-energy and low-energy features is rel-
atively small, so that we can split up the trace into a trace over the low-energy part TrL
and a trace over the high-energy part TrH . Therefore, we can also distinguish between
the low-energy and the high-energy part of the action: S ≈ SL + SH . We use the indices
α1 and α′1 which are defined by α1, α

′
1 = (1, 1, k) with arbitrary k, where index 1 again

indicates the target band. The low-energy part is represented by the operators n̂α1(q)
and n̂α′1(−q), since these are the only operators that are solely related to the target band.
Thus, the low-energy part of the action is

SL = ∆τ
∑
τ

∑
α1,α′1

∑
q>0

|zq,α1,α′1,τ
|2

vα1,α′1
(q)
− log

(
TrL

(
β∏
τ=0

exp

(
−∆τĤ0,L(τ)

−i∆τ
∑
α,α′1

∑
q>0

(
z̄q,α′1,α,τ n̂α′1(q) + zq,α,α′1,τ n̂α′1(−q)

) , (2.71)

whereas the high-energy part is

SH = ∆τ
∑
τ

6=α1,α′1∑
α,α′

∑
q>0

|zq,α,α′,τ |2

vα,α′(q)
− log

(
TrH

(
β∏
τ=0

exp

(
−∆τĤ0,H(τ)

−i∆τ
6=α1∑
α

∑
α′

∑
q>0

(z̄q,α,α′,τ n̂α(q) + zq,α′,α,τ n̂α(−q))

)))
. (2.72)

The allocation of the square terms of the auxiliary fields is actually not necessary, but
it is useful to think about the energy regime they are related to. Of course, zq,α1,α′1,τ

and z̄q,α1,α′1,τ
are purely connected to the low-energy part, while zq,α,α′,τ and z̄q,α,α′,τ with

α 6= α1 and α′ 6= α1 correspond to the high-energy part. For this reason, these auxiliary
fields only appear in the low and high-energy part of the action, respectively. However,
there are also fields with only one index α1. These fields are responsible for the coupling
between the two energy regimes, since they couple to n̂α1(q) or n̂α1(−q) in eq. (2.71) and
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to n̂α(q) or n̂α(−q), with α 6= α1, in eq. (2.72). SL contains all the low-energy properties
which are especially important, so we want to treat it exactly. In contrast, we have to
find an appropriate approximation for SH in order to make the calculation feasible. For
this purpose, we return to the Taylor expansion around the saddle point of cRPA method
1:

SH(z, z̄) ≈ SH(0, 0)

+
∑

q,α,α′,τ

∂SH
∂zq,α,α′,τ

∣∣∣∣
z=0,z̄=0

zq,α,α′,τ +
∑

q,α,α′,τ

∂SH
∂z̄q,α,α′,τ

∣∣∣∣
z=0,z̄=0

z̄q,α,α′,τ

+
∑

q,α,α′,τ

∑
q̃,α̃,α̃′,τ̃

∂2SH
∂zq,α,α′,τ∂z̄q̃,α̃,α̃′,τ̃

∣∣∣∣
z=0,z̄=0

zq,α,α′,τ z̄q̃,α̃,α̃′,τ̃

+
1

2

∑
q,α,α′,τ

∑
q̃,α̃,α̃′,τ̃

∂2S

∂zq,α,α′,τ∂zq̃,α̃,α̃′,τ̃

∣∣∣∣
z=0,z̄=0

zq,α,α′,τzq̃,α̃,α̃′,τ̃

+
1

2

∑
q,α,α′,τ

∑
q̃,α̃,α̃′,τ̃

∂2S

∂z̄q,α,α′,τ∂z̄q̃,α̃,α̃′,τ̃

∣∣∣∣
z=0,z̄=0

z̄q,α,α′,τ z̄q̃,α̃,α̃′,τ̃ (2.73)

According to this approximation method, the first derivatives should of course vanish. We
will check this in the following, where we calculate all the terms appearing above.

First term

If we set all fields equal to zero, we get

SH,0 ≡ SH(0, 0) = − log

(
TrH

(
β∏
τ=0

exp
(
−∆τĤ0,H(τ)

)))
. (2.74)

So this term only contains the non-interacting part of the Hamiltonian for the host bands.

First derivatives

It is again useful to define an operator

Û ′(τ1, τ2) =

τ1∏
τ=τ2

exp

(
−∆τĤ0,H(τ)− i∆τ

6=α1∑
α

∑
α′

∑
q>0

(z̄q,α,α′,τ n̂α(q) + zq,α′,α,τ n̂α(−q))

)
, (2.75)

which becomes the time evolution operator of the non-interacting system, if the auxiliary
fields vanish.

We need to calculate the first derivatives of SH with respect to zq,α,α′,τ with α′ 6= α1

and with respect to z̄q,α,α′,τ with α 6= α1. In the first case, the result is

∂SH
∂zq,α,α′,τ

∣∣∣∣
z=0,z̄=0

=

(
∆τ z̄q,α,α′,τ
vα,α′(q)

+
i∆τ

Tr(U(β, 0))
Tr(U(β, τ)n̂α′(−q, τ)U(τ, 0))

)∣∣∣∣
z=0,z̄=0

=i∆τ〈n̂α′(−q, τ)〉0 =
i∆τ√
L
〈γ†n′,k′(τ)γm′,k′−q(τ)〉0 = 0. (2.76)
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Similarly, we get for the second case

∂SH
∂z̄q,α,α′,τ

∣∣∣∣
z=0,z̄=0

=

(
∆τzq,α,α′,τ
vα,α′(q)

∣∣∣∣
z=0,z̄=0

+ i∆τ〈n̂α(q, τ)〉0

)
= 0. (2.77)

Thus, both derivatives vanish, just as we expected. This result confirms that the expansion
around zero auxiliary fields is identical to an expansion around the saddle point.

Second derivatives

We have to consider second derivatives of SH with respect to combinations of zq,α,α′,τ and
z̄q̃,α̃,α̃′,τ̃ , but only for α′ 6= α1 or α̃ 6= α1. The first expression we calculate is

∂2SH
∂zq,α,α′,τ∂z̄q̃,α̃,α̃′,τ̃

∣∣∣∣
z=0,z̄=0

=
∆τ

vα,α′(q)
δα,α̃δα′,α̃′δq,q̃δτ,τ̃

+ ∆τ 2
(
〈T̂ n̂α′(−q, τ)n̂α̃(q̃, τ̃)〉0 − 〈n̂α′(−q, τ)〉0〈n̂α̃(q̃, τ̃)〉0

)
=

∆τ

vα,α′(q)
δα,α̃δα′,α̃′δq,q̃δτ,τ̃ + ∆τ 2〈T̂ n̂α′(−q, τ)n̂α̃(q, τ̃)〉0δq,q̃. (2.78)

The result is essentially the same as for cRPA method 1 and it motivates again to define
a generalized susceptibility

χ0,α,α̃(q, τ − τ̃) ≡ 〈T̂ n̂α(−q, τ)n̂α̃(q, τ̃)〉0. (2.79)

As before, χ0,α,α̃ is a property of the non-interacting system and only depends on the time
difference. Note that due to our approximation scheme, there is no susceptibility with the
target band related index α1 in our equations.

The second derivatives ∂2SH
∂z∂z

and ∂2SH
∂z̄∂z̄

both vanish because of momentum conservation:

∂2SH
∂zq,α,α′,τ∂zq̃,α̃,α̃′,τ̃

∣∣∣∣z=0,z̄=0 =

∆τ 2
(
〈T̂ n̂α′(−q, τ)n̂α̃′(−q̃, τ̃)〉0 − 〈n̂α′(−q, τ)〉0〈n̂α̃′(−q̃, τ̃)〉0

)
= 0 (2.80)

and

∂2SH
∂z̄q,α,α′,τ∂z̄q̃,α̃,α̃′,τ̃

∣∣∣∣z=0,z̄=0 =

∆τ 2
(
〈T̂ n̂α(q, τ)n̂α̃(q̃, τ̃)〉0 − 〈n̂α(q, τ)〉0〈n̂α̃(q̃, τ̃)〉0

)
= 0, (2.81)

respectively. Now we have all required terms and can go on with the next steps.

2.2.3 Fourier transformation

It is advantageous to use the Fourier transform of χ0,α,α̃(q, τ− τ̃), as we did in the previous
section. We therefore define

χ0,α,α̃(q, τ) =
1

β

∑
Ωm

e−iΩmτχ0,α,α̃(q,Ωm) (2.82)
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with the bosonic Matsubara frequencies Ωm = 2πm
β

. We can rewrite the non-vanishing
second derivatives as

∂2SH
∂zq,α,α′,τ∂z̄q̃,α̃,α̃′,τ̃

∣∣∣∣
z=0,z̄=0

=
∆τ

vα,α′(q)
δα,α̃δα′,α̃′δq,q̃δτ,τ̃ + ∆τ 2〈T̂ n̂α′(−q, τ)n̂α̃(q, τ̃)〉0δq,q̃

= ∆τ 2 δq,q̃
β

∑
Ωm

(
δα,α̃δα′,α̃′

vα,α′(q)
eiΩm(τ̃−τ) + eiΩm(τ̃−τ)χ0,α′,α̃(q,Ωm)

)
. (2.83)

In order to simplify the notation, we define the new quantity

χ0
α′,α(q,Ωm) ≡ (1− δα,α1)(1− δα′,α′1)χ0,α′,α(q,Ωm). (2.84)

So we artificially introduce susceptibilities which contain α1, but set them equal to zero,
since otherwise we had to distinguish in a complicated way between indices equal to and
different from α1. Within the scope of our approximation, we can write down the complete
high-energy action as

SH(z, z̄) +
∑
α1,α′1

∑
q>0

∫ β

0

dτ
|zq,α1,α′1,τ

|2

vα1,α′1
(q)

= SH,0 +
∑
q>0

∑
q̃>0

∑
α,α′

∑
α̃,α̃′

∫ β

0

dτ

∫ β

0

dτ̃
∑
Ωm

δq,q̃
β
eiΩm(τ̃−τ)×

zq,α,α′,τ

(
δα,α̃δα′,α̃′

vα,α′(q)
+ χ0

α′,α̃(q,Ωm)

)
z̄q̃,α̃,α̃′,τ̃

= SH,0 +
∑
q>0

∑
Ωm

∑
α,α′

∑
α̃,α̃′

zq,α,α′,Ωm

(
δα,α̃δα′,α̃′

vα,α′(q)
+ χ0

α′,α̃(q,Ωm)

)
z̄q,α̃,α̃′,Ωm . (2.85)

Here, we used the Fourier transform of zq,α,α′,τ and z̄q,α,α′,τ

zq,α,α′,Ωm =
1√
β

∫ β

0

dτ e−iΩmτzq,α,α′,τ

z̄q,α,α′,Ωm =
1√
β

∫ β

0

dτ eiΩmτ z̄q,α,α′,τ . (2.86)

Likewise, n̂α1(q, τ) and n̂α1(−q, τ) have to be Fourier transformed, since they still appear
in the low-energy action:

n̂α1(q,Ωm) =
1√
β

∫ β

0

dτ e−iΩmτ n̂α1(q, τ)

n̂α1(−q,Ωm) =
1√
β

∫ β

0

dτ eiΩmτ n̂α1(−q, τ) (2.87)
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Expressed by this Fourier transformed quantities, we obtain the coupling term of the
low-energy action:∑

α,α′1

∑
q>0

∫ β

0

dτ
(
z̄q,α′1,α,τ n̂α′1(q, τ) + zq,α,α′1,τ n̂α′1(−q, τ)

)
=

∑
α,α′1

∑
q>0

∫ β

0

dτ

∫ β

0

dτ̃
∑
Ωm

1

β
eiΩm(τ̃−τ)

(
z̄q,α′1,α,τ̃ n̂α′1(q, τ) + zq,α,α′1,τ n̂α′1(−q, τ̃)

)
=

∑
α,α′1

∑
q>0

∑
Ωm

(
z̄q,α′1,α,Ωmn̂α′1(q,Ωm) + zq,α,α′1,Ωmn̂α′1(−q,Ωm)

)
(2.88)

We can now put together SH and SL to the total action S and separate the square terms
from the mixed ones:

S = SH,0 +
∑
q>0

∑
Ωm

∑
α,α′

|zq,α,α′,Ωm|2
(

1

vα,α′(q)
+ χ0

α′,α(q,Ωm)

)
+
∑
q>0

∑
Ωm

∑
α,α′

∑
α̃,α̃′

(1− δα,α̃δα′,α̃′) zq,α,α′,Ωmχ0
α′,α̃(q,Ωm)z̄q,α̃,α̃′,Ωm

− log

TrL

∏
Ωm

exp

−H0,L − i
∑
α,α′1

∑
q>0

(
z̄q,α′1,α,Ωmn̂α′1(q) + zq,α,α′1,Ωmn̂α′1(−q)

)
(2.89)

Comparing this expression to eq. (2.46), we find very similar terms for the high-energy
auxiliary fields. However, the treatment of the target band related quantities is quite
different. Here, we still have the low-energy trace TrL as well as the target band operators
n̂α′1(q) and n̂α′1(−q), whereas for cRPA method 1, the low-energy physics is supposed to
be represented only by the low-energy auxiliary fields.

