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A B S T R A C T

We apply the weak-coupling diagrammatic determinantal continuous-time quantum
Monte Carlo method to the single impurity Anderson model. A modern and efficient
C++ program is devised, implemented and, consecutively, thoroughly tested. The
accuracy and reliability of the program is verified. The code is used for the study of
the formation of local moments and of the Kondo effect. To this end, thermodynamic
as well as dynamic properties – the latter extracted with the Maximum Entropy
method – are measured over temperature and for different impurity energy levels. A
local moment is seen to arise at intermediate temperatures. At a very low temperature
the Kondo effect emerges. Varying the impurity levels over the bandwidth of the host
metal, the local moment regime is identified, its breakdown observed and discussed.

Z U S A M M E N FA S S U N G

Wir benutzen die diagrammatische, in der Zeit kontinuierliche Quanten-Monte-Carlo-
Methode für die Untersuchung des einfachen Anderson-Störstellenmodells. Dazu
wurde ein modernes und effizientes C++-Programm entworfen, implementiert und
anschließend auf Mark und Knochen getestet. Die Genauigkeit und Zuverlässigkeit
des Programms ward verifiziert. Es fand dann Anwendung bei der Untersuchung der
Ausbildung von lokalen magnetischen Momenten, sowie des Kondo-Effekts. Thermo-
dynamische wie auch dynamische Größen – letztere gewonnen durch die Methode
der maximalen Entropie – wurden über die Temperatur und für verschiedene Störstel-
lenniveaus gemessen. Bei nicht zu hohen Temperaturen bildet sich ein lokales Moment
aus. Bei sehr tiefen Temperaturen kann der Kondo-Effekt beobachtet werden. Die
Niveaus der Störstelle über die ganze Bandbreite des Gastsystems variierend, sind
wir in der Lage, das Regime des lokalen Moments zu identifizieren, und auch das
Zerfallen desselben zu beobachten.
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1
I N T R O D U C T I O N

The formation of local moments was first studied by P. W. Anderson in 1961 [1]. It
was around the same time that experimentalists had related anomalies observed at
low temperatures in various metals to a dilute concentration of impurities in those
systems. The impurities were seen to carry a local magnetic moment, contributing a
Curie-Weiss term to the magnetic susceptibility. One striking aspect of the anomalous
behaviour was a minimum in resistivity. In contrast, the conventional Mathiessen’s
rule suggests a monotone decline of the resistivity as the temperature is lowered.
Naturally, the desire to understand these exciting phenomena sparked interest in
the nature and formation of the local moment of the impurities. Before Anderson,
impurities in a metallic host were mainly treated as scattering potentials. Friedel
had shown in the fifties that such a potential within the conduction band of the
host system would lead to highly localised states – “virtual bound” states. Anderson
approached the problem from a different direction. He modelled the impurity as a
near-atomic state that would hybridise with the states of the host system. By including
an on-site Coulomb-interaction term for the impurity he was able to derive a criterion
for the local moment formation employing a Hartree-Fock approximation. His model
was to become known as the single impurity Anderson model, short SIAM.

The s-d model takes another approach to the solute impurity problem. In contrast
to the Anderson model it explicitly presumes the presence of a local moment and
models the interaction between the impurity and host metal as a spin-spin Heisenberg
exchange interaction. Treating this model to third order perturbation theory, in 1964

Kondo was able to explain the resistance minimum that had hitherto puzzled the
community. This was a great success. Another outcome of an extended perturbative
treatment of the s-d model was the Curie-Weiss behaviour for the susceptibility
observed in experiment. However, Kondo’s explanation had a very pronounced draw-
back: As a result of the perturbative nature of his method, the resistivity, susceptibility
and other quantities diverged at low temperatures. Kondo’s original results diverged
at a temperature of zero, but a refined calculation showed that the divergence already
happens at a finite tempertature – the Kondo temperature. The challenge to find a
satisfactory theory for the low temperature behaviour became the Kondo problem. It
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2 introduction

was again Anderson who worked out a first clue at a possible solution by the end of
the sixties. He introduced the idea of scaling to the Kondo problem. His “Poor man’s
scaling approach” [2] successively integrates out high-energy excitations to obtain an
effective low-energy model. Although his treatment, being perturbative, could not be
carried out to very low temperatures, Anderson forecast that the coupling between
impurity and bath would increase indefinitely. As it had been established earlier that
the coupling was antiferromagnetic in nature, this would consequently lead to an
entangled spin-singlet state which effectively screens the spin of the impurity.

K. G. Wilson built on Anderson’s scaling ideas. He applied his newly developed
numerical Renormalization Group method to the Kondo problem in the early sev-
enties and was not only able to confirm Anderson’s qualitative assertions, but was
also the first to obtain definite quantitative results for the low temperature regime.
Although some exciting developments were to follow later on, for example the exact
solutions via the Bethe ansatz, with Wilson’s results an understanding of the Kondo
problem was basically established. For one of the first times did the heavy reliance
on numerical and computational resources provide the key to the understanding of a
physical problem.

Another numerical, but quite different approach to the impurity problem was
proposed by J. E. Hirsch and R. M. Fye in 1986 [3]. It is a fermionic Quantum Monte
Carlo algorithm and became known – not altogether surprising – as the Hirsch-Fye
method. To this day it is one of the most popular methods for the numerical treatment
of impurities. The Hirsch-Fye approach discretises the imaginary time and evokes a
Trotter decomposition to cast the partition function into a suitable form, introducing
a systematic error. It then employs a discrete Hubbard-Stratonovich transformation
[4] to decouple the interaction term. Finally, the configuration space of the auxiliary
fields is sampled with a Monte Carlo procedure. Apart from the systematic error,
the time discretisation may become a problem at low temperature by itself. In this
regime, the Green’s function, one of the primary quantities of interest, often varies
strongly over imaginary time. To resolve the delicate features of the function a finer
discretisation is required. However, a better time discretisation becomes very costly
computationally.

In 2005 A. N. Rubtsov et al. proposed a new method, the diagrammatic determi-
nantal Quantum Monte Carlo method, short DDQMC [5]. Alternatively, the method is
sometimes simply referred to as CTQMC (continuous-time QMC), accounting for the
important fact that the method is continuous in the imaginary time. Thus it avoids
the systematic error of the Hirsch-Fye approach and is exact within the numerical
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precision limits. Moreover, it does not resort to the Hubbard-Stratonovich transfor-
mation and therefore, in principle, does not rely on auxiliary fields. Practically, in
most common cases a static or dynamic Ising field is introduced to keep the sign
problem at bay. The DDQMC method is simple. Following common perturbation
theory, the partition function is expanded in orders of the interaction parameter and
Wick’s theorem is applied. Each order can be represented diagrammatically. The
DDQMC method directly takes all vertices of a given order and casts them into a
determinantal form. The determinant is identified as the weight of the configuration.
The partition function may then be sampled stochastically, summing up all diagrams
of the expansion. The DDQMC method is very flexible. It is applicable to a wide array
of problems, the one and two dimensional Hubbard models as well as the Anderson
model being popular examples. Originally developed in the weak-coupling limit, it
can readily be reformulated for the strong-coupling case. For an impurity problem
this means the expansion in the hybridisation instead of the interaction parameter [6].
The method has been extended to real times, using a Keldysh formalism, allowing
for the study of non-equilibrium physics [7].

Methods to tackle impurity problems have seen an upsurge with the development
of the dynamical mean-field theory (DMFT) in the 90s [8]. This approach maps a lattice
model to an impurity problem and is exact in the limit of infinite dimensionality.
The impurity model is solved with an effective bath hybridisation, which has to be
calculated self-consistently. In recent years the DMFT method has been used extensively
for the study of strongly correlated electron systems. One of the most popular choices
for a numerical impurity solver for DMFT is the Hirsch-Fye algorithm. However, with
the availability of the DDQMC method, this new approach has become a viable and
often even preferable choice as an impurity solver as well (see, for an example, [9]).

In this thesis we set out to implement the DDQMC method from scratch. We cast the
algorithm into a modern, efficient and well-tested C++ code. The Anderson model
is implemented to investigate a single impurity in a host metal. We are particularly
interested in the formation of the local moment. To this end the double occupancy, the
spin susceptibility and the Green’s function are measured over a wide temperature
range. Furthermore, the impurity levels are shifted from the lower to the upper
band edge of the host metal, at a fixed temperature. From the calculated Green’s
function the spectral function is extracted by means of the Maximum Entropy method.
Spectral functions provide a most intuitive picture of the physical processes. At low
temperatures we observe the Kondo effect. As already the formation of the local
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moment, the development of the Kondo effect and its signature imprints on the
calculated observables are of particular interest.

In the first chapter the weak-coupling DDQMC algorithm is laid out in a very generic
way. The physical ideas, the Monte Carlo procedure and some simple mathematical
tricks to speed up the algorithm are discussed in detail. A few words about the
practical implementation of the method conclude the chapter. The Anderson model
is presented in the succeeding chapter. After physically motivating the complete
Hamiltonian, the local hybridisation approximation simplifies the model. Then the
application of the DDQMC method to the Anderson model is discussed at length. A
short excursion to the model and selected observables under a particle-hole transfor-
mation follows, before the s-d model is briefly stated and related to the Anderson
model. The final chapter presents the results obtained by the simulations. The careful
examination and evaluation of the measurements of the double occupancy, the spin
susceptibility and the spectral function lead up to the discussion of the emergent
physical picture.



2
T H E D I A G R A M M AT I C D E T E R M I N A N TA L Q U A N T U M M O N T E
C A R L O M E T H O D

We derive the diagrammatic determinantal quantum Monte Carlo method (DDQMC)
for a general two-particle interaction problem. To this end we first briefly revise
the time-ordered exponential as presented in standard many-body text books [10],
[11]. Subsequently, the exponential is expanded and cast into a determinantal form,
employing Wick’s theorem. Monte Carlo methods are discussed as a device to stochas-
tically evaluate the time-ordered exponential and compute the expectation value of
observables. A concrete sampling scheme is presented and after a short discussion of
the scalability, a very efficient update mechanism is derived. We conclude the chapter
with a few words about the practical implementation of the algorithm. We follow
[12] in terminology and presentation.

2.1 the time-ordered exponential

We consider a Hamiltonian

H = H0 + V =
∑
αβ

tαβc
†
αcβ +

∑
αβγδ

Uαβδγc
†
αcβc

†
γcδ (2.1)

with a non-interacting part H0 and a two-particle interaction part V . c†α creates a
fermion in orbital α, cβ annihilates a fermion in orbital β. Our long term goal is to
compute thermal expectation values of observables O(τ).

〈O(τ)〉 = Tr ρO(τ) = Tr
e−βH

Z
O(τ) (2.2)

Here ρ is the density matrix, Z = Tr e−βH the partition function and β the inverse
temperature. The imaginary time is represented by τ and −β 6 τ 6 β. The time
dependent observable O(τ) = eτHOe−τH is understood in the modified Heisenberg
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6 the diagrammatic determinantal quantum monte carlo method

picture. However, for the task at hand the interaction picture is more convenient. So
let us rewrite the expectation value

〈O(τ)〉 = Tr
e−βH

Z
eτHOe−τH

=
Z0

Z
Tr
e−βH0

Z0
eβH0e−βH eτHOe−τH

=
Z0

Z

〈
eβH0e−βH eτH e−τH0eτH0 Oe−τH0eτH0 e−τH

〉
0

=
Z0

Z
〈S(β, 0)S(0, τ)O(τ)S(τ, 0)〉0

(2.3)

where we have cast the observable to the interaction representation,O(τ) = eτH0Oe−τH0 ,
and 〈•〉0 denotes the expectation value with respect to the unperturbed system H0.
The time-evolution operator takes the form

S(τf, τi) = eτfH0e−(τf−τi)He−τiH0 (2.4)

evolving a state from the initial time τi to the final time τf. From the fundamental
property of the density matrix Tr ρ = 1 and (2.3) we immediately get an expression
for the partition function

Z

Z0
= 〈S(β, 0)〉0 . (2.5)

Thus we write for the observable

〈O(τ)〉 =
〈S(β, τ)O(τ)S(τ, 0)〉0

〈S(β, 0)〉0
. (2.6)

So far the expectation value is hardly any easier to evaluate than in the beginning.
However, we’ve reformulated the problem so that the task is now to find a computable
expression for the time-evolution operator S.