2.2.4 Integration

As we have seen, the approximation for the action S contains some terms that do not
appear in the first method. Another difference is the presence of the target band operators.
Therefore, we will choose another integration strategy: we integrate out all auxiliary fields,
both of the host bands and the target band. Doing so, we will get square terms of the
operators n̂α′1(q) and n̂α′1(−q), which form the interacting part of an effective Hamiltonian.

Using eq. (2.89) we can rewrite the partition function as

Z =

∫ ∏
q,Ωm

∏
α,α′

(
dRe(zq,α,α′Ωm) dIm(zq,α,α′,Ωm)∆τ

πvα,α′(q)

)
exp (−S)

= exp (−SH,0) TrL

(∏
Ωm

e−H0,L

∏
q

ZΩm,q

)
. (2.90)

Thus, we can again take advantage of the fact that the integration can be performed
independently for all q and Ωm and omit these indices in the following for simplicity.
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In a matrix formulation, the integration, i.e. the inversion of the Hubbard-Stratonovich
transformation, reads [20]

∫ ∏
j

dφj√
2π

exp

(
−1

2

∑
i,j

φiAijφj +
∑
j

Jjφj

)
= (detA)−

1
2 exp

(
1

2

∑
i,j

JiA
−1
ij Jj

)
(2.91)

with

φ =



xα1,α′1
yα1,α′1
xα1,α′

yα1,α′

xα,α′1
yα,α′1
xα,α′
yα,α′


, J =



−i n̂α1(q)− i n̂α′1(−q)
−n̂α1(q) + n̂α′1(−q)

−i n̂α1(q)
−n̂α1(q)
−i n̂α′1(−q)
n̂α′1(−q)

0
0


.

and

A =



V −1
α1,α′1

0 0 0 0 0 0 0

0 V −1
α1,α′1

0 0 0 0 0 0

0 0 V −1
α1,α′

0 X1
α′,α −iX1

α′,α X3
α′,α −iX3

α′,α

0 0 0 V −1
α1,α′

iX1
α′,α X1

α′,α iX3
α′,α X3

α′,α

0 0 X2
α′,α iX2

α′,α V −1
α,α′1

0 X4
α′,α iX4

α′,α

0 0 −iX2
α′,α X2

α′,α 0 V −1
α,α′1

−iX4
α′,α X4

α′,α

0 0 X5
α′,α iX5

α′,α X6
α′,α −iX6

α′,α V −1
α,α′ +X7

α′,α iX7
α′,α

0 0 −iX5
α′,α X5

α′,α iX6
α′,α X6

α′,α −iX7
α′,α V −1

α,α′ +X7
α′,α


Note that the entries of the vector φ are vectors itself. Their dimensions are determined by
the number of different indices α, α′, α1 and α′1. The entries of vector J and matrix A are
vectors and matrices as well, with the appropriate dimensionality. V and X are related
to the interaction terms and the susceptibility contribution, respectively. We use the
inverse matrices V −1 to recall that the interaction prefactors of the original Hamiltonian
appear in the denominator after the Hubbard-Stratonovich transformation. In order to
discriminate between the matrices X, we introduce the superscript n = 1, 2, ..., 7.

Using this notation, one immediately sees that the low-energy auxiliary fields are com-
pletely decoupled. The coupling between different auxiliary fields arises from the RPA-
approximation of the high-energy fields, which did not affect zα1,α′1

and z̄α1,α′1
. Actually,

our approximation scheme did not change any term of the target band interaction at all.
Therefore, we will just reobtain its original interaction∑

α1,α′1

∑
q>0

vα1,α′1
(q)n̂α1(q)n̂α′1(−q). (2.92)
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The remaining integration can be simplified by a transformation of φ:

φ′ =
1√
2


z̄α1,α′

z̄α,α′1
z̄α,α′
zα1,α′

zα,α′1
zα,α′

 , J ′1 =
√

2


−i n̂α1(q)

0
0
0

−i n̂α1(−q)
0

 , J ′2 =
√

2


0

−i n̂α1(−q)
0

−i n̂α1(q)
0
0

 (2.93)

and

A′ =

(
A′1 0
0 A′2

)
(2.94)

Applying this transformation, eq. (2.91) reads∫ ∏
j

dφj√
2π

exp

(
−1

2

∑
i,j

φ′iA
′
ijφ̄
′
j +

1

2

∑
j

(
φ′jJ

′
1j + J ′2jφ̄

′
j

))
=

(detA)−
1
2 exp

(
1

2

∑
i,j

J ′2iA
′ −1
ij J ′1j

)
. (2.95)

Due to the structure of A′, we only have to deal with the smaller matrices A′1 and A′2
and we can treat the upper and the lower part separately. Furthermore, A′2 is essentially
the transpose of A′1, so that the calculation is very similar for both. Therefore, we will
describe the following steps in more detail only for A′1, since this should be sufficient to
understand the complete calculation. Using the notation introduced earlier, we get

A′1 =

 V −1
α1,α′

0 0

2X2
α′,α V −1

α,α′1
2X4

α′,α

2X5
α′,α 0 V −1

α,α′ + 2X7
α′,α

 . (2.96)

According to eq. (2.95), we need the inverse of A′1:

A′ −1
1 =

 Vα1,α′ 0 0

Ã Vα,α′1 −2Vα,α′1X
4
α′,αṼα,α′

−2Ṽα,α′X
5
α′,αVα1,α′ 0 Ṽα,α′

 , (2.97)

with

Ṽα,α′ =
(
V −1
α,α′ + 2X7

α′,α

)−1
and Ã = Vα,α′1

(
4X4

α′,αṼα,α′X
5
α′,α − 2X2

α′,α

)
Vα1,α′ . (2.98)

Since there is in each case only one entry in the upper part of the vectors J ′1 and J ′2, we
do not need the complete expression for A′ −1

1 , but only Ã. Calculating the remaining
vector-matrix multiplications, we get the additional interaction term veff(q,Ωm). We will
calculate this expression explicitly in section 3.2 for a model with three-bands.
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3 Three-band model

In order to test the presented methods, we apply them to a model which is compara-
tively simple, but at the same time complex enough to contain the nontrivial interaction
betweeen different bands. Therefore, we consider a system consisting of three chains of
atoms, neglecting the spin of the electrons. The three chains have different chemical po-
tentials µn and we allow hopping within the chains as well as between the outer chains and
the middle chain, with the corresponding hopping parameters being tn and t′, respectively.
The non-interacting part of the Hamiltonian is

Ĥ0 =
3∑

n=1

∑
i

(
µnc

†
n,icn,i − tn

(
c†n,icn,i+1 + h.c.

))
−
∑
i

t⊥

(
c†1,ic2,i + c†2,ic3,i + h.c.

)
, (3.1)

which we can rewrite in momentum space for the y-component as

Ĥ0 =
3∑

n=1

∑
k

c†n,kcn,k (µn − 2tn cos(k))−
∑
k

t⊥

(
c†1,kc2,k + c†2,kc3,k + h.c.

)
(3.2)

using periodic boundary conditions in y-direction, parallel to the chains. Diagonalizing
Ĥ0, we get three different bands, characterized by the dispersion relations Eα(k):

Ĥ0 =
3∑

α=1

∑
k

Eα(k)γ†α,kγα,k (3.3)

If we want to be able to apply the presented cRPA methods to this model, we have to
choose model parameters, which make sure that only one band E2(k) crosses the Fermi
level, whereas the other bands E1(k) and E3(k) lie completely below or above it. We
achieve this by varying the chemical potential for the atomic chains, with negative values
for µ1, vanishing µ2 and positive values for µ3. Note that this notation differs from the
one used in chapter 2, since γ†2,k and γ2,k correspond to the low-energy regime, while γ†1,k,

γ1,k, γ
†
3,k and γ3,k correspond to higher energies.

Concerning the interacting part of the Hamiltonian HI , we use different expressions for
both cRPA methods, containing Wannier operators c†, c for cRPA method 1 and band
operators γ†, γ for cRPA method 2. In principle, this is not necessary, since we know
the relation between these two operators and can therefore convert the values of the
interaction strength. However, if we do so, the interaction strength will depend on an
additional parameter in one of both methods. By choosing two different HI , we avoid this
complication and reduce the computational effort, without vitiating the intended method
test.
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3.1 Numerical test of cRPA method 1

We will study the three-band model using first cRPA method 1. Since we implemented this
method with the Wannier operators, we express the interaction term by the corresponding
densities n̂n(q) = 1√

L

∑
k c
†
n,kcn,k+q. We are interested in the effect of the interaction of

the host bands and target bands on the interaction of the low-energy properties. Thus,
we need at least

ĤI =∑
q>0

(u(q) n̂2(q)n̂2(−q) + v(q) n̂2(q) (n̂1(−q) + n̂3(−q)) + v(q) (n̂1(q) + n̂3(q)) n̂2(−q)) .

(3.4)

We could as well consider interaction terms consisting only of high-energy operators, but
this expression is sufficient to check the appropriateness of cRPA method 1, so we will
restrict to it.

3.1.1 Susceptibility

In order to calculate the effective interaction, we need the susceptibility χ0,nm(q, τ), which
is defined as (see eq. (2.31))

χ0,nm(q, τ) = 〈T̂ n̂n(q, τ)n̂m(−q, 0)〉0

=
1

L

∑
k,k′

〈c†n,k(τ)cn,k+q(τ)c†m,k′(0)cm,k′−q(0)〉0 (3.5)

with τ > 0. We can evaluate the expectation value, if we substitute the Wannier operators
c†n,k, cn,k:

c†n,k(τ) =
∑
α

U †nα(k)γ†α,k(τ), cn,k(τ) =
∑
α

γα,k(τ)Uαn(k) (3.6)

Therefore, we get

〈c†n,k(τ)cn,k+q(τ)c†m,k′(0)cm,k′−q(0)〉0
=
∑
α,α′

∑
β,β′

U †nα(k)Uα′n(k + q)U †mβ(k′)Uβ′m(k′ − q)×

〈γ†α,k(τ)γα′,k+q(τ)γ†β,k′(0)γβ′,k′−q(0)〉0
=
∑
α,β

δk,k′−qU
†
nα(k)Uβn(k + q)U †mβ(k + q)Uαm(k)×

eτ(Eα(k)−Eβ(k+q))f(Eα(k))(1− f(Eβ(k + q))). (3.7)

This leads to the following expression for the susceptibility:

χ0,nm(q, τ) =

1

L

∑
k,α,β

U †nα(k)Uβn(k + q)U †mβ(k + q)Uαm(k)eτ(Eα(k)−Eβ(k+q)) eβEβ(k+q)

(eβEα(k) + 1)
(
eβEβ(k+q) + 1

)
(3.8)
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Numerical test of cRPA method 1

According to cRPA method 1, we need the Fourier transform of χ0,nm(q, τ). For this
transformation step, we only have to consider the time dependent part of the susceptibility:∫ β

0

dτeτ(iΩm+Eα(k)−Eβ(k+q)) =
eβ(iΩm+Eα(k)−Eβ(k+q)) − 1

iΩm + Eα(k)− Eβ(k + q)
(3.9)

Altogether, we get

χ0,nm(q,Ωm)

=
1

L

∑
k,α,β

U †nα(k)Uβn(k + q)U †mβ(k + q)Uαm(k)
(
eβEα(k) − eβEβ(k+q)

)
(iΩm + Eα(k)− Eβ(k + q)) (eβEα(k) + 1)

(
eβEβ(k+q) + 1

)
=

1

L

∑
k,α,β

U †nα(k)Uβn(k + q)U †mβ(k + q)Uαm(k)
f(Eβ(k + q))− f(Eα(k))

iΩm + Eα(k)− Eβ(k + q)
. (3.10)

Depending on the properties of the non-interacting Hamiltonian, χ0,nm(q,Ωm) can have
different symmetries. For example, in this case H0 does not only have real eigenvalues, but
also real eigenvectors. Thus, we can use U †nα(k) = Uαn(k), which leads to χ0,nm(q,Ωm) =
χ0,mn(q,Ωm), according to eq. (3.10). For this reason, there are only six independent sus-
ceptibilities for this model, since χ0,12(q,Ωm) = χ0,21(q,Ωm), χ0,13(q,Ωm) = χ0,31(q,Ωm)
and χ0,23(q,Ωm) = χ0,32(q,Ωm).