To this end we notice that, being a time-evolution operator, S fulfils the composition
property. Consequently, we can decompose every time span into an infinite number
of time slices, conceptually reminiscent of Feynman path integrals.

S(τf, τi) = S(τf, τl)S(τl, τi)

= S(τf, τn−1)S(τn−1, τn−2) . . . S(τ2, τ1)S(τ1, τi)
(2.7)
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For each infinitesimal time ∆τ = τf−τi
n with n→∞ we apply a Trotter decomposition1

to the time-evolution operator

S(τl +∆τ, τl) = eτlH0e∆τH0e−∆τ(H0+V)e−τlH0

= eτlH0e−∆τVe−τlH0 + O(∆τ2)

= e−∆τV(τl) + O(∆τ2) .

(2.8)

But if we now try to put S back together for a finite time interval we cannot proceed
further than

S(τf, τi) =
∏
τf...τi

e−∆τV(τl) , (2.9)

because the interaction parts V(τl) do not commute at different times.
This is the hour of the time ordering operator! It shall order our times τl from

earliest to latest.

T
[
c

(†)
1 (τ1)c

(†)
2 (τ2) . . . c

(†)
n (τn)

]
= εσ c

(†)
σ(1)(τσ(1)) c

(†)
σ(2)(τσ(2)) . . . c

(†)
σ(n)(τσ(n)) , (2.10)

with

τσ(1) > τσ(2) > . . . > τσ(n) .

The permutation necessary for the ordering is denoted by σ; ε is −1 or 1 for fermions
or bosons, respectively. To make the operator bullet proof we agree on the convention
that the order of concurrent creators or concurrent annihilators is preserved. Addition-
ally, for creators and annihilators acting at the same time the creator always acts after
the annihilator, c†(τ) = c†(τ+ 0+). Now the ordering is unique. With this powerful
device at hand we succeed in finding a beautiful expression for the time-evolution
operator.

S(τf, τi) =
∏
τf...τi

e−∆τV(τl)

= T
∏
τf...τi

e−∆τV(τl)

= T e−
∑
∆τV(τl)

(2.11)

1 The Trotter decomposition is e
1
m (A+B) = e

1
mAe

1
mB + O

(
1
m2

)
and may be proved straight forwardly.
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And, finally,

S(τf, τi) = T e
−

∫τf
τi

dτV(τ) . (2.12)

This is the famous time-ordered exponential! Appreciate how the time ordering
operator elegantly resolves the problem of non-communicating operators by giving
them a unique order.

Let us now have a look at the partition function and examine how the expanded
time-ordered exponential helps us to evaluate it.

Z

Z0
= 〈S(β, 0)〉0

=
∑
n

(−1)n

n!

∫β
0

dτ1 . . .
∫β
0

dτn 〈T V(τ1) . . . V(τn)〉0

=
∑
n

(−1)n
∫β
0

dτ1 . . .
∫τn−1

0
dτn

∑
1

. . .
∑
n

U1 . . . Un

·
〈
c†α1cβ1c

†
γ1
cδ1 . . . c

†
αncβnc

†
γncδn

〉
0

=
∑
Cn

(−1)nU1 . . . Un

〈
T c†α1cβ1c

†
γ1
cδ1 . . . c

†
αncβnc

†
γncδn

〉
0

(2.13)

For brevity of notation we introduced U1 = Uα1β1δ1γ1 , the sums summing over all
possible index sets, and made the times for each and every creation and annihilation
operator implicit, c†α1 = c

†
α1(τ1), et cetera. In the third line we time-ordered the opera-

tors “by hand” by choosing the integration ranges appropriately. As for each explicitly
time-ordered expression we have n! equivalent non-time-ordered expressions, we
gain a factor of n! which thus cancels. Afterwards we reintroduce the time ordering
operator artificially – it doesn’t hurt to time-order an already time-ordered expression.
Lastly, we unite all integrals and sums in the symbolic shorthand notation

∑
Cn

.
Now a time-ordered expectation value of the free system 〈T •〉0 allows for a Wick
decomposition. The expectation value is equivalent to the total pairing of all creators
and annihilators, that is, to the sum of all possible ways to combine these operators
into contractions. A contraction is defined as

c†α(τ1)cβ(τ2) =
〈
T c†α(τ1)cβ(τ2)

〉
0

= −
〈
T cβ(τ2)c

†
α(τ1)

〉
0

= G0βα(τ2 − τ1) ,

(2.14)
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with the free Green’s function G0βα(τ) which is homogeneous in time2. In most cases
we assume that the number of particles is preserved in the unperturbed system H0,
thus contractions of two creators or annihilators, respectively, are zero and need not
to be taken into account. As an example for the Wick decomposition, consider the
second order where the total pairing will be comprised of 4! addends and will look
like 〈

T c†α1cβ1c
†
γ1
cδ1c

†
α2
cβ2c

†
γ2
cδ2

〉
0

= G0β1α1G
0
δ1γ1

G0β2α2G
0
δ2γ2

−G0β2α1G
0
β1α2

G0δ1γ1G
0
δ2γ2

+ . . . .

(2.15)

Here, again, times are implicit.
Usually, this is the starting point for diagrammatic perturbation theory where we

understand the free Green’s function as a propagator and identify each possible
pairing of each order with a particular Feynman diagram. However, that is not the
route that we will pursue here. Instead we compute the Wick-decomposed expectation
value – the total pairing – by “brute force”. Consider a matrix filled with all possible
free Green’s functions.

MCn =



G0β1α1 G0β1γ1 G0β1α2 G0β1γ2 . . . G0β1αn G0β1γn

G0δ1α1 G0δ1γ1 G0δ1α2 G0δ1γ2 . . . G0δ1αn G0δ1γn

G0β2α1 G0β2γ1 G0β2α2 G0β2γ2 . . . G0β2αn G0β2γn

G0δ2α1 G0δ2γ1 G0δ2α2 G0δ2γ2 . . . G0δ2αn G0δ2γn
...

...
...

...
. . .

...
...

G0βnα1 G0βnγ1 G0βnα2 G0βnγ2 . . . G0βnαn G0βnγn

G0δnα1 G0δnγ1 G0δnα2 G0δnγ2 . . . G0δnαn G0δnγn


(2.16)

The indices of the creators label the columns, the indices of the annihilators label the
rows. It is easily, if laboriously, verified that the determinant of this matrix reproduces
the total pairing introduced above for a given set of indices and times of a given
order. We call this set a configuration Cn consisting of n vertices {α,β,γ, δ, τ}.〈

T c†α1cβ1c
†
γ1
cδ1 . . . c

†
αncβnc

†
γncδn

〉
0

= detMCn (2.17)

2 Note that usually in the literature on the DDQMC algorithm ([5], [12]) the free Green’s function is
defined as G0αβ(τ) =

〈
T c
†
α(τ1)cβ(τ2)

〉
0

. Which definition is used doesn’t matter. It just has to be used
consistently.
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Putting all together we are able to express our observable as higher dimensional
integrals of determinants over all configurations

〈O(τ)〉 =
〈S(β, τ)O(τ)S(τ, 0)〉0

〈S(β, 0)〉0

=
〈T S(β, 0)O(τ)〉0
〈S(β, 0)〉0

=

∑
Cn

(−1)nU1 . . . Un detOCn∑
Cn

(−1)nU1 . . . Un detMCn

.

(2.18)

We have introduced a second matrix OCn which is quite similar to MCn except that we
must add a column for each creator and a row for each annihilator of the observable.
For example, to calculate the full Green’s function

Gβα(τ) = −
〈
T cβ(τ)c†α(0)

〉
(2.19)

at a fixed time τ we would add a column (G0β1α(τ1),G0δ1α(τ1),G0β2α(τ2), . . .)T and a
row (G0βα1(τ− τ1),G0βγ1(τ− τ1),G0βα2(τ− τ2), . . .) to the matrix MCn to obtain OCn .

Stepping back and looking at what we’ve done so far we recognise that we have
managed to put the numerically quite abstract notion of total pairing into a readily
computable determinant of a matrix of free Green’s functions whose values we know
for every given configuration. This configuration determinant gets to the heart of the
DDQMC method. True, we’re still left with two admittedly very ugly integrals, but let
us see if we can’t tackle them with some statistical, that is, Monte Carlo methods.

2.2 a word about monte carlo methods

Generally, Monte Carlo methods encompass a vast and rather diverse set of methods
which share their statistical nature and reliance on computational resources. They
characteristically employ pseudo random numbers to “simulate” a random exper-
iment. In this section we will concern ourselves with the Monte Carlo integration
method. We shall not attempt a mathematically stringent treatment, the reader is
referred to [13] for details.

The underlying idea of Monte Carlo integration is simple.∫
dx f(x) =

∫
dxw(x)

f(x)

w(x)
=
1

N

∑
xt

f(xt)

w(xt)
(2.20)
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Here we have rewritten the integral over an arbitrary function f(x) to an integral over
a weight w(x) with w(x) > 0 and

∫
dxw(x) = 1 and the remaining part. By virtue of

the central limit theorem this integral can be approximated by a sum over xt, where
the xt follow the probability distribution w(x). The approximation will become exact
in the N→∞ limit provided that the individual xt are uncorrelated.

We can readily apply this idea to the integrals appearing in our observable,
eq. (2.18).

〈O(τ)〉 =
〈T S(β, 0)O(τ)〉0
〈S(β, 0)〉0

=

∑
Cn

(−1)nU1 . . . Un detOCn∑
Cn

(−1)nU1 . . . Un detMCn

=

∑
Cn

(−1)nU1 . . . Un detMCn ·
(

detOCn
detMCn

)
∑
Cn

(−1)nU1 . . . Un detMCn · 1

=

∑
Cn
wCn · 〈〈O〉〉Cn∑

Cn
wCn · 1

(2.21)

and we will “measure” the quantity 〈〈O〉〉Cn for a set of N configurations distributed
according to wCn . Then, as above, we approximate O by

〈O〉 =
1
N

∑N
i=1 〈〈O〉〉i

1
N

∑N
i=1 1

=
1

N

N∑
i=1

〈〈O〉〉i

(2.22)

One problem that is immediately apparent is that while we can easily normalise
wCn as it similarly appears in the numerator and denominator, it is a priori not
clear whether it is non-negative. In fact it can very well become negative. This is the
infamous sign problem of fermionic quantum Monte Carlo methods! It has to be
discussed and evaluated for each problem separately and we will see later on that it
is non-existent for the Anderson model that we employ. However, it is crucial to keep
in mind that the sign problem can be the downfall of the whole DDQMC method. That
is, if the physical problem you’re investigating exhibits the sign problem, DDQMC is
not the way to go.

Note that the sign problem does not stop us from using a Monte Carlo integration.
We can solve it formally within the context of this method by taking the absolute
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value of the weight and putting the sign of the weight into the measured observable.
Going back to equation (2.21) we write

〈O(τ)〉 =

∑
Cn
wCn · 〈〈O〉〉Cn∑

Cn
wCn · 1

=

∑
Cn

|wCn | · 〈〈O〉〉Cn∑
Cn

|wCn | · sgn(wCn)

(2.23)

where we redefined 〈〈O〉〉Cn → 〈〈O〉〉Cn · sgn(wCn) and now measure the sign sgn(wCn)

along with 〈〈O〉〉. Eq. (2.22) becomes

〈O〉 =

∑N
i=1 〈〈O〉〉i∑N
i=1 sgni

(2.24)

In the absence of the sign problem the average sign 〈sgn〉 will be one and we recover
the original formulation (2.22). In the worst case scenario we will have 〈sgn〉 ∼ 0

with maximal sign fluctuations. These fluctuations will yield a very large error for
the observable 〈O〉, effectively making the method – while still realisable – again,
worthless for the problem at hand.