After the calculation of the susceptibilities, we follow the procedure given by eq. (2.56)
in order to obtain the effective interaction. Using the symmetry of the susceptibility
discussed above and the parameter set of our model, we get

χ̃0,22 =
χ0,22

(1 + v(χ0,21 + χ0,23))2 − v2χ0,22(χ0,11 + χ0,33 + 2χ0,13)
, (3.11)

where we omitted the dependence on momentum q and Matsubara frequency Ωm to ab-
breviate the notation. As this expressions shows, χ̃0,22 does not depend on the interaction
of the central band u(q), but only on the interaction between the central band and the
outer bands v(q). Subtracting χ0,22(q,Ωm) from χ̃0,22(q,Ωm), we finally get the effective
susceptibility χeff(q,Ωm) according to cRPA method 1.

3.1.2 Numerical results

Since we now know how to calculate the effective interaction, we can compare numerical
data with our expectations. For this purpose, we do not use χeff(q,Ωm) computed for
the Matsubara frequencies, but for real frequencies Ω. In our notation, the quantity we
analyze is χeff(q,−iΩ). It is related to χeff(q,Ωm) via complex integration. We use this
quantity since it directly shows at which energies the effective interaction is especially
affected by particle-hole excitations. This can be related to the band structure in order
to check whether the effective interaction really contains the physical processes we want
to include on the RPA level.

For the numerical computation, we choose µ1 = −µ3 = −4, µ2 = 0, t1 = t3 = −0.5,
t2 = 1, t⊥ = 0.1 and inverse temperature β = 10. Therefore, one band E2(k) is half-filled,
one band E1(k) is completely filled and one band E3(k) is empty (see fig. 3.1). Due to
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Three-band model

Figure 3.1: Band structure of the three-band model with µ1 = −µ3 = −4, µ2 = 0,
t1 = t3 = −0.5, t2 = 1 and t⊥ = 0.1

the small value of the inter-chain hopping t⊥ compared to the differences in the chemical
potentials, these bands are to a large extent localized on the chains: We can relate E2(k)
to the central chain labeled n = 2, E1(k) to the outer chain labeled n = 1 and E3(k) to
the opposite chain labeled n = 3.

Since we did not include the low-energy auxiliary fields in the cRPA scheme, we assume
that χeff(q,−iΩ) only contains high-energy contributions. However, the numerical result
shown in fig. 3.2 disproves this expectation. The dominant contribution does not stem
from excitations between the high energy bands E1(k) and E3(k), but from excitations
within the low-energy band E2(k). As the comparison with the band structure reveals,
the blue structure at low frequencies is due to processes at the Fermi level. They appear
at momentum q = 0 and at q = π, since E2(k) crosses the Fermi level at two points,
with a difference in momentum of ∆k = π. The red structure is even more pronounced,
which can be explained by a phase space argument: The effect of particle-hole excitations
is especially important if the involved parts of the band structure are parallel. Following
this explanation and comparing the maximum of the red feature to the band structure,
we again find that it is caused by excitations within the band E2(k). Energetically, an
excitation from the target band to the host bands is possible. However, this structure
would appear at q = π

2
and q = 3π

2
for the lowest frequencies, but there is no structure

with the appropriate properties.

At higher frequencies which exceed the bandwith of E2(k), processes concerning only
the target band are no longer possible. Thus, the blue feature at Ω ≈ 5 and q ≈ π is
really one of the high-energy contributions we tried to capture. Apparentely, the effective
interaction calculated by cRPA method 1 contains the influence of the host bands, but
this method is not able to isolate them from the low-energy processes.

3.1.3 Problems of cRPA method 1

We had to realize that we cannot use cRPA method 1 to achieve what we aimed at: It
does not separate the high-energy processes from the physics of the target band. But
what is the problem of this method, why does it not fulfill our expectations? Is there a
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Numerical test of cRPA method 1

Figure 3.2: Imaginary part of χeff(q,−iΩ) for µ1 = −µ3 = −4, µ2 = 0, t1 = t3 = −0.5,
t2 = 1, t⊥ = 0.1 and v(q) = 1

general problem of our procedure, or do we still have a chance to be more successful with
cRPA method 2?

In order to answer these questions, we go back to the expression for the calculation of
the susceptiblity in eq. (3.10). In this equation, the fraction describes the influence of
particle-hole excitations. We understand this part quite well, since we can connect the
band structure and the features of χeff(q,−iΩ). Therefore, we turn to the prefactors stem-
ing from the eigenvectors of the non-interacting Hamiltonian. The inter-chain hopping
parameter t⊥ is small compared to the energy difference of the three-bands. If we neglect
this parameter completely and consider the matrix which couples the Bloch operators
c†n,k and cn,k in the non-interacting Hamiltonian, we find that this matrix is diagonal. Its
eigenvalues and eigenvectors are given by

E1(k) = µ1 − 2t1 cos(k), E2(k) = µ2 − 2t2 cos(k), E3(k) = µ1 − 2t3 cos(k),

v1 =

1
0
0

 , v2 =

0
1
0

 , v3 =

0
0
1

 . (3.12)

Since the entries of the eigenvectors determine the prefactors Uαn, we know that U11,
U22 and U33 are largest. Prefactors with two different indices scale with t⊥. Using an
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Three-band model

expansion around t⊥ = 0 up to second order for the calculation of Uαn, we find

U12 = O
(

t⊥
E2 − E1

)
, U13 = O

(
t2⊥

(E2 − E1)E3

)
, U21 = O

(
t⊥

E2 − E1

)
,

U23 = O
(

t⊥
E3 − E2

)
, U31 = O

(
t2⊥

(E3 − E2)E1

)
, U32 = O

(
t⊥

E3 − E2

)
. (3.13)

For simplicity, we will only write t̃⊥ and t̃2⊥ instead of the complete arguments where a
linear or square term of t⊥ appears. Of course, this notation is not very precise, since it
makes a difference by which energy or energy differenc t⊥ is divided. However, for this
discussion, which only considers different orders of magnitudes, these differences are not
important.

For the computation of the susceptiblity, we multiply by four of these factors. For the
different susceptibilities χ0,nm we use to calculate the effective interaction, we compare the
largest contributions in terms of t̃⊥. As we have seen, the value of χeff(q,−iΩ) is especially
high, if a particle-hole excitation with frequency Ω and momentum q is possible and we
also know which of these excitation are particularly important. The main contribution
to the susceptiblity stems from exitation within the target band, unlike our intention.
Therefore, the corresponding prefactor of χ0,nm is (U2nU2m)2. Using the above results, we
find

χ0,22 = O(1), χ0,12 ∝ χ0,23 = O
(
t̃2⊥
)
, χ0,11 ∝ χ0,33 ∝ χ0,13 = O

(
t̃4⊥
)
. (3.14)

Since the band E2(k) is mainly localized on the central band, the contribution is reduced
if the susceptibility is related to the outer chains n = 1, 3. With similar considerations for
excitations between the target band and one of the host bands, we expect the following
behavior of the susceptibilities:

χ0,22 ∝ χ0,12 ∝ χ0,23 ∝ χ0,11 ∝ χ0,33 = O
(
t̃2⊥
)
, χ0,13 = O

(
t̃4⊥
)

(3.15)

The band and chain indices are combined in both possible ways, so we always multiply
with at least two of the small factors proportional to t̃⊥. Only for χ0,13, we cannot avoid
having one prefactor proportional to t̃2⊥. Finally, if both of the host bands are concerned,
all susceptibilities behave similarly:

χ0,22 ∝ χ0,12 ∝ χ0,23 ∝ χ0,11 ∝ χ0,33 ∝ χ0,13 = O
(
t̃4⊥
)

(3.16)

In the first instance, this might seem surprising, but it is not hard to explain: For every
chain index n = 2, we will get two factors proportional to t̃⊥. For chain indeces n = 1 or
n = 3, there is one factor of order O(1) and one factor of order O(t̃2⊥). Altogether, this
does not make any difference, we will in any case end up with t̃4⊥.

We now have explicit expectations for the dominant contributions of the different sus-
ceptibilities and can compare them to numerical results. To obtain the numerical data,
we use the same parameter set as before. Due to the symmetry of both host bands,
χ0,21(q,−iΩ) = χ0,23(q,−iΩ) and χ0,11(q,−iΩ) = χ0,33(q,−iΩ), we can restrict our dis-
cussion to four different susceptibilities.
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Numerical test of cRPA method 1

For χ0,22, excitations within the target band are essential, since the other processes are
suppressed with at least a factor of t̃2⊥. This picture is confirmed by fig. 3.3(a) which shows
the susceptibility χ0,22. The low-energy feature is predominant, there is only a very weak
signature for processes involving the host bands. As we expected, the order of magnitude
of χ0,22 is about 1, in contrast to the other susceptiblities. The largest contributions to

(a) Imaginary part of χ0,22(q,−iΩ) (b) Imaginary part of χ0,21(q,−iΩ)

Figure 3.3: Contributions to the effective interaction

χ0,21 are of the order t̃2⊥ and correspond to both intra-target band and target-host band
excitations. Our numerical result for χ0,21, shown in fig. 3.3(b), is consistent with this
description: The positive parts of χ0,21 stem from processes within the target band, the
negative parts stem from processes between target and host bands. For χ0,11, only the
latter processes are relevant, since they give the most important contribution, proportional
to t̃2⊥. Therefore, the order of magnitude is similar to the one of χ0,21 (see fig. 3.4(a)).
Finally, for χ0,13 all excitations contribute with the same strength, proportional to t̃4⊥.
Thus, this susceptibility has the smallest numerical value, but contains more features
than the other ones. In fig. 3.4(b), one can see the signature of the host band excitations
which is too small to be visible for the other suspectibilities. Physical processes happening
on different energy scales are represented in equal measure by this single susceptibility
χ0,13.

This reveals the basic problem of cRPA method 1: Identifying chain indices with band
indices is not an appropriate way to separate these processes, as shown by χ0,13 and χ0,21.
We can try to circumvent this problem: For example, we could choose a different non-
interacting Hamiltonian, which creates more overlapp between the outer chains. Doing so,
the high-energy feature of χ0,13 corresponding to host band excitation would be enhanced.
However, this would only improve the situation for χ0,13 and we would loose the generality
of this method. Furthermore, no such procedure is possible for χ0,21. Another possible
modification is the change of the interacting part of the Hamiltonian, for example by
introducing an interaction term between the outer chains. We argued that it is possible
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(a) Imaginary part of χ0,11(q,−iΩ) (b) Imaginary part of χ0,13(q,−iΩ)

Figure 3.4: Contributions to the effective interaction

that the susceptibility χ0,13 is mainly determined by high-energy processes. Thus, we could
hope that the suggested procedure would modify χeff (see eq. (3.11)), so that χ0,13 plays
the crucial role. However, there is no possibility to avoid the low-energy contributions
simply because we are interested in the influence of the high-energy contributions on the
target band. Therefore, even if we are able to isolate effects concerning only the host
bands, we still have to connect them to the target band. Within cRPA method 1, this is
only possible via the introduction of a susceptibility with chain index n = 2. As we have
argued above and as it is shown examplarily in fig. 3.3, these susceptibilities necessarily
contain signatures of intra-target band excitations. Therefore, we do not see a possible
solution for the problems of cRPA method 1. There is at least one positive insight, revealed
by this discussion: The reason for the failure of this method, namely the identification of
band and chain indices, is the particular property of this method, so we can be optimistic
about cRPA method2.