We evaluate the sum in eq. (2.20), or more concretely eq. (2.23), by walking through
phase space from one configuration xt to the next configuration xt+1 in a manner
that recovers the original distribution w(x), i.e. we spend more time in the more
probable configurations. Each step shall have knowledge only about the previous one
– there’s no memory – so that the xt build a so-called Markov chain. Commonly, t
is called the Monte Carlo time and we can associate with each time t a distribution
wt(x) that attaches a probability to every configuration at this given time. Clearly
these distributions evolve with time and we describe their evolution by a transition
matrix Ty,x. The transition matrix must not be time dependent, if we do not want to
introduce a memory.

wt+1(y) =
∑
x

Ty,xwt(x) (2.25)

From the fact that wt should stay a probability distribution at all times we derive the
conditions Ty,x > 0 and

∑
y Ty,x = 1 for the transition matrix. Furthermore, it seems

reasonable to require that we should be able to reach every point in phase space, if
we want to recover our original distribution w(x). We call this property ergodicity.

Tny,x > 0 for all y, x and any n (2.26)
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When at one point in time we have reached w(x) it is surely desirable to stay within
this distribution as it is the distribution we’re aiming for. That’s our second intuitive
condition, coined stationarity.∑

x

Ty,xw(x) = w(y) (2.27)

Indeed, it can be shown [13] that with these two requirements – ergodicity and station-
arity – the Monte Carlo process will reproduce the original probability distribution
and thus also the integral in eq. (2.20) as the time goes to infinity. A condition which
is mostly equivalent to stationarity but easier to handle in practice is the detailed
balance.

Ty,xw(x) = Tx,yw(y) (2.28)

To be more precise detailed balance assures stationarity (which we verify by summing
over x in the above equation) whereas the reverse is not true in general.

Now let us embark on the task of finding a concrete transition matrix Ty,x. We try
to fulfil the two conditions ergodicity and stationarity by splitting each update step
in two parts.

Ty,x = T0y,xay,x (2.29)

First we will propose a new configuration in a way that ensures ergodicity, then we
will accept or deny this configuration so as to keep the detailed balance. In practice
we can “move” to a new configuration in a variety of ways

T0y,x =
∑
i

piT
0
i (2.30)

where we understand that each move T0i covers a part of the complete transition
matrix. Usually, we have no stringent proof that the resulting transition matrix T0y,x
really is ergodic – we just have to test it. For the DDQMC method the minimal set of
moves that has been seen to ensure ergodicity includes the addition and removal of
a vertex {τ,α,β,γ, δ}. Other possible moves are the addition or removal of multiple
vertices in one update step as well as moving a vertex in time, space (should the
indices include a space coordinate) or Ising spin (see section 3.2). As we will observe
in the next section, the pi can then be used to tune the Monte Carlo process. Of
course, we require

∑
i pi = 1.
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For each update move we have to fulfil the detailed balanced by accepting or
denying the move. The Metropolis scheme chooses the acceptance rate as

ay,x = min

(
T0x,yw(y)

T0y,xw(x)
, 1

)
. (2.31)

We confirm that the detailed balance is indeed obeyed by directly evaluating eq. (2.28)
with Ty,x = T0y,xay,x and the above ay,x.

As an example let us look at the simplest possible case, a process that only includes
the addition and removal of one vertex. Then

T0y,x = pCn+1,CnT
0
Cn+1,Cn + pCn,Cn+1

T0Cn,Cn+1
(2.32)

with

T0Cn,Cn+1
=

1

n+ 1
(2.33)

as we have to choose 1 of n+ 1 vertices for the vertex removal. For the vertex addition
move it is

T0Cn+1,Cn =
1

β

1

Nα,β,γ,δ
. (2.34)

Here we account for the fact that we have to choose a time in the range from 0 to β.
Nα,β,γ,δ denotes the number of possible index sets from which we choose one for the
newly proposed configuration. Now the acceptance rate for the addition of a vertex
will be

aCn+1,Cn = min

(
pCn,Cn+1

T0Cn,Cn+1
wCn+1

pCn+1,CnT
0
Cn+1,CnwCn

, 1

)
(2.35)

and aCn,Cn+1
accordingly.

2.3 fast updates

The DDQMC algorithm we presented so far is feature complete and in fact works. But
how efficient is it? We’ve talked a lot about configuration matrices in the preceding
chapters. We know that we have to calculate the ratio of two determinants of these
matrices for each update move and each measurement, and, frankly, calculating
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determinants can be a costly business if the matrices are not terribly small. So how
big are our configuration matrices? Each vertex corresponds to two columns and
rows in the matrix and the number of vertices of course just corresponds to the
perturbation order n of the expanded time-ordered exponential. While the definite
answer will depend largely on the model and parameters employed we can at least
get some tendencies and rough guidelines on how the perturbation order will behave.
We consider the average of the perturbation order

〈n〉 =
Z0

Z
〈S(β, 0)n〉0

=
Z0

Z

∑
n

(−1)n

n!
n

∫β
0

dτ1 . . .
∫β
0

dτn 〈V(τ1) . . . V(τn)〉0

=
Z0

Z
(−1)

∫β
0

dτ
∑
n

(−1)n

n!

∫β
0

dτ1 . . .
∫β
0

dτn 〈V(τ1) . . . V(τn)V(τ)〉0

= −

∫β
0

dτ
Z0

Z
〈T S(β, 0)V(τ)〉0

= −β 〈V〉

= −β
∑
αβγδ

Uαβδγ

〈
c†αcβc

†
γcδ

〉

(2.36)

Here we have used the fact that V is not explicitly time-dependent. Apparently,
the perturbation order scales as the inverse temperature β and is also linear in the
interaction parameters Uαβδγ. The sum also suggests – and this is true quite generally
– that n will increase with the system size. All in all, we expect the computation
to become increasingly harder for low temperatures, large interactions and large
systems.

A naïve approach to the calculation of determinants yields an order of O(n!),
however, with the help of a LU decomposition we achieve O(n3). But we can do
better! We can do better with Fast Updates. Note how the matrices whose determinants’
ratio we calculate are very similar – usually we have added, removed or changed
only a few columns and rows. The obvious idea is to exploit these similarities with
some clever matrix relations. It’s not so obvious how exactly to do it and, although
not difficult in principle, it is tricky and also a bit lengthy. The gory technical details
are in appendix A, here we only state the results of this endeavour in matrix algebra.
Again, we concentrate on the two principal update moves, the addition and removal
of a vertex, although it should be possible to find similar relations for other moves.
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Consider the two (n+ k)× (n+ k) matrices

M =

(
A B

C D

)
, M−1 =

(
P Q

R T

)
, (2.37)

made up of n×n block matrices A and P, respectively, with B, C, D as well as Q, R
and T sized accordingly. The Schur complement of the block A of matrix M is

S = D−CA−1B . (2.38)

Now the following statements hold.

detA
detM

= det T (2.39)

A−1 = P−QT−1R (2.40)
detM
detA

= detS (2.41)

M−1 =

(
A−1 +B ′S−1C ′ −B ′S−1

S−1C ′ S−1

)
(2.42)

For the last equation we’ve introduced the shorthand notation B ′ = A−1B and
C ′ = CA−1.

Say, we propose the addition of a vertex {τ,α,β,γ, δ}. Looking back at the particular
form of the configuration matrix (2.16) we see that the new matrix is just like the old
matrix, but with two additional columns and rows. We identify the old configuration
matrix MCn as A and the new matrix MCn+1

as M. The added columns and rows are
put into the (n× 2) matrix B, the (2×n) matrix C and the (2× 2) matrix D. The Schur
complement (2.38) is readily computed with the help of the old inverse configuration
matrix A−1 = M−1

Cn
. Now eq. (2.41) yields the ratio of the determinants of the new

and the old matrix and the acceptance rate (2.35) can be calculated. If the move is
accepted, the new inverse configuration matrix M−1 = M−1

Cn+1
may be obtained by

virtue of eq. (2.42).
The removal of a vertex is the reverse operation of the vertex addition. For the sake

of simplicity we assume that the vertex which is removed is the last vertex of the
configuration Cn. Thus the last two columns and rows of the configuration matrix
are to be removed. Should this not be the case, columns and rows can be swapped
accordingly, see appendix A for details. Again, we identify the old configuration
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matrix MCn+1
as M. The new configuration matrix MCn is A. It follows that eq. (2.39)

allows us to compute the acceptance rate, while eq. (2.40) calculates the new inverse
configuration matrix A−1 = M−1

Cn
.

Apparently, the knowledge of the inverse configuration matrix is sufficient for the
vertex addition and removal operations, and hence for the DDQMC method at large.
We don’t need the configuration matrix itself. Empirical investigation shows that
the inverse configuration matrix is very well-conditioned. No issues arise from the
limited numerical precision. As a result, for practical simulation run-times, there’s no
need to ever rebuild the inverse configuration matrix from scratch, that is, from the
bare configuration Cn.

Before we turn our attention to the efficiency of the Fast Update operations pre-
sented so far, let us shortly think about how we can carry out the measurement of an
observable. As an example, we consider the Green’s function Gβα(τ), eq. (2.19), again.
From eq. (2.21) we gather that for each measurement we must calculate the quantity
〈〈O(τ)〉〉Cn = detOCn(τ)/detMCn . We discussed at the end of section 2.1, that the
(time-dependent) matrix OCn(τ) is just like MCn , but for an added column and row.
As before, we apply relation (2.41), but this time around B and D are τ-dependent.
Consequently, the calculation needs to be carried out for each and every τ-point of
the Green’s function. For the measurement of observables, as already for the vertex
addition and removal, only the inverse configuration is required.

The computational complexity of (2× n)× (n× n), (1× n)× (n× n) and similar
matrix multiplications is in O(n2). Therefore, this is also the efficiency of the vertex
addition and removal operations and, related, the measurement of an observable,
as we gather from a study of the Fast Update equations (2.40), (2.41) and (2.42).
Apart from determinants of (2× 2) matrices, which are, of course, of constant order,
they only involve such matrix multiplications. A notable exception is the proposal
of a vertex removal, (2.39), that is of constant order only. Thus, proposing a vertex
removal is computationally much cheaper than proposing a vertex addition. We can
exploit this fact by tuning the proposal probabilities pCn,Cn+1

and pCn+1,Cn originally
introduced in eq. (2.30). We anticipate that it might be beneficial to propose the
removal more often than the addition of a vertex. All in all, the Fast Updates are seen
to have an upper boundary of O(n2). So compared with the simpler LU decomposition
with a complexity of O(n3) we gain one order in efficiency.

Lastly, with updates of the order O(n2) the run-time of the simulation at large will
scale as O(n3). The reason is that the “natural” time unit of a Monte Carlo simulation
process is not a single update step, but a sweep. By a sweep we understand the



18 the diagrammatic determinantal quantum monte carlo method

update of the complete configuration Cn, so roughly n update steps. Expectedly, for
a simulation with a higher average perturbation order it will take longer to update
the complete configuration once.

2.4 practical implementation

In the preceding sections we have described the physical as well as mathematical
foundation and facets of the DDQMC method in some detail. For this last section we
approach the algorithm from a more practical position, that is, from an implementer’s
point of view.

Suppose we have chosen a physical model of interest. It might be, for example,
the one or two dimensional Hubbard model, or, as in our case, the Anderson model,
which we discuss at length in the next chapter. For a given set of parameters we
will then be able to calculate the free Green’s function. The problem and system size
permitting, it will be beneficial to make a table of the free Green’s before the Monte
Carlo process is started. To this end the imaginary time and, if necessary, other vertex
indices are discretised. Obviously, the table will vastly improve the run-time of the
simulation.

We start the Monte Carlo process with an initial configuration C0n. It is convenient
to start with an empty configuration and hence a zero-size inverse configuration
matrix as well. For an update step we choose one of the implemented update moves
randomly, but according to their proposal probability pi, see (2.30). The easiest case
is to choose either the addition or removal of a vertex, each with a fifty-fifty chance.
When we are adding a vertex we draw the imaginary time τ randomly from the
range 0 to β, the inverse temperature, and similarly all other vertex indices. For
example, for a one-dimensional Hubbard model we would additionally choose a site
on the one-dimensional chain. Reversely, when we remove a vertex it is again the
random number generator that decides which vertex is to be removed. The heavy
reliance of the method on random numbers should now be apparent. Consequently,
the choice and quality of the employed pseudo random number generator deserves
some consideration. Having proposed the move, the acceptance rate is computed
following the Metropolis scheme, eq. (2.35), and using the Fast Update formulas
presented in the last section. If the move is accepted (again, by virtue of a random
number), we compute the new inverse configuration matrix and append the new
vertex to the configuration or remove the deleted vertex. Subsequently, we proceed
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to the next update step. If the move is denied, well, we leave everything as it is and
proceed to the next update step just the same.