3.2 Numerical test of cRPA method 2

For cRPA method 2, a different formulation of the interacting part of the Hamiltonian is
convenient, using the operators γ†n,k and γn,k. The general form of ĤI is

ĤI =
∑
α,α′

∑
q>0

vα,α′(q)n̂α(q)n̂α′(−q) (3.17)

with α = (n,m, k) and n̂α(q) = 1√
L
γ†n,kγm,k+q, as introduced in section 2.2. Again, the

model we will study in the following does not have this very general form. In fact, we
need a model which allows some, but not all possible high-energy processes in order to
study whether these effects are captured correctly by cRPA method 2. Therefore, we can
introduce some simplifications. The most important one is choosing the vα,α′(q) to be
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independent of k and k′. Doing so, we can redefine α and n̂α(q):

α = (n,m) (3.18)

n̂α(q) =
1√
L

∑
k

γ†n,kγm,k+q (3.19)

With this notation, all equations of the more general case remain valid for our toy model,
but the final step of the calculation, the integration, is much easier, since the number
of the integration parameters zα,α′ is reduced substantially. Furthermore, we attribute
the same interaction strength to processes which are similar with respect to the involved
particles, neglecting processes involving mainly particles of the host bands:

v1(q) ≡ v2222(q),

v2(q) ≡ v222n(q) = vm222(q),

v′2(q) ≡ v22n2(q) = v2m22(q),

v3(q) ≡ v22nm(q) = vn′m′22(q),

v4(q) ≡ v2nm2(q) = vn′22m′(q),

v′4(q) ≡ v2n2m(q) = vn′2m′2(q),

vnmn′m′(q) = v2nmn′(q) = vn2mn′(q) = vnm2n′(q) = vnmn′2(q) = 0 (3.20)

with n,m, n′,m′ 6= 2. Finally, we pay attention to the q-dependance of the interaction.
Since we deal with spinless fermions, there is no on-site interaction. Within one chain,
we therefore have only nearest neighbor interaction, which leads to a q dependence of
the cosine-type. In contrast, interaction between different chains might affect nearest
neighbors and next-nearest neighbors, so creates an additional constant term. Due to
the localization of the bands, v1(q) is determined by the interaction on the central chain,
so the cosine term should be dominant. As for the other interaction parameters, both
intra-chain and inter-chain interaction are relevant. Therefore, it is reasonable to choose

v1(q)

v1

= 2 cos(q),
v2(q)

v2

=
v′2(q)

v′2
=
v3(q)

v3

=
v4(q)

v4

=
v′4(q)

v′4
= u+ 2 cos(q). (3.21)

So we have one parameter vn for each type of interaction and an additional parameter u,
which controls the relative strength of the nearest neighbor interaction between different
chains.

3.2.1 Susceptibility

Having defined the full Hamiltonian, we can calculate the effective interaction via the sus-
ceptibilities χ0,α,α′ . Their definition differs from the one of cRPA method 1 (see eq. (2.79)):

χ0,α,α′(q, τ) =
1

L

∑
k,k′

〈T̂ γ†n,k(τ)γm,k−q(τ)γ†n′,k′(0)γm′,k′+q(0)〉0

=
1

L

∑
k

δn,m′δm,n′e
τ(En(k+q)−Em(k))f(En(k + q))(1− f(Em(k))) (3.22)
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with τ > 0. If we do the Fourier transformation of χ0,α,α′(q, τ), we get

χ0,α,α′(q,Ωm) =
1

L

∑
k

δn,m′δm,n′
f(Em(k))− f(En(k + q))

iΩm + En(k + q)− Em(k)
. (3.23)

Due to the two Kronecker deltas, most of the susceptibilities χ0,α,α′(q,Ωm) vanish. In order
to only consider the non-vanishing susceptibilities, we introduce the following notation:

χm,n(q,Ωm) =
1

L

∑
k

f(Em(k))− f(En(k + q))

iΩm + En(k + q)− Em(k)
(3.24)

Using the integration scheme of cRPA method 2, we obtain the additional effective inter-
action:

veff(q,Ωm) = v2(q)2χ̃2(q,Ωm) + v2(q)v′2(q)χ̃′2(q,Ωm) + v′2(q)2χ̃′′2(q,Ωm) + v3(q)2χ̃3(q,Ωm)

(3.25)

χ̃2(q,Ωm) =
χ′n,2(q,Ωm)(1 + v4(q)χ′2,n(q,Ωm))

(1 + v4(q)χ′2,n(q,Ωm))(1 + v4(q)χ′n,2(q,Ωm))− v′4(q)2χ′2,n(q,Ωm)χ′n,2(q,Ωm)

(3.26)

χ̃′2(q,Ωm) =
−2v′4(q)χ′2,n(q,Ωm)χ′n,2(q,Ωm)

(1 + v4(q)χ′2,n(q,Ωm))(1 + v4(q)χ′n,2(q,Ωm))− v′4(q)2χ′2,n(q,Ωm)χ′n,2(q,Ωm)

(3.27)

χ̃′′2(q,Ωm) =
χ′2,n(q,Ωm)(1 + v4(q)χ′n,2(q,Ωm))

(1 + v4(q)χ′2,n(q,Ωm))(1 + v4(q)χ′n,2(q,Ωm))− v′4(q)2χ′2,n(q,Ωm)χ′n,2(q,Ωm)

(3.28)

χ̃3(q,Ωm) =

6=2∑
n,m

χn,m(q,Ωm) (3.29)

with χ′2,n(q,Ω) = χ2,1(q,Ω) + χ2,3(q,Ω), χ′n,2(q,Ω) = χ1,2(q,Ω) + χ3,2(q,Ω). According

to ĤI , more interaction processes are possible compared to the model we used for cRPA
method 1. veff(q,Ωm), which should represent all the high-energy processes, is therefore
much more complicated. Nevertheless, we can understand the single contributions. Let
us consider the term v3(q)2χ̃3(q,Ωm) first. The interaction process represented by v3(q)
either excites an electron and a hole from the target band to the host bands or reverses
such excitations. The contribution of this excitation is given by χ̃3(q,Ωm). Thus, the
complete expression v3(q)2χ̃3(q,Ωm) contains the creation of this excitation, expressed by
v3(q), the intermediate state, expressed by χ̃3(q,Ωm), and its annihilation, expressed by
v3(q) again. This term is relatively simple, since ĤI does not allow other interactions
of this particle-hole excitation. However, if the intermediate state consists of an excited
electron and hole, with one of them in the target band, the situation is different. Such
excitations, which are related to the interaction parameters v2(q) and v′2(q), can interact
with excitations of the same type via processes represented by v4(q) and v′4(q). In this
way, chains of interactions arise which lead to the denominators as a typical result of a
RPA method. Further details of this calculation are given in the appendix, section A.4.

42



Numerical test of cRPA method 2

3.2.2 Numerical results

For the test of cRPA method 2, we again use the real frequencies Ω. Compared to section
3.1, we choose a similar parameter set, but destroy the symmetry between the host bands:
We set β = 10, µ1 = −4, µ3 = 3, µ2 = 0, t1 = −t3 = −0.5, t2 = 1 and t⊥ = 0.1. The re-
sulting band structure is shown in fig. 3.5. According to eq. (2.61), we can use arguments

Figure 3.5: Band structure of the three-band model with µ1 = −4, µ3 = 3, µ2 = 0,
t1 = −t3 = −0.5, t2 = 1 and t⊥ = 0.1

about the orders of magnitude of the interaction parameters which are similar to our con-
siderations on the susceptibilities in subsection 3.1.3. Let us assume that the interaction
parameters originally stem from a strong nearest neighbor interaction, weak next-nearest
neighbor interaction, both between different chains, and a weak nearest neighbor interac-
tion within one chain. Therefore, it is reasonable to choose v2 = 0.2, v′2 = 0.1, v3 = 0.8,
v4 = 0.02, v′4 = 0.01 and u = 10 for the interaction Hamiltonian. Computing veff(q,−iΩ)
with this parameter set, we get the following result (see fig. 3.6): There are three differ-
ent features, the dominant one appearing at the highest frequencies. In contrast to the
effective interaction calculated by cRPA method 1, no low-energy contribution is visible.
This confirms our expectation to only capture the high-energy processes concerning the
host bands.

It seems plausible that the three structures of veff(q,−iΩ) are related to the three dif-
ferent types of excitations, involving either the target band and one of the host bands
or both host bands. We check this assumption by computing the single contributions
to the effective interaction, χ̃2(q,−iΩ), χ̃′2(q,−iΩ), χ̃′′2(q,−iΩ) and χ̃3(q,−iΩ). Accord-
ing to the definitions of these expressions in eqs. (3.25)-(3.29), χ̃2(q,−iΩ) corresponds
to a particle-hole excitation of the bands E2(k) and E3(k). This is in agreement with
the relevant frequency range from Ω = 2 to Ω = 6 and its momentum dependence (see
fig. 3.7(a)). The most important contribution between Ω = 4 and Ω = 6 is caused by
excitation between parallel parts of both bands, as explained in subsection 3.1.2. If we
compare χ̃2(q,−iΩ) to the total effective interaction, we find that this feature appears in
both cases. For χ̃′′2(q,−iΩ), the situation is very similar. Here, we see the influence of
excitations concerning the target band E2(k) and the host band E1(k). The structure is
nearly identical, but shifted by a momentum ∆q = π, since t1 = −t3, and also shifted
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Figure 3.6: Imaginary part of veff(q,−iΩ)

towards higher frequencies, since |µ1| > |µ3| (see fig. 3.7(b)). Again, only the most promi-
nent feature of χ̃′′2(q,−iΩ) is visible in fig. 3.6. Both possible types of processes, which
involve the target band and one of the host bands, are relevant for χ̃′2(q,−iΩ). Therefore,
its structure contains both of the corresponding features (see fig. 3.8(a)). The effect of
the above contributions to veff(q,−iΩ) is relatively small due to the numerical value of the
corresponding interaction parameters. χ̃2(q,−iΩ) and χ̃′′2(q,−iΩ) enter veff(q,−iΩ) with
the prefactors v2(q)2 and v′2(q)2, respectively. Both are smaller than v3(q) and since the
interaction parameters have to be squared, this difference has a great influence. Therefore,
the main contribution to the effective interaction stems from χ̃3(q,−iΩ). This expression
which captures the excitations between both host bands is shown in fig. 3.8(b). Its maxi-
mum is at Ω = 7, and q = π, since E1(k) and E3(k+π) are nearly parallel with an energy
difference ∆E = 7. Due to the bandwidth of these bands, the frequencies for possible
particle-hole excitations range from Ω = 5 to Ω = 9.

Overall, these results meet our expectations. The effective interaction calculated by
cRPA method 2 really contains the high-energy processes related to the host bands. In
contrast to cRPA method 1, we do not accidentally include excitations which actually
concern the target band, exclusively. Additionally, we have some understanding of the
correspondence between single terms of the interaction Hamiltonian and the contributions
to the effective interaction. With this affirmation and this knowledge, we can use this
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(a) Imaginary part of χ̃2(q,−iΩ) (b) Imaginary part of χ̃′′
2(q,−iΩ)

Figure 3.7: Contributions to the effective interaction

(a) Imaginary part of χ̃′
2(q,−iΩ) (b) Imaginary part of χ̃3(q,−iΩ)

Figure 3.8: Contributions to the effective interaction

method to further analyze the three-band model.

3.3 cRPA and ctQMC study

So far, all our considerations were related to the high-energy physical processes, as it is
the second step of a cRPA method to include them into an effective low-energy model.
In order to study the three-band model, we need an additional method, which solves the
effective low-energy model. In our case, this method is the continuous time Quantum
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Monte Carlo (ctQMC), which will shortly be discussed in the following subsection.
Starting from the three-band model, the effective model generated by cRPA method 2

is a t-V model with an additional interaction term

S = S0 + v1

∑
i

∫ β

0

dτ n̂i(τ)n̂i+1(τ)− λ
∑
i,j

∫ β

0

dτ

∫ β

0

dτ ′ n̂i(τ)veff(i− j, τ − τ ′)n̂j(τ ′).