After some updates we might decide to do a measurement of our observables.
Typical observables include the Green’s function, the perturbation order or the spin-
resolved occupancy. Of course, additional observables depend largely on the physical
problem under consideration. Also, some observables, like the perturbation order, are
simple scalar quantities while others, like the Green’s function, are functions of one or
more parameters. Not surprisingly, we will discretise these parameters. For example,
for the Green’s function a τ-discretisation of 100 or 200 values might be a common
choice. Again, we employ Fast Updates to compute the value of each observable
〈〈O〉〉Cn which we store to disk, together with the sign of the weight sgn(wCn).

Before the first measurement is carried out, though, the system warms up. That is,
we wait for the Monte Carlo process to “forget” its initial (empty) configuration. If we
introduce a Monte Carlo time that counts the number of completed updates, then the
duration of the initial warm-up phase is specified by the warm-up time. Naturally,
the warm-up phase is expected to take longer for simulations with higher average
perturbation orders. In a similar vein, for the central limit theorem to be valid, for
each observable the measured values must be statistically independent. Therefore we
usually measure only every 100 or 1000 update steps – to name some typical numbers.
Often it is sensible to subsume a couple of measurements before the value is written
to disk, so as to keep the disk usage in reasonable bounds for very large simulations.
These raw data are subsequently rebinned again, i.e. we accumulate a number of
succeeding measurements a second time, into a bin. Now the value of each bin is
considered a genuine measurement. Depending on the problem and observable as
few as 50 to 100 bins may be sufficient to yield a statistically reasonable average
value for the observable. Practically, for, say, 10 to 100 million original measurements
〈〈O〉〉Cn we are then pretty confident that the bin values are uncorrelated. If we
want to err on the side of caution, the autocorrelation of each observable has to be
calculated. The autocorrelation is expected to drop off exponentially over the Monte
Carlo time. Thus we attach an autocorrelation time to each and every observable and
by choosing the bin size much bigger than this autocorrelation time, we are dead
sure that the values of the bins are statistically uncorrelated. They are independent.
Autocorrelation times are different for different observables and as a consequence,
we could choose different intervals for the measurements and rebin the raw data
differently, as well – gaining better results for observables with shorter autocorrelation
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times. Practically, all observables are treated the same in this regard. Also, in the
common case we only check the autocorrelation occasionally.

The final value for a given observable is obtained by dividing the average of all
bins by the average measured sign, which, incidentally, we accumulated and binned
just like the observable itself, eq. (2.24). The error is conveniently calculated by means
of the Jackknife or Bootstrap methods [14].



3
T H E A N D E R S O N M O D E L

We want to describe, model and ultimatively simulate a transition metal or rare earth
ion embedded in a metallic host. Under appropriate conditions such an impurity
is seen to exhibit a local magnetic moment and, more interesting still, the Kondo
effect at low temperatures. For those systems, the outer 3d shell (transition metals,
for example Fe) or 4f shell (rare earths, for example Ce) of the impurity lies within
the conduction band of the host metal (might be, for example, Cu or Mo−Nb alloys).
Naturally, the conduction electrons are expected to scatter off the impurity ion and
thus the most straight forward way is to treat the impurity simply as a scattering
potential. Such an approach will yield a virtual bound state resonance in the density
of states of the band electrons. However, by it’s very nature the approach cannot
succeed in exposing a local moment. In 1961, Anderson set out to tackle the problem
in quite a different way [1]. He proposed the Hamiltonian

H = Hbath +Hd0 +Hd1 +HV

=
∑
kσ

εknkσ +
∑
σ

εdndσ +Und↑nd↓ +
∑
kσ

(
Vdkd

†
σckσ + Vkdc

†
kσdσ

)
. (3.1)

Here, the impurity is modelled similar to an atomic state. This is justified, because the
d or f shells tend to be very strongly localised. The energy of such a shell is εd and d†

and d create or annihilate an electron on the impurity, respectively. It is the simplest
case that we capture with the term Hd0: the singular non-degenerate orbital. Hbath
describes the host metal – the bath – the impurity is embedded in. The conduction
band electrons are created in a Bloch state |k〉 by c†k, they are annihilated by ck. Their
dispersion relation is denoted by εk. Anderson originally used a flat band assumption
for the bath, but, of course, a tight-binding approach can be employed equally. The
interplay of the impurity and the host metal is introduced by the hybridisation part
HV , also sometimes referred to as s-d interaction term. It describes the “hopping” of
electrons from a Bloch state to the localised d-state of the impurity ion and vice versa,
by virtue of the hybridisation or overlap constants Vdk and Vkd. Lastly, we include a
Coulomb-interaction on the impurity, Hd1, and only on the impurity. Here, due to
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the strong localisation of the shell, the electron-electron interaction is expected to be
large. In contrast, for the delocalised bath electrons it can be neglected.

Anderson has argued that the impurity state |d〉 and the Wannier states of the bath
|i〉 (and consequently the Bloch states of the bath |k〉) can be approximately treated as
being orthogonal. Contributing bath electrons are mostly from s or p orbitals whereas
the impurity is a d or f orbital. Thus, for symmetry reasons we expect 〈d|i〉 ∼ 0. In
that sense |d〉 and |i〉 are base kets for our problem.

The Hamiltonian of the Anderson model introduced above can be extended to
multiple impurities within a host metal and is then referred to as the periodic
Anderson model (PAM). Not surprisingly, the “simple” Hamiltonian we’re using here
is termed the single impurity Anderson model (SIAM). If we omit the interaction
term Hd1 it’s called the non-interacting Anderson model. A further distinction in
terminology is made with respect to the impurity level εd. We have the symmetric
Anderson model for εd = 0 and, conversely, the asymmetric Anderson model for
εd 6= 0. Finally, it is remarkable that the simple Hamiltonian proposed by Anderson
does not only, as expected, reproduce the virtual bound state resonance of the simple
scattering potential, but is also sufficient to expose a local moment and, as we will
see later on, the Kondo effect.

3.1 local hybridisation

We gain a physically very intuitive picture if we take the conduction band electrons
from k- to real space. Let c†i create an electron and ci annihilate an electron in a Wan-
nier state |i〉. From now on we shall consider a one-dimensional system exclusively,
where i numbers the sites of a chain and we choose periodic boundary conditions.
For the bath and hybridisation term we write

Hbath +HV =
∑
k

εknk +
∑
k

(
Vdkd

†ck + Vkdc
†
kd
)

=
∑
i,j

ti,jc
†
icj +

∑
i,j

(
Vdid

†ci + Vjdc
†
jd
)

.
(3.2)

Here we have made all spins implicit. Usually, a tight-binding approximation is
applied to the overlap integral ti,j.

ti,j = 〈i|H |j〉 δj,i±1 = 〈i|H |i± 1〉 δj,i±1 = −t δj,i±1 (3.3)
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Thus we allow only for next-neighbour hopping. In a similar spirit we assume for the
hybridisation

Vdi = 〈d|H |i〉 δi,0 = 〈d|H |0〉 δi,0 = V δi,0 , (3.4)

Vid = 〈i|H |d〉 δi,0 = 〈0|H |d〉 δi,0 = V∗ δi,0 , (3.5)

where |0〉 denotes the first site of the bath. This is the local hybridisation approxi-
mation! Note that in contrast to t which is purely real for symmetry reasons, the
hybridisation V a-priori is not. However, we can make it real by absorbing the phase
of V and V∗ into the impurity state 〈d| and |d〉 in the above equations, respectively.
Changing the phase of the d-state leaves the physics invariant, it’s a canonical trans-
formation. Now we can rewrite eq. (3.2).

Hbath +HV = −t
∑
〈i,j〉

c
†
icj + Vd

†c0 + Vc
†
0d . (3.6)

The interpretation of our Hamiltonian becomes obvious. It describes an impurity
with an adjacent bath in the form of a one-dimensional chain. In the chain electrons
can hop from one lattice site to the next with a hopping parameter t. Additionally,
we have hopping to and from the impurity with a hopping parameter V , which we
coined the hybridisation parameter. Going back to k-space, which is more convenient
for computation, we have the well-known cosine dispersion relation for the nearest-
neighbour hopping

εk = −2t cos(k) , (3.7)

using a lattice constant of unity. The hybridisation parameter becomes

Vdk = 〈d|H |k〉 =
∑
j

1√
N
eikj 〈d|H |j〉 =

1√
N
Veik·0 =

V√
N

(3.8)

Vkd = 〈k|H |d〉 =
∑
j

0√
N
e−ikj 〈j|H |d〉 =

1√
N
Ve−ik·0 =

V√
N

(3.9)

Finally, for the complete Anderson Hamiltonian we write

H = Hbath +Hd0 +Hd1 +HV

=
∑
k

εknk + εdnd +Und↑nd↓ +
V√
N

∑
k

(
d†ck + c

†
kd
)

.
(3.10)

Again, to ease notation spins are implicit unless written down explicitly.
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3.2 applying the ddqmc method

Having stated the Hamiltonian for the Anderson impurity which we want to inves-
tigate, we are now in a position to apply the DDQMC method developed in the last
chapter. We laid out the algorithm for a very general Hamiltonian of the form

H = H0 + V =
∑
αβ

tαβc
†
αcβ +

∑
αβγδ

Uαβδγc
†
αcβc

†
γcδ . (3.11)

For our Hamiltonian (3.10) we readily identify the interacting part V = Hd1 and the
non-interacting part H0 = Hbath +Hd0 +HV . In section 2.2 we noted the necessity of
checking the sign problem for each physical problem separately. Furthermore, we
observed that the sign problem can be the downfall of the DDQMC method at large.
Here we are with our particular problem. Before everything else, let us check how
the Anderson model fares with respect to the sign problem.

To this end we evaluate the weight wCn introduced in equation (2.21). Together
with eq. (2.17) and our interaction term Hd1 we write for the weight

wCn = (−1)nUn detMCn

= (−U)n
〈
T nd↑(τ1)nd↓(τ1) . . . nd↑(τn)nd↓(τn)

〉
0

.
(3.12)

Going back one step further, we remember how the weight emerged from the time-
ordered exponential, (2.12). For the Anderson impurity it becomes

〈S(β, 0)〉0 =
〈
T e−

∫β
0 dτUnd↑(τ)nd↓(τ)

〉
0

. (3.13)

As the exponential is expanded, the sign of the exponent yields the sign of the weight
wCn for each order. In our model we employ a repulsive interaction U > 0. Thus we
are pretty confident to assert that the integral∫β

0
dτUnd↑(τ)nd↓(τ) (3.14)

is positive on average. The overall sign of the exponent is negative and the sign of
the weight alternates from one order to the next. This is the worst-case sign problem.
The average sign is zero, 〈sgn〉 ∼ 0.

In an attempt to improve the situation we rewrite the Hubbard term

Hd1 = U

(
nd↑ −

1

2

)(
nd↓ −

1

2

)
. (3.15)
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This step renormalises εd, εd → εd − 1
2U, and adds a constant 14 to the Hamiltonian.

Well, constants can always be safely ignored1 and the redefinition of εd only shifts the
impurity levels. It leaves the physics untouched. Still, we have to keep the redefinition
in mind when discussing the levels of the impurity. We consider the integral in the
exponent again.∫β

0
dτU

(
nd↑(τ) −

1

2

)(
nd↓(τ) −

1

2

)
(3.16)

Now at least at half-filling where the impurity mostly carries either an up or down
spin, the integral is expected to be negative on average. Consequently, the sign of the
weight will be positive.

To get a grip on the sign problem when we’re at a different filling factor we rewrite
the interaction term a second time. We introduce a dynamical Ising field.

Hd1 =
U

2

∑
s=±1

(
nd↑ −α↑(s)

) (
nd↓ −α↓(s)

)
(3.17)

with

ασ(s) =
1

2
+ σsδ (3.18)

The original Hamiltonian is recovered apart from a constant δ2. The newly imple-
mented Ising spin is denoted by s and δ is a tunable parameter which we choose to
be δ = 0.5+ 0+. The electron spin is σ = ±1. We turn our attention to the integral a
last time.∑

s=±1

∫β
0

dτ
U

2

(
nd↑(τ) −α↑(s)

) (
nd↓(τ) −α↓(s)

)
(3.19)

It is easily verified that for all possibilities, the impurity being vacated, singly or
doubly occupied, the above expression is always negative with the aforementioned
choice of δ. Hence the sign problem effectively disappears.

Note that although the reasoning presented so far is more of a handwaving nature,
it is correct in essence. The Anderson impurity does not exhibit the sign problem.

1 Constant terms in the Hamiltonian resurface as constant factors in the partition function. Therefore
they cancel in expectation values, for example eq. (2.2), where they appear in the numerator as well as
in the denominator.
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An extended and more precise study [12] establishes the related one-dimensional
Hubbard model as another physical problem that does not suffer from a vanishing
average sign. Conversely, this is no longer the case when we go from the one-
dimensional to the two-dimensional Hubbard model, which, in general, is subject to
the sign problem.

With the newly established interaction term Hd1, let us now state the complete
Hamiltonian of the Anderson model in the form that we are putting to use for the
DDQMC algorithm.

H =
∑
kσ

εknkσ +
∑
σ

εdndσ +
V√
N

∑
kσ

(
d†σckσ + c

†
kσdσ

)
+
U

2

∑
s=±1

(
nd↑ −α↑(s)

) (
nd↓ −α↓(s)

) (3.20)

The non-interacting part of the Hamiltonian is diagonal with respect to the spin
projection, it cannot flip spins. Consequently, for the free Green’s function G0σσ ′(τ) =

−
〈
T cσ(τ)c

†
σ ′(0)

〉
0

we will have G0↑↓ = G0↓↑ = 0. Also, G0↑↑ = G0↓↓. So the free Green’s
function is basically spin independent,

G0(τ) = −
〈
T c(τ)c†(0)

〉
0

, (3.21)

and we will see how we can calculate this quantity in a minute, in the next section.
The spin-independence has a bearing on the determinant of the configuration matrix
(2.17) as well: The determinant factorises. This is easiest understood by keeping
in mind that contractions (which are precisely the free Green’s functions) between
creators and annihilators of opposite spin now vanish. Instead of one configuration
matrix we get two, one for each spin.

detMCn =
〈
T
(
n↑(τ1) −α↑(s1)

) (
n↓(τ1) −α↓(s1)

)
·

. . . ·
(
n↑(τn) −α↑(sn)

) (
n↓(τn) −α↓(sn)

)〉
0

=
〈
T
(
n↑(τ1) −α↑(s1)

)
. . .
(
n↑(τn) −α↑(sn)

)〉
0

·
〈
T
(
n↓(τ1) −α↓(s1)

)
. . .
(
n↓(τn) −α↓(sn)

)〉
0

= detMCn↑ detMCn↓

(3.22)

Notice that we do the sum over the Ising spins sl by the Monte Carlo process as well,
just as the integrals over the imaginary time. Thus for the Anderson impurity the
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configuration Cn consists of n rather simple vertices {s, τ}. The configuration matrix
takes the form

MCnσ =


G0(0) −ασ(s1) G0(τ1 − τ2) . . . G0(τ1 − τn)

G0(τ2 − τ1) G0(0) −ασ(s2) . . . G0(τ2 − τn)
...

...
. . .

...

G0(τn − τ1) G0(τn − τ2) . . . G0(0) −ασ(sn)

 . (3.23)

For the sake of completeness, we state the concrete form of the Metropolis acceptance
rates (2.31). A vertex addition move is accepted with the probability

aCn+1,Cn = min
(

−
Uβ

n+ 1

detMCn+1↑ detMCn+1↓

detMCn↑ detMCn↓
, 1
)

(3.24)

and, reversely, the acceptance rate for the removal of a vertex is

aCn,Cn+1
= min

(
−
n+ 1

Uβ

detMCn↑ detMCn↓
detMCn+1↑ detMCn+1↓

, 1
)

. (3.25)

We propose both moves with the same probability, pCn,Cn+1
= pCn+1,Cn = 1

2 .
Lastly, we note that the expectation value of the perturbation order (2.36) now

reads

〈n〉 = −βU

[〈(
nd↑ −

1

2

)(
nd↓ −

1

2

)〉
− δ2

]
(3.26)

Apparently the perturbation order depends on the parameter δ introduced above.
That’s why we choose δ as small as possible. In practice this means δ = 0.51 generally
and δ = 0.1 for εd = 0, at half-filling2.

3.3 free green’s function

For the DDQMC method we need to make a table of the free Green’s function on
the impurity, Gdd(τ) = −

〈
T d(τ)d†(0)

〉
0
. The free or non-interacting part of our

Hamiltonian is

Hni =
∑
k

εkc
†
kck + εdd

†d+
V√
N

∑
k

(
d†ck + c

†
kd
)

=
∑
i,j

Ti,jc
†
icj with |i〉 = |d〉 , |k1〉 , |k2〉 , . . . .

(3.27)

2 We cannot set δ = 0 at half-filling as the weight would then vanish for odd perturbation orders,
rendering the method useless [12].
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We can apply the Resolvent Green’s function formalism (appendix B). Eq. (B.3) states

G(iωm) = (iωm − T)−1 (3.28)

which we rewrite

(iωm − T) G(iωm) = 1 (3.29)

The matrix elements of T and G are 〈d|H |d〉, 〈d|H |k〉, 〈k|H |d〉, 〈k|H |k〉 and Gdd, Gdk,
Gkd, Gkk, respectively. This set of equations is readily solved and we obtain

Gdd(iωm) =
1

iωm − εd − V2

N

∑
k

1
iωm−εk

. (3.30)

For a one-dimensional chain the k-sum in (3.30) runs over N k-values where N is the
number of sites of the chain. We usually employ the tight-binding approximation
and therefore the dispersion relation is

εk = −2t cos(k) . (3.31)

The lattice constant has been set to unity. It is usually desirable to make the size of
the bath infinite and for practical purposes this means N = 103 . . . 104. At the centre
of the band the cosine band can be approximated with a flat band with the density of
states ρ = 1

W , W the bandwidth. In this case, the dispersion relation is

εk =
W

2π
k (3.32)

and the k-sum can be computed analytically.

V2

N

∑
k

1

iωm − εk
=
V2

N

N

2π

∑
k

∆k
1

iωm − εk

=
V2

2π

∫2π
0

dk
1

iωm − εk

=
V2

2π

2π

W

∫ W
2

−W
2

dε
1

iωm − εk

=
V2

W
ln
iωm + W

2

iωm − W
2

(3.33)
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So all in all we have for a flat band

Gdd(iωm) =
1

iωm − εd − V2

W ln iωm+W
2

iωm−W
2

. (3.34)

Now a Fourier transform yields the Green’s function in imaginary time.

Gdd(τ) =
1

β

∑
ωm

G(iωm)e−iωmτ (3.35)

We will do the sum numerically, cutting off at a suitably chosen mmax. However,
there’s a neat trick that makes the sum converge faster, drastically lowering the
number of addends required for a satisfyingly smooth and precise Gdd(τ). Quite
generally, it can be shown [15] that the asymptotic behaviour of the Green’s function
is

Gdd(iωm) =
1

iωm
, for |iωm|→∞ (3.36)

and the Fourier transform of 1
iωm

can be computed analytically to

1

β

∑
ωm

1

iωm
e−iωmτ = −

1

2
θ(τ) +

1

2
θ(−τ) . (3.37)

Consequently, the Green’s function may be written

Gdd(τ) =
1

β

∑
ωm

(
Gdd(iωm) −

1

ωm

)
e−iωmτ −

1

2
θ(τ) +

1

2
θ(−τ) . (3.38)

In practice, 103 to 104 summands are seen to be sufficient for typical parameters and
with a time-discretisation of 104 to 105 τ-points we’re ready to fill our free Green’s
function table.

3.4 particle-hole transformation

It is instructive to investigate our problem under a particle-hole transformation. To
this end we introduce the canonical transformations

d† = −d̃ , d = −d̃† , (3.39)

c
†
i = (−1)i c̃i , ci = (−1)i c̃

†
i . (3.40)
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The occupancy operator becomes

nd = d†d = (−d̃)(−d̃†) = 1− d̃†d̃ = 1− ñd , (3.41)

and similar for ni. This illustrates the name – a particle transforms into a hole and
vice versa. Let us now look at the Hamiltonian (3.20) which we write, again, in real
space. As before, spins are implicit unless explicitly written down. Also note, that for
our discussion here the Ising spins need not be included.

H =
∑
k

εkc
†
kck + εdnd +U(nd↑ −

1

2
)(nd↓ −

1

2
) +

V√
N

∑
k

(
d†ck + c

†
kd
)

= −t
∑
〈i,j〉

c
†
icj + εdnd +U(nd↑ −

1

2
)(nd↓ −

1

2
) + V

(
d†c0 + c

†
0d
)

= −t
∑
〈i,j〉

(−1)i(−1)jc̃ic̃
†
j + εd(1− ñd) +U(1− ñd↑ −

1

2
)(1− ñd↓ −

1

2
)

+ V
(
−d̃c̃

†
0 − c̃0d̃

†
)

= −t
∑
〈i,j〉

c̃
†
j c̃i + εd − εdñd +U(ñd↑ −

1

2
)(ñd↓ −

1

2
) + V

(
c̃
†
0d̃+ d̃†c̃0

)
(3.42)

Apparently, the Hamiltonian is invariant under a particle-hole transformation for
εd = 0. Appreciate how the invariance is linked to the sign problem. While the new
form of the interaction term U(nd↑−

1
2)(nd↓−

1
2) is invariant under the transformation,

the original term Und↑nd↓ is not. Remember that it was the original form that caused
the worst-case sign 〈sgn〉 = 0. Lastly, as the singular constant term εd bears no
relevance for the Hamiltonian and thus the problem at large, we acknowledge that
the particle-hole transformation for εd 6= 0 simply corresponds to changing the sign
of εd, εd → −εd.

We investigate the spin susceptibility

χs =

∫β
0

dτ 〈s(τ)s(0)〉 =

∫β
0

dτ
〈(
nd↑(τ) −nd↓(τ)

) (
nd↑(0) −nd↓(0)

)〉
=

∫β
0

dτ
〈(
1− ñd↑(τ) − 1+ ñd↓(τ)

) (
1− ñd↑(0) − 1+ ñd↓(0)

)〉
=

∫β
0

dτ
〈(
ñd↑(τ) − ñd↓(τ)

) (
ñd↑(0) − ñd↓(0)

)〉
.

(3.43)
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It is invariant! Consequently, we expect it to be symmetric for εd = ±∆ε and we can
use this fact to check our simulations later on. Conversely, if we’re only interested
in the spin susceptibility then there’s no need to run simulations for both εd = ∆ε

and εd = −∆ε, one is sufficient. Finally, it is easily confirmed that just as the spin
susceptibility, the potential energy (nd↑ − 1

2)(nd↓ − 1
2) is invariant under a particle-

hole transformation, whereas the double occupancy
〈
nd↑nd↓

〉
is not.

3.5 from the anderson to the s-d model

An alternative approach for the treatment of an impurity in a metallic host is taken
by the s-d model, which is sometimes equally referred to as s-d exchange model or
Kondo model. The s-d model starts from a simple scattering potential, but additionally
assumes that the impurity has a local magnetic moment. The model then introduces
a Heisenberg exchange interaction between the spins of the impurity and the bath.
Consequently, as the presence of the local moment is an a priori presumption, the
s-d model is not a suitable device for the study of local moment formation. That’s
why we stick with the Anderson model for our simulations. However, the s-d model
can very well expose the Kondo effect and it was in fact the s-d model that was
used in most early investigations into Kondo physics: Kondo himself used it to third
order perturbation theory to uncover the resistance minimum in 1964. Anderson
undertook the Poor man’s scaling with the s-d model first (1970), as well as Wilson,
who employed the model for his numerical renormalization group studies in the
early seventies.

The Hamiltonian of the s-d model is

Hsd =
∑
kσ

εkc
†
kσckσ +

∑
kk ′σ

Vkk ′c
†
kσck ′σ

+
∑
kk ′

Jkk ′
[
S+
dc
†
k↓ck ′↑ + S−

dc
†
k↑ck ′↓ + Szd

(
c
†
k↑ck ′↑ − c

†
k↓ck ′↓

)]
.