(3.30)

In the standard t-V model, S0 is related to a hopping Hamiltonian of neighboring sites

ĤtV,0 = −t
∑
i

(
c†ici+1 + c†i+1ci

)
, (3.31)

whereas in this context, S0 stems from the target band of the non-interacting Hamiltonian.
The second term is just the nearest neighbor interaction of the target band, as indicated
by the prefactor v1. The last term is the additional contribution of the host bands we
get from the cRPA. We introduce the prefactor λ in order to have a single parameter by
which we can easily switch the additional effective interaction on and off. Effectively, the
variation of λ corresponds to the variation of the interaction parameters v2, v′2 and v3.

Before we present our own results of this model, which includes the effective interaction
term, we shortly discuss the standard t-V model. It is a well studied model, particularly
as it is related to spin models [21, 22]. As long as the interaction is small, for |V

t
| < 2,

the system is a Luttinger liquid [23]. For attractive interaction, pairing fluctuations are
dominant, whereas for repulsive interaction, charge fluctuations dominate. However, if the
interaction is stronger than this value, different phases emerge: At V

t
= −2, the system

undergoes a first-order phase transition to a phase separated state for all band fillings,
while for V

t
> 2, the system is in a charge density wave phase [24]. So the value of the

interaction parameter relative to the hopping determines the system properties and it is
crucial whether the interaction corresponds to attraction or repulsion. This finding is
important for our study of the three-band model, since we add effective interaction terms,
which could be either attractive or repulsive.

3.3.1 Continuous time Quantum Monte Carlo

For the study of the low-energy effective model we use ctQMC. We briefly present the
basic ideas of QMC [25] and ctQMC, following the description of Gull et al. [26]. In
many cases, the central problem for the numerical calculation of physical porperties is the
evaluation of sums or integrals over a multidimensional phase space C. For example, if we
consider the partition function, we have to deal with an expression

Z =

∫
C

dx p(x) (3.32)

with p(x) being the Boltzmann weight of a certain configuration x ∈ C. Similarly, the
expectation value of an observable O is

〈O〉 =
1

Z

∫
C

dxO(x)p(x). (3.33)
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In a Monte Carlo simulation, only M states xn of the full configuration space C are
selected, each with probability p(xn)

Z
:

〈O〉MC ≡
1

M

M∑
n=1

O(xn) (3.34)

Due to the central limit theorem, the Monte Carlo result approximates the exact value
for large M [27]. The sampling of the integrals is performed using the configurations xn
generated by a Markov process. The probability of a direct transition from configuration
x to configuration y is denoted by Wxy, all these probabilities of all transitions form the
transition matrix. Since Wxy are the transition probabilities, they have to fulfill∑

y

Wxy = 1. (3.35)

Furthermore, there are two necessary properties of the Markov process: Firstly, it has to
be ergodic, which means that any configuration y can be reached starting from any other
configuration x in a finite number of steps. Secondly, stationarity of the distribution p(x)
requires balance, i.e. ∫

C
dxWxyp(x) = p(y) (3.36)

As an alternative sufficient, but not necessary condition, one commonly uses the detailed
balance condition:

Wxy

Wyx

=
p(y)

p(x)
(3.37)

In order to satisfy detailed balance, the Metropolis-Hastings algorithm distinguishes be-
tween the proposal and acceptance of a transition from state x to state y:

Wxy = W prop
xy W acc

xy (3.38)

Detailed balance is satisfied, if the acceptance probability is taken as

W acc
xy = min

[
1,
p(y)W prop

yx

p(x)W prop
xy

]
. (3.39)

If the proposed configuration y is rejected, x is used again, otherwise we switch to y.
Repeating this procedure of proposing an update, accepting or rejecting it and measuring
the observables, we get the Monte Carlo expectation value.

After this outline of the essential ideas of the Monte Carlo method, we present the
corresponding properties of ctQMC method we used. The general form of the partition
function

Z = Tr

(
T̂ e−βĤA exp

(
−
∫ β

0

dτ ĤB(τ)

))
=
∑
n

(−1)n
∫ β

0

dτ1 . . .

∫ β

τn−1

dτn Tr
(
e−βĤAĤB(τn)× · · · × ĤB(τ1)

)
(3.40)
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is a useful starting point for ctQMC. The convergence of the series is guaranteed by the
finiteness of the number of states, which is a particular property of fermionic systems [28].
We can apply the Monte Carlo method to eq. 3.40, by identifying the configurations x of
eq. (3.32) with x = (n, (τ1, . . . , τn), γ). This means, we sample over all expansion orders
n, all times τ1, . . . , τn and all possible diagrams formed by the n vertices related to ĤB,
which is denoted by γ. Therefore, γ can include the topology of a diagram as well as other
discrete variables like spin, orbital or lattice indices. In our case, ĤB is the interaction
part of the Hamiltonian. However, eq. (3.40) contains a possible problem, namely the
factor (−1)n: Up to now, we assumed that we sum and integrate probabilities, which
means positive numbers. Here, we see that this is not the case for all contributions. In
fact, negative signs appear frequently for fermionic systems, since fermionic operators an-
ticommute. Sampling over the absolute value and reweighing the measurements according
to this new probability distribution does not solve the sign problem. The crucial point is
the possible counterbalance of positive and negative terms which leads to exponentially
growing errors. In our case, we can solve the problem by introducing an auxiliary Ising
spin field s. Apart from a trivial constant, we do not change the action which enters the
partition function, if we rewrite eq. (3.30) as

S = S0 +
∑
i,s

∫ β

0

dτ
v1

2

(
n̂i −

1

2
− sδ

)(
n̂i+1 −

1

2
+ sδ

)

−
∑
i,j,s

∫ β

0

dτ

∫ β

0

dτ ′
Ueff

2
p(i− j, τ − τ ′)Ii−j,τ−τ ′×(
n̂i(τ)− 1

2
+ Ii−j,τ−τ ′sδ

)(
n̂j(τ

′)− 1

2
+ sδ

)
(3.41)

with

Ueff = λ
∑
i

∫ β

0

dτ |veff(i, τ)|, p(i, τ) = λ
|veff(i, τ)|
Ueff

and Ii,τ = sgn(veff(i, τ)). (3.42)

Using δ > 1
2

and assuming v1 > 0, the sign problem is absent: For the first term, the
product containing the densities is always negative, independent of the actual occupation
and the Ising spin s. The negative sign cancels the global minus sign of the action. As
for the second term, the argument is the same for negative Ii−j,τ−τ ′ , whereas for positive
Ii−j,τ−τ ′ , both density terms have the same sign.

The quantities we measure in the ctQMC simulation are the density-density correlation
functions

N(q) =
∑
r

eiqr〈n̂rn̂0〉 (3.43)

and the pairing correlation functions,

P (q) =
∑
r

eiqr〈∆†r∆0〉 (3.44)

with ∆†r = c†rc
†
r+1. This enables us to study the charge and pairing fluctuations which

react to the repulsive or attractive effect of the effective interaction. This definition of
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N(q) and P (q) is similar to the usual one, but there is one difference: Since we deal with
spinless fermions, we use neighboring electrons instead of electrons on the same site with
opposite spin [29].

In order to satisfy the ergodicity condition, we need two different types of updates
which increase or decrease the order n, i.e. add or remove a vertex, respectively. In
principle, additional update rules can be used which may improve the efficieny of the
method, but they are not necessary. Since we have two different interaction terms, the
target band interaction and the effective interaction, we need updates for both of the
corresponding vertices. The proposition probability for the addition of a vertex related
to target band interaction is p1 and p2 = 1 − p1 for an effective interaction vertex. The
complete proposition probability for a special vertex of the first type is

W prop
ΓnΓn+1

= p1
dτn+1

2Lβ
. (3.45)

Here, we have the factors 2 for the Ising spin, L for the lattice site and β
dτn+1

for the point
in imaginary time. For the inverse process, so the removal of a vertex, we only have to
chose one of the n+ 1 existing vertices, so the proposition probability is

W prop
Γn+1Γn

=
1

n+ 1
. (3.46)

In order to calculate the acceptance probability, we need the ratio of the weight of both
configurations, with and without the additional vertex. This ratio is given by

p(Γn+1)

p(Γn)
=
v1dτn+1 det(M(Γn+1))

2 det(M(Γn))
, (3.47)

since the calculation of the trace leads to the determinant of matrices M containing
Green’s functions of the non-interacting system, which depend on the time indices given
by the vertices [30]. Using these expressions and eq. (3.39), we obtain the acceptance
probability:

W acc
ΓnΓn+1

= min

[
1,

Lβv1det(M(Γn+1))

p1(n+ 1)det(M(Γn))

]
(3.48)

In particular, this result shows that the infinitesimal formulation of the procedure, which
is due to the continuity of the imaginary time, does not create problems: The infinites-
imal time steps appearing in the proposition probability are cancelled by the additional
infinitesimal of the configuration weight. For the inverse process, we only have to in-
terchange the configuration indices. Therefore, the acceptance probability of a removal
process is

W acc
Γn+1Γn = min

[
1,
p1(n+ 1)det(M(Γn))

Lβv1det(M(Γn+1))

]
. (3.49)

Similar considerations are necessary for the second possible vertex, the effective interaction
term. For the proposition of a special vertex, the spatial and temporal difference of the
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interacting density operators has to be chosen. With this additional probability factor
p(i− j, τ − τ ′), the complete proposition probability reads

W prop
ΓnΓn+1

= p2
dτn+1

2Lβ
p(i− j, τ − τ ′). (3.50)

The proposition probability for the vertex removing update is again given by eq. (3.46),
since we did not specify the type of the removed vertex. The ratio of the weight for the
configuration before and after the vertex addition is given by

p(Γn+1)

p(Γn)
=
Ueffp(i− j, τ − τ ′)dτn+1 det(M(Γn+1))

2 det(M(Γn))
. (3.51)

If we bring together all these terms, we get the acceptance probability for adding an
effective interaction vertex:

W acc
ΓnΓn+1

= min

[
1,
LβUeffdet(M(Γn+1))

p2(n+ 1)det(M(Γn))

]
(3.52)

In order to calculate the acceptance probability of the corresponding removal update,
we again only need the inverse of the fracture. Having defined all the proposition and
acceptance probabilities, we have all necessary information for the implementation of the
ctQMC code.

3.3.2 Dynamical screening

Before we present our results of the three-band model, we discuss in some more detail
which effects can be expected. In particular, the sign structure of the effective interaction
is important for the ctQMC simulation. Moreover, we know that the solution of the t-V
model depends on the attractive or repulsive character of the interaction. Therefore, the
central question is, whether the additional interaction term is an effective attraction or
repulsion. In order to answer this question, we consider an effective interaction

veff(q, τ) =
1

β

∑
Ωm

eiΩmτ
∫

dΩ
N(q,Ω)

Ω− iΩm

(3.53)

which is determined by excitations of the following form:

N(q,Ω) = δ(Ω(q)− Ω)− δ(−Ω(q)− Ω), Ω(q) =
√
w2(1− cos(q −Q0)) + ∆2 (3.54)

Similar to the veff we computed in subsection 3.2.2, we have a dominant structure depend-
ing on momentum q and energy Ω. The lowest energy at which excitation can happen is
given by ∆, the corresponding momentum transfer is Q0. With these specifications, we
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calculate the effective interaction in real space for 0 < τ < β:

veff(r, τ) =
1

N

∑
q

e−iqrveff(q, τ)

=
1

Nβ

∑
q,Ωm

e−iqr+iΩmτ
(

1

Ω(q)− iΩm

+
1

Ω(q) + iΩm

)

=
1

N

∑
q

e−iqr
(

eΩ(q)τ

eβΩ(q) − 1
− e−Ω(q)τ

e−βΩ(q) − 1

)
=

1

N

∑
q

e−iqr
(
e−Ω(q)(β−τ)

1− e−βΩ(q)
+

e−Ω(q)τ

1− e−βΩ(q)

)
(3.55)

Since Ω(q) is always positive, the denominators are approximately equal to 1 for reasonably
large β and the main contributions for τ > β

2
stem from the first term, for τ < β

2
from

the second one. Let us consider the latter case, with τ being not to small, so roughly
1 < τ < β

2
. Within this range, the contributions with the lowest values of Ω(q) are

dominant, due to the exponential functions. We therefore apply a Taylor expansion of
Ω(q) around Q0 up to second order:

Ω(q) ≈ ∆ +
w2(q −Q0)2

4∆
(3.56)

Using this expansion to calculate veff(r, τ), we can extend the integration over q in order
to finally obtain a Gaussian integral. Doing so, we get the approximate relation

veff(r, τ) ∝ exp

(
iQ0r − τ∆− r2∆

τw2

)
. (3.57)

This result yields several predictions concerning the effective interaction. The most re-
markable one is that the momentum transfer of the excitation at the lowest energy de-
termines its sign: For Q0 = 0, we expect veff(r, τ) to be generally attractive, whereas
for Q0 = π, we expect it to be repulsive for odd neighbors, but attractive for even ones.
Particularly, this affects the nearest neighbor interaction, which determines the behavior
of the original model. As a consequence, the system can be driven towards one or the
opposite phase in the phase diagram, depending on Q0. Of course, there is some uncer-
tainty of this conclusion: The approximation is not valid for small τ and if τ and r are
large, veff(r, τ) is quite small, which is also indicated by eq. (3.57). It is therefore only in
the intermediate range where our finding plays an important role.

In order to check whether the indicated dependence of the system on Q0 holds in spite
of these objections, we solved the t-V model using the above effective interaction veff(r, τ)
with t = 1, v1 = 1, w = 1, ∆ = 1 and β = 10 at half filling, both for Q0 = 0 and Q0 = π.
Comparing the results for both cases, we actually find opposite effects on the original
model (see fig. 3.9). For Q0 = π, the density-density correlation function N(q) has a very
explicit peak at q = π, which is a sign that the system is driven towards the formation
of a charge density wave. In contrast, the maximum is less pronounced for Q0 = 0 than
for the case without the effective interaction. Q0 = π and Q0 = 0 also have opposed

51



Three-band model

 0

 0.5

 1

 0  1  2  3  4  5  6

q

N(q),  V/t = 1, n=0.5, v=1, ∆ = 1, β = 10 

λ=4, Q0=0 
λ=4, Q0=π 

λ = 0 

(a) Density-density correlation functions
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(b) Pairing correlation functions

Figure 3.9: Simulation of the t-V model with the additional effective interaction veff . Black
diamonds denote the original model without veff , while red triangles and blue diamonds
denote veff with Q0 = 0 and Q0 = π, respectively.

effects if we compare the results of the pairing correlation function P (q): There is a clear
decrease in the first case, whereas P (q) is slightly increased in the second case. This
confirms our expectations about the influence of Q0. Since veff has a structure similar to
the effective interaction we calculated numerically, we should find it in the results of the
three-band model as well. As we have already shown, we understand the relation between
the band structure and the effective interaction fairly well. As a consequence, we can use
the dependence on Q0 in order to consciously influence the results of the t-V model by
the application of different band structures. In connection with real materials, this means
that we would be able to change the properties of one chain of atoms via the interaction
with additional chains, if these have appropriate properties and our cRPA description
turns out to be correct. This imaginable procedure is what we call engineering effective
models.

3.3.3 Engineering effective models

With regard to a theoretical model, our understanding of the t-V model and the cRPA
contribution of the host bands enables us to modify the physics of the target band without
changing the corresponding target band parameters directly. In this sense, engineering an
effective model means that we move the target band in one or the other direction of the
phase diagram by varying the interaction between host and target band or the structure
of the host bands. As we have seen, the momentum transfer Q0 of the excitation at
lowest energy is crucial. We again choose interaction parameters that are dominated by
host band excitations, whereas excitations that involve the target band play a minor role.
Therefore, we compare two different band structures: For the first one, we get Q0 = π,
since the minimum and the maximum of the host bands have this momentum difference.
For the second one, both host bands have two different minima and maxima, so we have
two possible values of Q0, Q0 = 0 and Q0 = π (see fig. 3.10). We will refer to them as
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(a) Band structure 1 (b) Band structure 2

Figure 3.10: Band structures which allow lowest energy excitations with Q0 = π, exclu-
sively, and with both Q0 = π and Q0 = 0

band structure 1 and band structure 2, respectively. Starting from the three-band model,
we get band structure 1 by choosing the hopping parameters t1 = 0.52, t2 = 1, t3 = 0.48,
t⊥ = 0.1 and the chemical potentials µ1 = −1.14, µ2 = 0 and µ3 = 1.06. Due to the
difference of the chemical potentials and the small inter-chain hopping parameter t⊥, all
bands are nearly sinusoidal and the energy gap between the host bands is about 0.2. For
band structure 2, we set t1 = −t2 = t3 = −1, t⊥ = 0.1 and µ1 = µ2 = µ3 = 0. Due to this
specific choice, there is an explicit analytical expression for the bands:

E1(k) = −
√

cos(k)2 + 2t2⊥, E2(k) = cos(k), E3(k) =
√

cos(k)2 + 2t2⊥ (3.58)

So the target band is exactly sinusoidal and the energy gap between the host bands is
2
√

2t⊥. Consequently, the target band structure is very similar in both cases, aside from
a phase shift of π. The energy range of the host bands is also comparable.

While the parameters of the non-interacting Hamiltonian have to be very different in
order to create the two different band structures, we choose the same interaction param-
eters in order to be able to compare the results. We adopt the values of subsection 3.2.2
v2 = 0.2, v′2 = 0.1, v3 = 0.8, v4 = 0.02 and v′4 = 0.01, since we argued that they are
quite reasonable. Furthermore, we choose again u = 10 for band structure 1, but u = 2
for band structure 2. The parameter u determines the relative strength of the nearest
neighbor interaction between different chains, so one could imagine that its value is varied
in real systems, for example by changing the geometry. The reason why we use different
values of u here is that due to the momentum dependence of the interaction parameters
u+2 cos(q), contributions at q = π can be weakend. For the first band structure we do not
want this to happen, since this is the only possible type of low-energy excitation. How-
ever, for the second band structure, this weakening is rather helpful, since the contrast
between both cases should be enhanced, if we suppress the q = π excitations here.

The numerical results of the effective interaction using these parameters and inverse
temperature β = 20 are shown in fig. 3.11. We again use real frequencies Ω and consider
the effective interaction in momentum space, since this enables us to easily connect its
features to the respective band structure. As we intended, veff(q,−iΩ) of band structure 1
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(a) Band structure 1 (b) Band structure 2

Figure 3.11: Effective interaction veff(q,−iΩ) at β = 20

has a low lying peak at q = π. Comparing veff(q,−iΩ) to the band structure, we again find,
that the dominant contribution stems from excitation between the host bands. However,
there are some features which are due to other processes: At higher frequencies there are
two curves we can ascribe to excitations involving the target band and one host band.
Besides, there are two additional feature at low frequencies. They can be attributed to
thermal effects of the host bands, since the energy distance to the Fermi level is relatively
small at β = 20. If we go to lower temperatures, these features disappear and the peak
at q = π is the only remaining low-energy feature.

For band structure 2, veff(q,−iΩ) is rather different, but it can be explained using the
same arguments as before. veff(q,−iΩ) has the intended low-energy peak at q = 0, whereas
the second peak at q = π is clearly suppressed by the cosine term of the interaction. Again,
there is a faint feature at low frequencies, which stems from thermal excitations of the
host bands. It is less clear than the corresponding feature for band structure 1, since the
distance to the Fermi level is larger. The magnitude of veff(q,−iΩ) differs as well, but
this effect can be attributed to the smaller value of u.

Studying the effective interaction as a function of real frequencies Ω and momentum q
can help to identify the essential physical processes. However, it is veff(r, τ) which enters
the ctQMC calculation and in addition, veff(r, τ) directly shows the attractive or repulsive
effect. As it was indicated by eq. (3.57), a low lying q = π excitation leads to alternating
sign of the interaction, whereas a low-energy q = 0 peak leads to attraction. The numerical
results of veff(r, τ) for band structure 1 and 2 with system size N = 24 confirms this
expectation (see fig. 3.12). For τ ≈ 0 and τ ≈ β, eq. (3.57) is not a good approximation,
since in these cases, high-energy contributions are nearly as important as low-energy
contributions. Therefore, the momentum dependence of the effective interaction does not
stem from the band structure but from the momentum dependence of the interaction
parameters, which is given by u + 2 cos(q). According to eq. (3.25), we always have to
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(a) Band structure 1 (b) Band structure 2

Figure 3.12: Effective interaction veff(r, τ) at β = 20 with system size N = 24

deal with square interaction terms as prefactors to the effective interaction. Thus, we
approximately get veff(r = 0, τ = 0) ∝ u2 + 2, veff(r = 1, τ = 0) ∝ 2u and likewise for
τ = β and r = 23, respectively. These contributions dominate, especially for the on-site
interaction at r = 0. The effective interaction is slightly negative for all sites with a
larger distance than the next-nearest neighbor, since we omit the addition of the constant
q = 0 term, according to our model Hamiltonian. These observations hold for veff(r, τ)
of both band structures. However, the most important insight we get from fig. 3.12 is
the confirmation that veff(r, τ) can either be basically attractive or have alternating sign.
This behavior is restricted to intermediate time differences τ and to sufficiently near
neighbors. In this case, the maximal distance is about r = 5. The influence of the nearest
neighbors is essential, so the effects we found in the previous subsection should reappear
for the three-band model, even though they might be weakened as a consequence of this
restrictions.

3.3.4 ctQMC results

In the previous subsection, we saw how different host band structures translate into dif-
ferent effective interactions veff(r, τ). Now, we use the resulting veff(r, τ) to analyze the
behavior of the three-band model with the ctQMC method. First, we consider band struc-
ture 1 again with the same interaction parameters. However, since the absolute value of
the effective interaction gets quite large, which handicaps the ctQMC code, we choose
the prefactor λ = 0.25, to scale down the complete effective interaction term. The results
of the density-density correlation functions N(q) and the pairing correlation functions
P (q) for inverse temperatures β = 10 and β = 20 are shown in fig. 3.13: Similar to the
idealized case in subsection 3.3.2 the maximum of N(q) at q = π is increased, though
not as dramatically. Additionally, this effect is enhanced if the temperature is lowered.
We can ascribe this to the thermal effects we observed in fig. 3.11. Due to the relatively
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(a) Density-density correlation functions (b) Pairing correlation functions

Figure 3.13: ctQMC results for band structure 1 without effective interaction (black) and
with effective interaction at β = 10 (purple) and β = 20 (blue)

small energy distance of the host bands to the Fermi level, intra-host band excitations
are possible. These lead to additional low-energy features of the effective interaction at
q = 0. As a consequence, the repulsive effect of the q = π excitations is weakened. For
lower temperatures, these thermal contributions are less important and the repulsive effect
gets clearer. The same consideration holds for the pairing correlation functions P (q): As
expected, the high values of the pairing correlation functions around q = 0 are lowered.
Again, the effect is stronger for lower temperatures. Overall, these results indicate that
the system is driven towards the charge density wave phase.