(3.44)

The first two terms describe the bath electrons and their scattering off a simple
potential Vkk ′ . The third term introduces the spin-dependent interaction with a
Heisenberg coupling constant Jkk ′ . The spin of the impurity is denoted by Sd =

(Sxd,Syd,Szd) and, of course, S±d = Sxd ± iS
y
d. In contrast, the spin of the bath is noted

down implicitly in the form of the k-space creators and annihilators. In the above
form of the s-d model the spin-dependent scattering of the conduction electrons
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comes out very nicely: On scattering off the impurity the spin of the conduction
electron may be flipped.

In a notion equivalent to the local hybridisation approximation discussed in sec-
tion 3.1, the k-dependence of the coupling constant Jkk ′ can be dropped. Then the
interaction is only between the impurity and the first site of the bath. The spin of the
bath can be written Sij = 1

2

∑
σσ ′ c

†
iσσσσ ′cjσ ′ , with the Pauli vector σ and the creator

and annihilator now in real space. Hence, the s-d model may be cast to the form

Hsd =
∑
kσ

εkc
†
kσckσ +

∑
kk ′σ

Vkk ′c
†
kσck ′σ + JSdS00 . (3.45)

In this formulation, the Heisenberg-like interaction between the two spins is most
obvious.

The s-d model is an effective low energy model for the Anderson model within
suitable parameter ranges. The ground state of the Anderson model must be the
singly occupied impurity so that we have a local moment. For the Hamiltonian (3.20)
this means εd + 1

2U � εF and εd − 1
2U � εF, where εF denotes the Fermi energy.

Alternatively, we can take the limit where V is constant, εd small and U → ∞ as a
more intuitive definition for the local moment regime of the Anderson model and
therefore for the validity of the s-d model. The mapping from the Anderson model
to the s-d model is done by the Schrieffer-Wolff transformation. This transformation
treats charge fluctuations to the high-energy states – the empty or doubly occupied
impurity – perturbatively, as virtual excitations. We won’t carry out the calculation
here, the procedure is sketched in [16] and attended to in more detail in [17] and [18].
For us the important outcome of the Schrieffer-Wolff transformation is the relation
of the Anderson model parameters V , U and εd of our Hamiltonian (3.20) to the
coupling constant J of the s-d model (3.45).

J = V2

(
1

εd + 1
2U

+
1

−
(
εd − 1

2U
)) (3.46)

Note that the coupling constant is positive in the range where the s-d model is
applicable and thus J induces an antiferromagnetic Heisenberg exchange interaction.

Although we do not employ the s-d model directly, the coupling constant J provides
an extremely useful guideline for the evaluation of simulation results. We understand
J as an energy scale on which the spin-spin interaction is of relevance.



4
N U M E R I C A L R E S U LT S : T H E R M O D Y N A M I C S A N D D Y N A M I C S
F O R T H E S I A M

After our long and wearisome way through the preceding chapters, having gained
an understanding of both the DDQMC algorithm and the single impurity Anderson
model, we’re now in the exciting position to present and subsequently discuss results
distilled from numerical simulations. Our goal is to investigate an Anderson impurity
in a bath. We aim for low temperatures so as to expose the Kondo regime. We
want to study thermodynamic properties like the spin susceptibility and the double
occupancy as well as dynamic properties, most prominently the spectral function.

4.1 determining the kondo temperature

The first step towards rewarding simulations is to find a suitable set of parameters
that allows us to capture the physics of interest. However, practically, the accessible
range of parameters is limited by the scalability of the DDQMC algorithm and finite
computational resources. As we saw in chapter 2.3, the perturbation order scales
linearly with the interaction parameter U and the inverse temperature β, while the
run-time of the method depends on the perturbation order to the cube. This is most
unfortunate as it would surely be nice to use a large U. Together with a smallish
hybridisation V (and thus a small peak width1) it would yield nicely separated upper
and lower Hubbard bands and consequently a large and stable local moment regime
with respect to variations in εd. And varying εd is after all what we’re aiming for.
Secondly, we definitely need to access low temperatures so that we can securely and
reliably capture the low energy physics, that is, Kondo physics. The question only
is, how low is low enough? Now the onset of the Kondo regime can be roughly

1 For the non-interacting Anderson model the peak width of the resonant bound state can be calculated
to ∆ = πρ0V

2, with ρ0 the density of states of a flat band [16]. This relation serves as a guideline for the
interacting Anderson model.

33
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characterised by the Kondo temperature TK. An estimate for this temperature emerges,
for example, from Anderson’s Poor man’s scaling approach [16],

TK ∼ e
− 1
2Jρ0 (4.1)

with the coupling constant from the s-d model J and the density of states ρ0. We
choose a flat band ρ0 = 1

W and set the band width W = 4. This flat band approx-
imates a genuine one dimensional cosine band with a hopping parameter t = 1.
Consequently, the band width W as well as all other parameters will be in units of t.
For a starting point let us set εd = 0 whereby the coupling constant (3.46) becomes

J = 4
V2

U
. (4.2)

It is evident that for a small hybridisation V and a large interaction term U the above
equation yields a small J and as a result an exponentially small Kondo temperature;
which in turn gets increasingly impossible to achieve with DDQMC. Clearly we’re in a
conflict situation here. We need to find a compromise.

The down-to-earth way of going about this is to run a number of test simulations
with different sets of parameters. For each run we determine the Kondo temperature.
We adapt parameters and iterate the process until we find a set we’re satisfied with.
We again choose εd = 0 as a practical starting point. Now from a perturbation
theory treatment of the s-d model we know that the spin susceptibility adheres to a
Curie-Weiss law for T � TK [16].

χ−1(T) ∼ const · (T + 4.5TK) (4.3)

This is promising candidate to extract the Kondo temperature! However, the s-d
model (section 3.5) is only valid in the local moment regime. As we will see in
the next section, that means an upper bound for the temperature T < U at εd = 0.
Therefore we plot the inverse spin susceptibility over temperature and fit the above
Curie-Weiss law in the applicable range, which we practically choose to

[
10TK, U2

]
.

Figure 1 demonstrates the procedure for our final set of parameters, W = 4,U =

2,V = 0.75 (in units of t), yielding a Kondo temperature TK = 0.017. Appreciate how
the data really replicates the Curie-Weiss law in the range from 10TK ∼ 0.2 to U

2 ∼ 1

and deviates in the ranges above and below. For β = 120 corresponding to T = 0.008,
so well within the Kondo regime for the chosen parameters, we get a perturbation
order of 〈n〉 = 90 for δ = 0.51. Remember that δ was originally introduced in chapter
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Figure 1: Inverse spin susceptibility over temperature at εd = 0. The spin susceptibility
adheres to a Curie-Weiss law in the range from 10TK ∼ 0.2 to U/2 ∼ 1, roughly
corresponding to the local moment regime. The Kondo temperature is the zero-
crossing point of the fit up to a constant factor.

3.2 to get a grip on the sign problem. For εd = 0 we can set δ = 0.1 and achieve
an average perturbation order as low as 〈n〉 = 30. Well, orders of 30 or 90 are quite
feasible. Henceforth we shall employ this set of parameters unless stated otherwise.

4.2 the anderson impurity at εd = 0

For the time being we concentrate on an impurity with εd = 0. This simpler and more
common case displays all scales and properties relevant for the Kondo problem and a
thorough understanding will help us set the ground for the impurity deviating from
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symmetry, which we consider in the next section. For εd = 0 the Anderson model is
often referred to as the symmetric Anderson model. The Hamiltonian (3.20) becomes

H =
∑
k

εknk +
V√
N

∑
k

(
d†ck + c

†
kd
)

+U

(
nd↑ −

1

2

)(
nd↓ −

1

2

)
, (4.4)

where spins are implicit except for the interaction term. As they were seen to leave
the physics invariant, Ising spins need not be included for our discussion.

Figure 2 displays a pictogram of the system under consideration for the parameter
set introduced in the preceding section. On the left is the impurity with the upper and
lower Hubbard band at the electron energies εd ± U2 = ±1, separated by the Hubbard
interaction parameter U = 2. Each level exhibits a broadening ∆ = πρ0V

2 = 0.44
resulting in a small overlap of the upper and lower band. The impurity is embedded
in a bath with a flat band of bandwidth W = 4. Although we’re employing a flat
band we will keep on thinking in the more intuitive picture of a one-dimensional
chain of lattice sites with an inter-site hopping of t = 1. A one-dimensional chain
with nearest-neighbour-hopping exhibits a cosine band structure; the flat band is a
reasonably good approximation to the cosine band near the centre of the band. The
Fermi energy is εF = 0, thus the band is half-filled, with a small broadening of the
Fermi level due to a finite temperature of (very roughly) T = 1. Lastly, we are using
the local hybridisation approximation so that the hybridisation between impurity
and bath is more accurately thought of as a hopping between the impurity and the
first bath site with a hopping parameter V .

Keeping this picture in mind we now turn to the discussion of the double occupancy
and the spin susceptibility which we have measured over temperature. Additionally
to these thermodynamic quantities we will also have a look at the spectral function
at selected temperatures. The spectral function A(ω) is a dynamic property extracted
from the imaginary time resolved Green’s function G(τ) by means of the stochastic
maximum entropy method (MaxEnt for short). In contrast to DDQMC this method is
not exact in a physical sense and can be problematic. We have employed a flat default
model, setting aside prior knowledge. We have not symmetrised input data, nor
smoothed output data. Thus the graphs of the dynamic properties presented here are
a mirror of both the quality of the DDQMC data and the problems of the maximum
entropy method. Despite these deficiencies, the spectral functions obtained provide a
very intuitive picture as we can think of them as energy resolved densities of electron
states on the impurity. We can quite literally take them and put them in our nice little
pictogram 2. Indeed, it can be shown that A(ω) is the density of states induced by
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Figure 2: Anderson impurity at εd = 0. The impurity (left) with the broadened upper and
lower Hubbard band at εd ± U2 = ±1 embedded in a bath (right). The bath is a one-
dimensional chain of lattice sites with nearest-neighbour hopping t and bandwidth
W = 4. Hopping of the electrons from the impurity to the first bath site and back
is characterised by the hybridisation V . The depicted situation corresponds to the
local moment regime where the lower level is singly occupied while the upper level
is thermally vacated. The temperature is roughly T ∼ 1.

the impurity within the context of the non-interacting Anderson model and near the
centre of the band [16].

The double occupancy most beautifully exposes all relevant scales of the Kondo
problem. Thus we concentrate on the double occupancy, figure 4, and we start in the
high temperature limit. Let T →∞ and U finite, then both impurity levels are equally
occupied. The band is half-filled, the particle number on the impurity therefore N = 1

and consequently n↑ = 1
2 as well as n↓ = 1

2 . The expected double occupancy becomes〈
n↑n↓

〉
= 1
4 in this limit and from the plot we gather

〈
n↑n↓

〉
→ 0.24 as T approaches

10 which confirms the assertion. Indeed, for the temperature much larger than the
interaction parameter we can neglect U and consider the problem with the non-
interacting Anderson model. Here the impurity becomes a simple (spin-independent)
scattering potential with a single virtual bound state resonance at the centre of the
band, ε = εd ± U

2 ∼ 0. The spectral function at T = 4 impressively verifies this line of
thinking, figure 5.

Peaking ahead at the spectral function at T = 1 we recognise two clearly discernible
Hubbard bands located at ε = ±1. This situation comes close to the pictogram 2
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Figure 3: Superexchange processes. a) The impurity is temporarily vacated as the impurity
electron “hops” to the bath. b) The impurity is temporarily double occupied as
a bath electron “hops” to the impurity. Local hybridisation asserts that there is
only hopping between the first bath site and the impurity, characterised by V . The
intra-bath-hopping is characterised by the hopping parameter t.

discussed above and it is the local moment regime. We understand the local moment
regime thinking in opposite limits as before: U → ∞ and T finite. Now the lower
impurity level is singly occupied while the upper is thermally vacated. Accordingly,
the double occupancy is zero and, as the interaction parameter is very large, we can
consider the hybridisation arbitrary small as well, V → 0. The emerging picture is
that of an isolated impurity with a free spin, a local moment. Hence the name of
the regime. The spin susceptibility is expected to show a Curie-like behaviour and
in fact we have seen a Curie-Weiss law in figure 1 in the preceding section. There
we put it to use to extract the Kondo temperature. Conversely, we can make out the
adherence to a Curie-Weiss-like behaviour as a definition for the local moment regime.
More generally, we will usually employ the singly occupied impurity (commonly
denoted as d1) and a mostly free spin as loose defining characteristics of this regime.
Returning to finite parameters we consequently identify the Hubbard interaction U as
the upper boundary of the local moment regime for the symmetric Anderson model.
The interaction parameter competes with the temperature. Thus, as we decrease the
temperature from T � U to T . U we cross over from the high temperature regime to
the local moment regime. Glancing at the double occupancy graph 4 we again see
our assertion fulfilled: Starting at 0.25 for high temperatures it drops towards zero as
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Figure 4: Double occupancy over temperature at εd = 0. The double occupancy exposes all
scales of the Kondo problem: The high temperature regime for T � U,

〈
n↑n↓

〉
∼ 0.25.