If we try to amplify the influence of the host bands, one method is to lower the temper-
ature. However, this would increase the numerical effort to solve the model. Furthermore,
this procedure should lead to a saturation when the temperature is low enough, so that
thermal effects are negligible. We therefore choose another method, namely reducing the
energy gap between the host bands. According to eq. (3.57), the damping of the effec-
tive interaction for high τ and r is less important for smaller band gaps ∆. Another
consequence of a smaller band gap is the enhancement of the thermal excitations. For
this reason, we cannot see the strongest possible effect of reducing ∆, since this would
require very low temperatures. For the band structure we use now and which we call
band structure 3, we choose the chemical potentials µ1 = −1.09, µ2 = 0, µ3 = 1.01 and
the same hopping parameters as for band structure 2, i.e. t1 = 0.52, t2 = 1, t3 = 0.48 and
t⊥ = 0.1. The band structure is very similar to band structure 1, except for the energy
gap between the host bands, which is about 0.1 here (see fig. 3.14). For the interaction
terms, we again use v2 = 0.2, v′2 = 0.1, v3 = 0.8, v4 = 0.02, v′4 = 0.01, u = 10 and
λ = 0.25. The corresponding ctQMC results are shown in fig. 3.15 for β = 10 and β = 20.
Both the density-density correlation function N(q) and the pairing correlation function
indicate an effective increase of the repulsive interaction. Comparing fig. 3.13 and fig. 3.15,
the enhancement of the host band influence due to the reduced band gap is visible. The
differences from the λ = 0 case, i.e. the simple t-V model are larger for band structure 3.
Furthermore, lowering the temperature has a stronger effect for a smaller band gap, since
the suppression of thermal excitations is more important in this case. As a consequence,
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Figure 3.14: Band structure 3, with µ1 = −1.09, µ2 = 0, µ3 = 1.01, t1 = 0.52, t2 = 1,
t3 = −0.48 and t⊥ = 0.1

(a) Density-density correlation functions (b) Pairing correlation functions

Figure 3.15: ctQMC results for band structure 3 without effective interaction (black) and
with effective interaction at β = 10 (purple) and β = 20 (blue)

we expect a much higher effect for even lower temperatures.
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4 Conclusion

We presented and tested two different cRPA schemes based on a path integal method.
The basic ideas of the cRPA is the transformation of a multi-band model to a low-energy
effective model. The first scheme, cRPA method 1, uses the localization of bands. After
the Hubbard-Stratonovich transformation of the partition function we expand the action
around the saddle point up to second order. This procedure eliminates all density opera-
tors n̂ and is equivalent to the RPA method. Subsequently, we integrated out the auxiliary
fields related to high-energy processes and identified the effective interaction as coupling
of the remaining low energy auxiliary fields. However, for cRPA method 1 two problems
turned out to create objectionable low-energy contributions: In the model we used, the
localization is not perfect and generally, we always need an overlap with the target band.
Therefore, target band interaction is always reincluded through the back door within this
formulation.

For cRPA method 2, we again used the Hubbard-Stratonovich transformed partition
function as a starting point. In order to not include target band processes, we decoupled
them from the high-energy processes involving host bands before we expanded the action.
According to our experience with cRPA method 1, we based the attribution to high-energy
or low-energy processes on the density operators n̂ instead of using the auxiliary fields.
The decoupling is no exact property of the considered models, so we introduced a second
approximation additional to the RPA of the host bands. This method turned out to avoid
the problems of cRPA method 1, so we used it for our further studies.

We considered a model describing three atom chains. Using cRPA method 2, this model
is transformed to a t-V model with an additional effective interaction. This effective
interaction contains both temporal and spacial fluctuation and we were able to explain
its dominant features by the structure of the host bands. We found that a low-energy
excitation leads to an additional repulsion of nearest neighbors if the momentum transfer
is q = π, whereas vanishing momentum transfer leads to an effective attraction. This
enables us to ”design” an effective interaction of the target band by the manipulation of
the host band structure, a procedure we called ”engineering effective models”.

In order to solve the low-energy model, we used a ctQMC method. We focused on the
influence of the low energy q = π excitations and confirmed their anti-screening effect. We
found that the influence of the host bands is increased if they come closer to the Fermi level,
but further studies would be required in order to find out the relevant energy scale for this
behavior. Another important issue for future work is a test of accuracy of the presented
cRPA method. There are two possible error sources: Firstly, the RPA of the high-energy
bands, which is a well-known and widely used method, and secondly, the decoupling of the
high-energy processes from low-energy processes. If the distance of the band gaps from
the Fermi level is large, these approximations should be irrelevant, since this improves
the decoupling and diminishes the contribution of the host band interaction. However,
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in the considered models the host bands are energetically close to the Fermi level, so it
is still necessary to check the appropriateness of the cRPA method. For this purpose, it
would be useful to compare our results to exact solutions of the three-band model. Further
question of future studies arise from the application of this cRPA method to more realistic
models. Within this work, we used model parameters, which we assumed to be reasonable,
but it is possible to compute them for real materials from first principles. In particular,
the interaction term can be calculated starting from the Coulomb interaction expression.
Using such realistic models, one could study the prospects and limitations of the proposed
engineering procedure for real materials. Furthermore, an extension of the cRPA scheme
and the three-band model in order to include the spin would be desirable.
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A Detailed calculations

A.1 Commutation of n̂n(q)

We prove the commutation of densities n̂n(q) using their definition, given in eq. (2.4), and
the transformation of the Wannier operators, given in eq. (3.6):

[n̂n(q), n̂m(q′)] =
1

L

∑
k,k′

[c†n,kcn,k+q, c
†
n,k′cn,k′+q′ ]

=
1

L

∑
k,k′

∑
α,α′

∑
β,β′

U †nα(k)Uα′n(k + q)U †mβ(k′)Uβ′m(k′ + q′)[γ†α,kγα′,k+q, γ
†
β,k′γβ′,k′+q′ ]

=
1

L

∑
α,α′

(∑
k,β′

U †nα(k)Uα′n(k + q)U †mα′(k + q)Uβ′m(k + q + q′)γ†α,kγβ′,k+q+q′

−
∑
k′,β

U †nα(k′ + q′)Uα′n(k′ + q′ + q)U †mβ(k′)Uαm(k′ + q′)γ†β,k′γα′,k′+q′+q

)

=
1

L

∑
k,α,β

(
δnmU

†
nα(k)Uβm(k + q + q′)γ†α,kγβ,k+q+q′

−δnmUαn(k + q′ + q)U †mβ(k)γ†β,kγα,k+q′+q

)
=

1

L
δnm

∑
k

(c†n,kcm,k+q+q′ − c
†
m,kcn,k+q′+q) = 0 (A.1)
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A.2 Commutation of the integration sequence

We want to show that we can change the sequence of the auxiliary field integration
without affecting the result of the effective interaction. As we have seen in subsection
2.1.4, one integration step leads to a prefactor and an effective renormalization of the
remaining susceptibilities (see eq. (2.56)). In order to compare the different integration

sequences, we introduce a new notation: We write χ
(n′m′,ñm̃)
nm to indicate that zn′,m′ , z̄n′,m′

and zñ,m̃, z̄ñ,m̃ have already been integrated out. Every further integration step is denoted
by the corresponding pair of indices of the auxiliary field being integrated out. We consider
the susceptibility χ

(α)
nm, where an arbitrary combination of integrations has already be

performed, as indicated by α. If we now integrate zn′,m′ , z̄n′,m′ and subsequently zñ,m̃, z̄ñ,m̃,
we get the following prefactors:(

1

1 + vn′m′χ
(α)
n′m′

)(
1

1 + vñm̃χ
(α,n′m′)
ñm̃

)
=

1(
1 + vn′m′χ

(α)
n′m′

)(
1 + vñm̃χ

(α)
ñm̃

)
− vñm̃vn′m′χ(α)

ñm′χ
(α)
n′m̃

=

(
1

1 + vñm̃χ
(α)
ñm̃

)(
1

1 + vn′m′χ
(α,ñm̃)
n′m′

)
(A.2)

This proves that we obtain the same prefactor if the integration sequence is interchanged.
Let us check whether this commutation is also possible for the second term, the redefined

susceptibility χ
(α,n′m′,ñm̃)
nm :

χ(α,n′m′,ñm̃)
nm = χ(α,n′m′)

nm − vñm̃χ
(α,n′m′)
nm̃ χ

(α),n′m′

ñm

1 + vñm̃χ
(α,n′m′)
ñm̃

= χ(α)
nm −

vn′m′χ
(α)
nm′χ

(α)
n′m

1 + vn′m′χ
(α)
n′m′

−
vñm̃χ

(α)
nm̃χ

(α)
ñm

(
1 + vn′m′χ

(α)
n′m′

)2

+ vñm̃v
2
n′m′χ

(α)
nm′χ

(α)
n′m̃χ

(α)
ñm′χ

(α)
n′m((

1 + vñm̃χ
(α)
ñm̃

)(
1 + vn′m′χ

(α)
n′m′

)
− vñm̃vn′m′χ(α)

n′m̃χ
(α)
ñm′

)(
1 + vn′m′χ

(α)
n′m′

)
+

vñm̃vn′m′
(
χ

(α)
nm′χ

(α)
n′m̃χ

(α)
ñm + χ

(α)
nm̃χ

(α)
ñm′χ

(α)
n′m

)(
1 + vn′m′χ

(α)
n′m′

)
((

1 + vñm̃χ
(α)
ñm̃

)(
1 + vn′m′χ

(α)
n′m′

)
− vñm̃vn′m′χ(α)

n′m̃χ
(α)
ñm′

)(
1 + vn′m′χ

(α)
n′m′

)
= χ(α)

nm −
vn′m′χ

(α)
nm′χ

(α)
n′m + vñm̃χ

(α)
nm̃χ

(α)
ñm(

1 + vñm̃χ
(α)
ñm̃

)(
1 + vn′m′χ

(α)
n′m′

)
− vñm̃vn′m′χ(α)

n′m̃χ
(α)
ñm′

−
vn′m′vñm̃

(
χ

(α)
nm′χ

(α)
n′mχ

(α)
ñm̃ + χ

(α)
nm̃χ

(α)
ñmχ

(α)
n′m′

)
(

1 + vñm̃χ
(α)
ñm̃

)(
1 + vn′m′χ

(α)
n′m′

)
− vñm̃vn′m′χ(α)

n′m̃χ
(α)
ñm′

+
vn′m′vñm̃

(
χ

(α)
nm′χ

(α)
n′m̃χ

(α)
ñm + χ

(α)
nm̃χ

(α)
ñm′χ

(α)
n′m

)
(

1 + vñm̃χ
(α)
ñm̃

)(
1 + vn′m′χ

(α)
n′m′

)
− vñm̃vn′m′χ(α)

n′m̃χ
(α)
ñm′

(A.3)
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This expression stays exactly the same, if we interchange the indices n′,m′ and ñ, m̃.
Therefore, we can conclude

χ(α,n′m′,ñm̃)
nm = χ(α,ñm̃,n′m′)

nm . (A.4)

For both terms, the integration sequence is commutative, as expected. Though there are
many ways of implementing our integration scheme, its result is unambiguous.
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A.3 Commutation of n̂α(q)

We have to show that ∑
α,α′

vα,α′(q)[n̂α(q), n̂α′(−q)] = 0. (A.5)

This means that the sum over all densities commutes, although the single densities n̂α(q)
in general do not, according to eq. (2.63). In order to prove this, we need eq. (2.63) and
the definition of vα,α′(q), given in eq. (2.61):

L
∑
α,α′

vα,α′(q)[n̂α(q), n̂α′(−q)]

=
∑
n,m,k

∑
n′,m′,k′

vnmn′m′kk′(q)(γ
†
n,kγm′,kδm,n′δk′,k+q − γ†n′,k′γm,k′δm′,nδk,k′−q)

=
∑
l,n,m

∑
k,l′,m′

vl,l′(q)U
†
ln(k)Uml(k + q)U †l′m(k + q)Um′l′(k)γ†n,kγm′,k

−
∑
l,n,m

∑
k,l′,n′

vl,l′(q)U
†
ln(k)Uml(k + q)U †l′n′(k + q)Unl′(k)γ†n′,k+qγm,k+q

=
∑
l,n,m′

∑
k

vl,l(q)U
†
ln(k)Um′l(k)γ†n,kγm′,k

−
∑
l,m,n′

∑
k

vl,l(q)Uml(k + q)U †ln′(k + q)γ†n′,k+qγm,k+q

= 0 (A.6)
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A.4 Effective interaction using cRPA method 2

In subsection 3.2.1, we briefly discussed the analytical expression of the effective interac-
tion veff(q,Ωm) (see eq. (3.25)-(3.29)). Here, we will justify this result more explicitely. We
have seen that the additional terms leading to the effective interaction have the following
structure: Starting from the target band, an interaction process causes an excited state.
This state can be excited again by a subsequent interaction process to a new state, and
so forth. Finally, we have to end up on the target band again. These processes generate
all contributions taken into account by the RPA scheme. In order to get veff(q,Ωm), we
simply multiply the factors vα,α′(q) corresponding to the interactions and χαα′(q,Ωm) cor-
responding to the intermediate excited states and sum up the contributions of all possible
processes with the correct sign. Since this procedure leads to infinite sums over equal
processes, geometrical series appear and we can use [31]

∞∑
i=0

xi =
1

1− x
. (A.7)

Here, we consider the first term of veff(q,Ωm), given in eq. (3.26). All contributions of
this term contain two interaction processes corresponding to v2(q). Bearing in mind the
definition of v2(q), we conclude that this contribution consists of all processes, where
the first interaction creates a hole in the target band and an electron in the host band,
whereas the last interaction has the inverse effect. In order to get χ̃2, we have to sum
up all possible processes that can take place in between. The first possible process is the
creation of a different electron and a different hole, related to the interaction parameter
v4(q). The second possible process is the annihilation of the hole and the electron, together
with the creation of an electron in the target band and a hole in a host band. For this
process, the corresponding interaction parameter is v′4(q). However, since the type of the
last interaction is given by v2(q), this process has to be reversed, before all electrons and
holes are annihilated. Both types of processes can happen infinitely often and since every
interaction leads to an additional minus sign, the full expression for χ̃2 reads

χ̃2 =

χ′n,2

∞∑
i1=0

(
−v4χ

′
n,2

)i1 ∞∑
i0=0

((
−v′4χ′2,n

)( ∞∑
i2=0

(
−v4χ

′
2,n

)i2)(−v′4χ′n,2)
(
∞∑
i3=0

(
−v4χ

′
n,2

)i3))i0

.

(A.8)

Using the formula for geometrical series, we get:

χ̃2 =
χ′n,2

1 + v4χ′n,2

∞∑
i0=0

(
v′ 24 χ

′
2,nχ

′
n,2(

1 + v4χ′2,n
) (

1 + v4χ′n,2
))i0

=
χ′n,2

1 + v4χ′n,2

(
1 + v4χ

′
2,n

) (
1 + v4χ

′
n,2

)(
1 + v4χ′2,n

) (
1 + v4χ′n,2

)
− v′ 24 χ

′
2,nχ

′
n,2

=
χ′n,2(1 + v4χ

′
2,n)

(1 + v4χ′2,n)(1 + v4χ′n,2)− v′ 24 χ
′
2,nχ

′
n,2

(A.9)
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This is exactly the expression of χ̃2 in eq. (3.26). The calculation for χ̃′2 and χ̃′′2 is very
similar, whereas the last term is a simple special case due to our choice of the interaction
parameters, as we already mentioned in subsection 3.2.1.
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B Deutsche Zusammenfassung

In dieser Masterarbeit stellen wir zwei auf Pfadintegralen basierende cRPA-Methoden
vor, welche wir anschließend zur Lösung eines Drei-Band-Modells nutzen. Die Grund-
idee der cRPA-Methode ist folgende: Für Korrelationseffekte besitzen die Beiträge der
niederenergetischen Bänder eine größere Relevanz als die der hochenergetischen Bän-
der, aber dennoch sollen letztere nicht komplett vernachlässigt werden. Daher ist es
sinnvoll eine aufwendige, aber genaue Lösungsmethode für die niederenergetischen Bän-
der zu verwenden, während die hochenergetischen Bänder nur unter Anwendung einer
vergleichsweise groben Näherung berücksichtigt werden. Dazu wird die Lösung eines
Modells in drei Schritte zerlegt: Erstens, die Berechnung der vollständigen Bandstruktur,
zweitens, die Vereinfachung des ursprünglichen Modells zu einem effektiven Modell für die
niederenergetischen Bänder, das den Einfluss der hochenergetischen Bänder in Form eines
zusätzlichen Wechselwirkungsterms beinhaltet, und drittens, das Lösen des so erhaltenen
effektiven Modells.

Die Herangehensweise, die wir in dieser Arbeit verfolgen, ist ganz analog: Die Aus-
gangsbandstruktur ergibt sich aus dem wechselwirkungsfreien Teil des Hamiltonoperators
und das effektive Modell lösen wir mit einer ctQMC-Methode. Für den dazwischen-
liegenden Schritt, die Reduzierung des vollständigen Modells auf das effektive Modell,
präsentieren wir zwei Möglichkeiten. Die erste Methode ist konstruiert für Systeme, die
lokalisierte Bänder besitzen. Wir nutzen die Lokalisierung, indem wir die Zuordnung
der Bänder zum hochenergetischen oder niederenergetischen Bereich auf Grundlage der
räumlichen Indizes treffen. Nach der Hubbard-Stratonovich-Transformation der Zustands-
summe und anschließender Taylor-Entwicklung der Wirkung bis zu zweiter Ordnung um
den paramagnetischen Sattelpunkt integrieren wir diejenigen Hilfsfelder aus, die wir dem
Hochenergiebereich zuordnen. Dem übrig bleibenden Ausdruck können wir daraufhin
den zusätzlichen Wechselwirkungsterm des effektiven Modells entnehmen. Es zeigt sich
jedoch, dass diese Vorgehensweise ungeeignet ist, weil sie dazu führt, dass die effektive
Wechselwirkung auch niederenergetische Anteile enthält, die folglich zweimal im effek-
tiven Modell berücksichtigt werden. Dies liegt in der mangelhaften Zuschreibung der
Größen zum entsprechenden Energiebereich begründet, was einerseits der unvollständi-
gen Lokalisierung der Bänder im untersuchten Modell, andererseits der Betrachtung der
Hilfsfelder anstelle der Dichteoperatoren zuzuschreiben ist.

Dieser Mangel wurde in der Ausgestaltung der zweiten cRPA-Methode behoben. Wir
beginnen wieder mit der Hubbard-Stratonovich-Transformation der Zustandssumme, doch
zerlegen diesmal die Wirkung anhand der Bandindizes der Dichteoperatoren in einen
niederenergetischen und einen hochenergetischen Anteil. Dadurch führen wir eine weitere
Näherung ein, die jedoch gerechtfertigt ist, solange die Energiedifferenz zwischen beiden
Energiebereichen ausreichend groß ist. Anschließend verwenden wir erneut die Talyor-
Entwicklung um den paramagnetischen Sattelpunkt, allerdings nur für den hochenergeti-
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schen Teil der Wirkung. Das Resultat ist wieder ein Gaußscher Ausdruck, sodass die
Hubbard-Stratonovich-Transformation einfach rückgängig gemacht werden kann. Diese
Vorgehensweise garantiert, dass das Ergebnis der Rücktransformation nur noch Ope-
ratoren enthält, die dem niederenergetischen Band zuordenbar sind. Die Operatoren
stammen aus dem niederenergetischen Anteil der Wirkung, der die ursprüngliche Wech-
selwirkung dieses Bandes exakt reproduziert. Dies ist nicht überraschend, da wir an
ihm keine weiteren Näherungen vorgenommen haben. Zusätzlich beinhaltet dieser Anteil
aber auch die Kopplung der niederenergetischen Dichteoperatoren an Hilfsfelder, die eine
Verbindung zu den hochenergetischen Prozessen herstellen, welche im hochenergetischen
Anteil der Wirkung enthalten sind und aufgrund unserer Näherungen auf dem RPA-
Niveau berücksichtigt werden. Durch die Integration der Hilfsfelder entsteht aus diesen
Beiträgen erneut ein zusätzlicher Wechselwirkungsterm, der sowohl vom räumlichen Ab-
stand als auch der Differenz der imaginären Zeit der wechselwirkenden Fermionen abhängt.
Im Gegensatz zur vorangegangenen Methode ergeben sich hier keine Probleme durch die
unbeabsichtigte Einbindung von niederenergetischen Beiträgen in diese effektive Wechsel-
wirkung.

Wir wenden die zweite cRPA-Methode auf ein Modell für spinlose Fermionen auf drei
Atomketten an. Hierbei besitzt jede Kette ein eigenes chemisches Potential und wir er-
lauben Hüpfen auf den Ketten ebenso wie Hüpfen zwischen den äußeren Ketten und
der mittleren Kette. Indem wir das chemische Potential für die äußeren Atomketten
ausreichend positiv beziehungsweise ausreichend negativ und für die mittlere Atomkette
gleich Null wählen, stellen wir sicher, dass nur ein Band das Ferminiveau schneidet. Damit
sind die Bänder zudem weitgehend auf den entsprechenden Atomketten lokalisiert. Zusätz-
lich berücksichtigen wir eine Wechselwirkung, die im Wesentlichen nächste Nachbar-
und übernächste Nachbar-Prozesse umfasst und hauptsächlich, aber nicht ausschließlich,
das niederenergetische Band betrifft. Unter Verwendung der cRPA-Methode berech-
nen wir aus diesem Modell das effektive Modell, also die zusätzliche, effektive Wech-
selwirkung. Das resultierende Model ist das bereits bekannte t-V -Modell, ergänzt um den
effektiven Wechselwirkungsterm. Dieses Model führt für schwache Wechselwirkung auf
eine Luttinger-Flüssigkeit, für stärkere, repulsive Wechselwirkung gibt es einen Peierls-
Übergang zu einer Ladungsdichtewelle. Um den Einfluss der effektiven Wechselwirkung
auf dieses System herauszufinden, untersuchen wir zunächst deren Zusammenhang mit
der Ausgangsbandstruktur. Es zeigt sich, dass wir diesen Zusammenhang unter Berück-
sichtigung der möglichen Teilchen-Loch-Anregungen gut verstehen können. Außerdem
ergeben theoretische Betrachtungen, dass zwei Fälle zu unterscheiden sind: Für Band-
strukturen, die eine niederenergetische Anregung mit einem Impulsübertrag q = 0 er-
möglichen, ist ein attraktiver Beitrag durch die effektive Wechselwirkung zu erwarten, was
dem gewöhnlichen Abschirmungseffekt entspricht. Wird durch die Bandstruktur hingegen
eine niederenergetische Anregung mit einem Impulsübertrag q = π bevorzugt, ist dieser
Beitrag repulsiv, die Wechselwirkung wird durch den Einfluss der hochenergetischen Bän-
der also sogar verstärkt. Die ctQMC-Resultate für das effektive Modell bestätigen diese
Erwartung: Im (q=π)-Fall finden wir deutliche Hinweise für eine verstärkte Tendenz des
Systems hin zur Ladungsdichtewelle. Dieser Effekt nimmt zu, wenn die Energielücke
zwischen den hochenergetischen Bändern verringert wird, wird aber durch thermische
Anregungen in diesen Bändern abgeschwächt, falls diese dem Fermi-Niveau zu nahe kom-
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men.
Das bemerkenswerte Ergebnis, dass durch die Wahl der Bandstruktur sowohl Abschir-

mung als auch der gegenteilige Effekt, sozusagen Anti-Abschirmung, verursacht werden
können, deutet darauf hin, dass eine willkürliche Einflussnahme auf die Wechselwirkung
des niederenergetischen Bandes möglich ist. Im betrachteten eindimensionalen Fall könnte
so etwa durch Hinzufügen von äußeren Atomketten mit passenden Eigenschaften bewusst
auf das physikalische Verhalten der mittleren Kette zugegriffen werden. Um die Reali-
sierbarkeit dieser Vorstellung zu prüfen, muss sich die Eignung unserer cRPA-Methode
für realistische Systeme noch weiter bestätigen. Zu diesem Zweck wäre eine Erweiterung
der Methode und des Models auf Fermionen mit Spin wünschenswert. Weiterhin könn-
te im Rahmen der cRPA-Methode ein realistischerer Wechselwirkungsterm direkt aus
einem Coulomb-Ausdruck berechnet werden, um damit zu prüfen, ob dieser zu einer Fa-
vorisierung der Abschirmung oder der Anti-Abschirmung führt. Schließlich ist auch die
Genauigkeit der cRPA-Methode zu klären, denn um einen deutlichen Einfluß der effek-
tiven Wechselwirkung zu erhalten müssen die hochenergetischen Bänder relativ nahe am
Fermi-Niveau liegen. Dadurch ist allerdings die Angemessenheit der Aufteilung in hochen-
ergetische und niederenergetische Prozesse nicht mehr garantiert. Eine exakte Lösung des
Drei-Band-Modells zum Vergleich mit den cRPA-Resultaten wäre hierfür aufschlussreich.
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