The local moment regime for T < U,
〈
n↑n↓

〉
minimal. The Kondo regime for T . TK,〈

n↑n↓
〉

saturates. The Heisenberg coupling constant J ∼ 0.23 is estimated by the
minimum of

〈
n↑n↓

〉
.

we cross below U. However, it recovers before crashing into the baseline, never really
getting close to a value of zero and, more astonishing still, even starts to increase
again as we further lower the temperature. How can we understand this behaviour?

First note that we would indeed see a
〈
n↑n↓

〉
= 0 region if we took, as before, the

large U limit. This would effectively push the high temperature behaviour as well
as the drop to the local moment regime to higher temperatures still. The double
occupancy would fall to zero in earnest, exposing a very well defined local moment
region. Of course, here we have assumed that increasing the interaction parameter
would keep the low temperature features of our graph untouched. It should become
apparent in a minute that this is not correct. A growing interaction U will push the
low temperature features to lower temperatures still which is just as well for our line
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Figure 5: Spectral function at different temperatures. (T = 4) The high temperature regime,
T � U. There is a single virtual bound state resonance at ε = 0. (T = 1) The local
moment regime, T < U. The two Hubbard bands are clearly discernible at ε = ±1.
(T = 0.4) At the crossover from the local moment regime to the Kondo regime, T < J.
The Kondo resonance becomes visible. (T = 0.008) In the Kondo regime, T . TK. The
Kondo resonance is now very prominent.

of argumentation. We conclude for the moment that in our measurement the local
moment regime is a bit “cramped”. Now it is in the local moment regime that the s-d
model starts to become applicable. The s-d model understands the singly occupied
impurity as a spin which couples to the spin of the bath with an antiferromagnetic
(i.e. positive) Heisenberg coupling constant J. Going from the Anderson model to the
s-d model we appreciate that the superexchange processes of the former – depicted
in figure 3 – and the coupling of spins of the latter really describe the same physical
circumstances. Put another way, the coupling constant J ∼ V2

U attaches an energy to
the virtual exchange processes; and it makes perfect sense: The “electron hopping” of
the superexchange will appear more frequent for a larger hybridisation V (which we
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can interpret as a hopping parameter anyway) and thus lead to larger J. Reversely,
the hopping will get increasingly harder for a growing U which pushes the impurity
levels further away from the Fermi energy. Consequently, the coupling constant J
decreases as the spins are now more weakly coupled, the possible energy gain due to
the virtual processes gets smaller.

Although the s-d model definitely evokes the correct qualitative picture in the local
moment regime, it is important to keep in mind, that, very strictly speaking, it is only
correct in the limits V → 0 for a fixed U or, reversely, U→∞ for constant V . Hence,
for a quantitative assessment we have to be careful with this model. Calculating the
coupling constant from the s-d model formula (4.2) yields J = 1.25 for our parameters.
Looking at graph 4 that does not seem like a very reasonable value. We asserted
that J is the energy scale on which the virtual superexchange processes become of
importance. Practically, we therefore estimate the Heisenberg coupling constant by
the minimum of the double occupancy, J ∼ 0.23.

In thought starting out from a genuine local moment regime with a zero double
occupancy, it is now a competition between temperature and coupling constant
(and thus superexchange) that drives the emerging physical picture as we lower
temperature once more. For T � J the energy gain by virtual exchange processes is
largely irrelevant, the impurity spin is thermally disordered, effectively preventing
double occupancy which is thus zero. This is the local moment regime discussed
infinitely already. As the temperature approaches the coupling constant, T ∼ J, we
do begin to see the superexchange,

〈
n↑n↓

〉
starts to increase – after all, one of the

virtual processes double occupies the impurity. Lowering the temperature further
increases the double occupancy still, until it finally saturates as T � J and we have
crossed into the Kondo regime. Here the temperature and thermal processes are
irrelevant. Here the spin of the impurity and of the bath are perfectly coupled, they
are entangled and in that sense build a spin singlet state. The Kondo temperature TK
sets a soft boundary – it’s a crossover – between the Kondo regime and the higher
temperature local moment regime. Again, we can understand the Kondo temperature
TK as the energy attached to the spin singlet. So to break the singlet we need to spend
an energy of TK and, of course, when the temperature exceeds TK it does break the
singlet.

We’ve used the local hybridisation approximation where we presumed that only the
first lattice site is directly involved with the impurity. Speaking of sites, however, is a
treacherous business in this context, because we’re implicitely thinking in completely
localised electron states. Building a proper Wannier state at the first lattice site
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requires all k-states of the band, though. But only electrons in a shell of width TK
around the Fermi energy can contribute, as it is the energy TK that we gain by
the superexchange process. Consequently, a Kondo temperature of the order of the
bandwidth would be required for an entangled singlet state made up of the impurity
and the first lattice site exclusively. Realistically, and in our case, TK is much smaller.
As TK decreases fewer and fewer k-states are accessible. The entangled bath electron
is increasingly delocalised, spread out over multiple adjacent lattice sites. The picture
of a screening cloud emerges. It is centred at the impurity and will extend over a
range of very roughly 1

TK
. The cloud screens the impurity spin. So from the outside

the impurity looks like a simple spin-independent scattering potential once more.
Inside it’s rich. To appreciate this let us look at the spectral functions at T = 0.4 and
T = 0.008, figure 5. The Kondo resonance is clearly visible between the two Hubbard
bands. It corresponds to a peak in the electron density at the centre of the band,
accounting for the virtual processes which involve hopping of electrons near the
Fermi energy. The width of the resonance is roughly TK as, again, only electrons in a
shell of width TK contribute. The Kondo resonance will become more pronounced as
we go from J to TK in temperature. We see this in the two spectral functions where
the first is at T = 0.4 and therefore at the beginning of the crossover from the local
moment regime to the Kondo regime whereas the second is well within the Kondo
regime.

Summarising, Kondo physics as discussed here is largely characterisable by three
different scales: the Hubbard interaction parameter U, the Heisenberg coupling
constant J and the Kondo temperature TK. These set the soft boundaries for the high
temperature regime, the local moment regime and the Kondo regime. Crossovers
from one regime to another are driven by a competition between temperature and the
respective scale. If we’re feeling pedantic we can additionally make the distinction
between a “proper” local moment regime with a free spin within the limits set by U
and J, and a more “magnetic” local moment regime with an increasingly coupled
spin, bordered by J and TK. It is crucial to note that the scales U and J and TK are
all interrelated and, although not apparent from our measurements, it is one of
the fascinating properties of the Kondo problem that the physics involved can be
characterised by the Kondo temperature TK and TK only. The Kondo temperature is a
scaling invariant. Lastly, appreciate how the deceptively simple Hamiltonian of the
Anderson model exposes delicate, rich and most beautiful physics. Knowing only
about the interaction U, the Anderson Hamiltonian generates the emergent scales J
and TK.
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4.3 the anderson impurity at εd 6= 0

Finally, we consider an Anderson impurity which deviates from the symmetric case,
we consider εd 6= 0. This impurity is described by the asymmetric Anderson model
(3.20). We again have measured the double occupancy and spin susceptibility over
temperature, this time, of course, for several different impurity levels εd. For these
values of εd we additionally computed the spectral function at a fixed temperature.
Before we rush to the plots, though, let us take a minute and think about what to
expect.

For that purpose the isolated impurity as considered previously, with V → 0, T → 0,
but U finite, is a fertile device. Sweeping εd from −∞ to ∞ reveals five different
regimes. At εd = 0 we’re not surprised to find the local moment regime d1 where the
lower Hubbard band is occupied, but the upper is not. Note that for the discussion at
hand we understand the local moment regime to include the previously separately
discussed Kondo regime. Increasing εd, thereby shifting both impurity levels towards
the upper edge of the band, we will cross through the mixed valence regime where
the lower level is vacated consecutively until it is quite empty. We get to the empty
orbital regime d0. While for the isolated impurity under consideration the mixed
valence regime is infinitely small – only the precise point where the lower level is at
the Fermi energy – for a finite hybridisation V (and thus broadened Hubbard bands)
this regime can become quite large. If we shift the impurity levels towards the lower
edge of the band, decreasing εd, we again cross through a mixed valence regime, this
time on the way to the charge doublet regime d2. Here, both Hubbard bands are fully
occupied. For the two limits d0 and d2, or equivalently εd → ∞ and εd → −∞, we
expect the double occupancy to be be zero or one, respectively, as well as a vanishing
spin susceptibility. That’s pretty boring. Of course, in the d1 regime we’re confident
to find a Kondo effect if we only take the temperature low enough. The exciting
question is, what happens in between? What happens in the upper and lower mixed
valence regime and how exactly will the transition look like as we take |εd| from zero
to infinity?

Now it is in the local moment regime where the s-d model is valid and it is the s-d
model that generates the Kondo effect. Sure, the Anderson model exposes the Kondo
regime just as well for suitable parameter ranges and this is precisely what we’ve
done in the preceding section. However, the s-d model is a much more stringent
requirement, it is a subset of the Anderson model. We can view the validity of the
s-d model as a prerequisite for the observation of a Kondo regime – as the s-d
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model breaks down, so must the Kondo effect. We shortly discussed the mapping
of the Anderson model to the energetic subspace of the s-d model in chapter 3.5.
We stated that the mapping is carried out by the Schrieffer-Wolff transformation
which considers charge fluctuations from the local moment ground state d1 to the
d2 and d0 states as virtual excitations. But as we move towards the mixed valence
regime by increasing or decreasing εd, this assumption breaks down. The charge
fluctuations can no longer be treated perturbatively. Still, in the region where the s-d
model is applicable – and we can at least in thought extend this range by taking the
limit U→∞ – the Schrieffer-Wolff transformation yields the relation (3.46) which we
restate here for convenience.

J = V2

(
1

1
2U+ εd

+
1

1
2U− εd

)
(4.5)

This formula connects the parameters of the Anderson model to the s-d model and,
of course, for εd = 0 it reduces to the form which we have used extensively in the
last section. Apparently, the coupling constant J is symmetric for εd = ±∆ε which we
understand quite intuitively by considering the hopping processes of the pictogram
3, again. Additionally, we gather from eq. (4.5) that the coupling increases for the
asymmetric case.

As before, we’re working with a flat band of bandwidth W = 4, a Hubbard
interaction U = 2 and a hybridisation V = 0.75, all in units of t. With this parameter
set we expect the upper and lower mixed valence regime to be centred around
ε = U

2 = 1 and ε = −U2 = −1, respectively. And indeed, when we now turn our
attention to the double occupancy which we measured over temperature for εd
ranging from −1.5 to +1.5, figure 6, we gather that for |εd| < 1 there is a Kondo effect,
while for |εd| > 1 there is none. Here we have used the minimum in

〈
n↑n↓

〉
and, going

to lower temperatures, the adjacent ascending slope as identifying characteristics of
the Kondo effect. In the last section we employed the position of the minimum of the
double occupancy as the correct value of the Heisenberg coupling constant J, which
in practice differs from the value calculated from the s-d model. Nevertheless the
s-d model may very well serve as a guideline. Eq. (4.5) yields J(εd = 0) = 1.125 and
J(εd = ±0.5) = 1.5 and from the graph we read off the minima min(εd = 0) = 0.23,
min(εd = +0.5) = 0.35 and min(εd = −0.5) = 0.30. So while we fulfil the assertion
that the coupling J increases as the impurity deviates from εd = 0 we can’t necessarily
confirm that it is symmetric. However, the minimum of the double occupancy is the
result of the superposition of the low temperature and high temperature features.
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Figure 6: Double occupancy over temperature for different values of εd. For εd = −0.5, 0.0, 0.5
the double occupancy exhibits a minimum and adjacent ascent as temperature is
lowered. This is the local moment regime d1 with a Kondo effect at low temperatures.
For |εd| = 1.0, 1.5 the impurity is in the mixed valence regime – at the transition to
the charge doublet regime d2 (εd = −∞,

〈
n↑n↓

〉
= 1) and the empty orbital regime

d0 (εd = ∞,
〈
n↑n↓

〉
= 0), respectively. The local magnetic moment disappears, the

Kondo effect breaks down.

While the low temperature features are symmetric just as J from (4.5), the high
temperature features are asymmetric with respect to εd, so we wouldn’t expect the
minimum to reflect the symmetry of the coupling constant from the s-d model.

Let us now look at the double occupancy for |εd| > 1, we start with |εd| = 1. This
is the mixed valence regime par excellence as we have one level of the impurity
exactly at the Fermi energy εF = 0. The curves are understood by thinking in thermal
occupation and vacation exclusively. Consider, for example, εd = −1. The upper
Hubbard band is exactly half occupied, while the lower band is completely filled,
apart from the tiniest tail extending beyond ε = 0. Consequently, we expect the
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double occupancy to be just a tad below
〈
n↑n↓

〉
∼ 0.5 and glancing at the graph 6

we see this argumentation impressively verified. Moving the impurity levels further
away from the Fermi energy still, |εd| = 1.5, we notice that the double occupancy
saturates at higher temperatures than at |εd| = 1. This behaviour is again understood
by considering the thermal processes at work. The behaviour is the result of the
overlap of the thermally broadened Fermi function and the V-broadened Hubbard
bands. For higher |εd| the Fermi function will overlap with the bulge of the bands
only at higher temperatures. For decreasing V → 0 we would expect the transition
from the high temperature

〈
n↑n↓

〉
∼ 0.25 to the lower temperature saturation regime

to get sharper.
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Figure 7: Inverse spin susceptibility over temperature for different values of εd. For εd =

0.0, 0.5 the inverse spin susceptibility mostly resembles a straight line, it follows a
Curie-Weiss law. This is the local moment regime. At εd = 1.0 the plot gets curvier.
At εd = 1.5 the impurity has clearly left the local moment regime – it is in the mixed
valence regime.
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The inverse spin susceptibility, figure 7, mirrors the breakdown of the local moment
regime we deduced from the double occupancy plot. In the local moment regime the
spin susceptibility is expected to adhere to a Curie-Weiss law. In other words, the
inverse spin susceptibility over temperature should be a straight line. Temperature-
wise the upper limit of the local moment regime was seen to roughly correspond
to U/2 for the symmetric case εd = 0. For εd deviating from zero, we expect the
limit to decrease as now the lower Hubbard band gets vacated, the upper Hubbard
band occupied, already at lower temperatures. The plot shows the range from T = 0

to T = 0.5 where we expect a very clean Curie-Weiss behaviour at least for εd = 0.
Qualitatively, there’s hardly a difference in the spin susceptibility for the curves at
εd = 0 and εd = 0.5. Both are well-fitted by a straight line in the applicable range,
[10TK,U/2]. For εd = 1.0 the graph gets curvier. At εd = 1.5 the curve has changed
behaviour completely, not with the most imaginative mind of the world does it
resemble a Curie-Weiss law. We have left the local moment regime.

Notice how we plotted the inverse spin susceptibility for positive εd only. The
reason is, as we asserted in chapter 3.4, that the spin susceptibility is symmetric for
positive and negative εd of the same modulus. Figure 8 demonstrates this symmetry.
Here we measured the susceptibility at T = 0.008 over εd from −2 to 2, so over the
whole bandwidth. At this temperature we’re well within the Kondo regime for εd = 0

and expectedly the susceptibility is finite. In the other limit, at ε = ±2, the band edge,
χs is seen to drop towards zero. Apparently, at the band edge we’re getting close
to the d2 and d0 regimes. The other important property of the graph is the absence
of features as we go from εd = 0 to εd = ±2. We conclude that the transition from
the local moment regime to the mixed valence regime to the empty orbital or charge
doublet regime is a crossover.

Just as the spin susceptibility the potential energy
〈
(n↑ − 1

2)(n↓ − 1
2

〉
is expected

to be symmetric with respect to εd. We quickly checked this statement in figure 9.
Within the error bars the curves for the same value of |εd| match perfectly.

To gain further insight into the crossover from the local moment regime to the
charge doublet or empty orbital regime, it is rewarding to study the spectral function.
Figure 10 shows our measurements, at T = 0.008 and for εd in the range from −1.5 to
1.5. Let us repeat again that the data presented in the graph is raw: We fed the output
of the DDQMC method directly (and unsymmetrised, for εd = 0) to the stochastic
maximum entropy algorithm whose results we did not smooth. Particularly at εd = 0

the difficulties in resolving the delicate features of the Kondo resonance are obvious.
Instead of the expected and physical singular peak we have many very narrow spikes.
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Figure 8: Spin susceptibility over εd at T = 0.008. The spin susceptibility is invariant under
a particle-hole transformation and therefore symmetric with regard to εd. For
T = 0.008 and εd = 0 the system is in the Kondo regime. The spin susceptibility is
finite. The susceptibility drops off towards zero as |εd|→∞. At εd = ±2, the band
edge, the impurity is in the mixed-valence regime, though, arguably, pretty close to
d0 and d2, respectively, where the susceptibility vanishes.

The symmetric case, εd = 0, also provides us with an indication of the quality of the
MaxEnt data. Knowing that the curve must be symmetric, we can interpret features
that deviate from symmetry, for example the smallish bumps at εd ∼ ±0.5 in figure
10, εd = 0.0, as an estimate of the size of the errorbars. We get an understanding to
what extend we can trust the MaxEnt results. Consequently, we conclude that these
same bumps at εd ∼ ±0.5 and similar sized features are safely ignored.
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Figure 9: Potential energy over temperature for different values of εd. The potential energy
is invariant under a particle-hole transformation. Consequently, εd-values with the
same modulus yield identical graphs.

This time around, let us attend to the structure of the spectral function A(ω)

in more detail. We consider its symmetry with respect to εd first. The Lehmann
representation of the spectral function is

A(ω) =
∑
mn

1

Z
e−βεn

(
eβω + 1

)
〈m|d |n〉 〈n|d† |m〉 δ (ω− (εn − εm)) . (4.6)

For ω > 0 the spectral function corresponds to the spectrum of the inverse photoemis-
sion process (IPES) where an incident electron excites the system which in turn emits
a photon. Reversely, the spectrum of the photoemission process (PES) is represented
by A(ω) for ω < 0. Here, of course, incident light results in the system emitting an
electron. Intuitively, we might anticipate PES and IPES being connected by a particle-
hole transformation, as introduced in chapter 3.4. Indeed, this is readily verified
by applying the transformation d† → −d̃, d → −d̃† to the Lehmann representation
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above. We get A(ω)→ A(−ω). The particle-hole transformation swaps the PES and
IPES part of the spectral function. In chapter 3.4 we also saw that the transformation
leaves the Hamiltonian invariant if we only take εd → −εd. Overall we expect to
find A(ω)→ A(−ω) for εd → −εd. But that is just what we observe in our plots, for
εd = ±1.5, εd = ±1.0 and εd = ±0.5, respectively!

To understand the position of the peaks of the spectral function we consider the
limit V → 0, the isolated impurity, a last time. As the bath is completely decoupled,
the Hamiltonian becomes

Himpurity = εd
(
nd↑ +nd↓

)
+U

(
nd↑ −

1

2

)(
nd↓ −

1

2

)
=
(
nd↑ +nd↓

)(
εd −

1

2
U

)
+nd↑nd↓U+

U

4
.

(4.7)

Apart from a constant this yields the energy levels 2εd, εd − 1
2U and 0 for the doubly

occupied impurity d2, the singly occupied impurity d1 and the vacant impurity d0,
respectively. As a result, we expect to see contributions to the spectral function at
the differences of these energy levels, εd ± 1

2U. Of course, this is just the energy
of the electrons on the impurity and for εd = 0, the d1 regime, we recover exactly
the two Hubbard bands that we discussed at length in section 4.2. Here, for the
singly occupied impurity, photoemission processes (d1 → d0) as well as inverse
photoemission processes (d1 → d2) are possible, generating two bumps in the spectral
function at ε = −1 and ε = 1, respectively. For comparison, from our graph with a
finite hybridisation V , figure 10, we read off the peak positions at ε ∼ −1.5 and ε ∼ 1.6.
Returning to the isolated impurity, εd = −1.5 is a proper d2 state. The impurity is
already doubly occupied, allowing only for the creation of a hole, d2 → d1. This is a
photoemission process and we get a single peak at ε = −0.5. Again, from the plot at
finite V we gather ε ∼ −0.8. Lastly, εd = 1.5 corresponds to the empty orbital regime,
d0. In contrast to the charge doublet regime only the inverse photoemission process
is possible, d0 → d1, and ε = 0.5, while from the graph we read off ε ∼ 0.8. All in all
we conclude from this short exercise in calculus that the isolated impurity gives the
right idea of the structure of the spectral function in the limits d2, d0 and d1, with
the exception, of course, of the Kondo resonance.

Taking V finite again, the Hubbard bands are broadened and the Kondo peak
emerges. The graph demonstrates this for εd = 0 and εd = ±0.5 where we most
beautifully have the characteristic imprint of the Kondo effect, the three-peak structure
with the Kondo resonance at ε = 0 and the Hubbard bands to both sides. As observed
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already earlier, for these values of εd we are clearly in the local moment regime.
Notice how the Hubbard bands are moving from smaller frequencies to higher
frequencies as we sweep εd from −0.5 to 0.5 whereas the Kondo resonance stays put
at ε = 0. This is pretty much what we expected, coming from the isolated impurity
picture with the energy levels given by εd ± 1

2U. While this picture and formula are
no longer valid they nevertheless serve as a good guideline. The Kondo resonance is
a consequence of the hopping of the band electrons to the impurity and therefore it
is bound to be centred at the Fermi energy. Not surprisingly, at εd = ±1.5 which we
already identified as the d0 and d2 regimes, the Kondo resonance has disappeared.
Again, the intriguing and tricky question is, what happens in the mixed valence
regime, εd = ±1.0. Qualitatively, εd = −1.0, for example, is much closer to the charge
doublet regime d2 than to the local moment regime d1: It’s a single-peak structure,
neither the Kondo resonance nor the Hubbard bands are discernible. We might be
tempted to argue that this one peak is a superposition of a decreased Kondo peak and
the Hubbard bands, where the left band is diminished while the other is enhanced.
However, it is easier and safer to state that the peak is no longer centred at ε = 0. This,
more than anything else, is a clear indication that the Kondo resonance cannot be a
major contribution to the structure of the peak. No longer is the Kondo resonance an
important ingredient to the structure of the spectral function. Thus we confirm our
earlier assertion that at εd = ±1.0 we’ve left the local moment regime for good. The
s-d model is not valid, the Kondo effect is not observed.

In the last section we investigated the Anderson model at εd = 0 and for different
temperatures. Before the Kondo effect could pronounce itself, a local moment was
seen to arise. Similarly, for measurements over various values of εd as we have carried
them out in this section, the local moment would again be present when a Kondo
resonance became prominent. We understand the local moment as a prerequisite for
Kondo physics to become apparent. We see the formation of a moment most easily by
investigation of the inverse spin susceptibility and its adherence to a Curie-Weiss law.
Coming from the spin susceptibility we had no problem to identify εd = −0.5, 0.0, 0.5
as the local moment regime d1. As the temperature was low enough the imprints
of the Kondo effect could be observed in the double occupancy and even more
clearly in the spectral function. For εd = ±1.0 the situation was not so clear. It is the
mixed-valence regime, a slow crossover from the exciting local moment regime to
the more boring regimes where the impurity is either empty or doubly occupied,
d0 and d2, respectively. Expectedly, the spin susceptibility was seen to vanish, the
double occupancy would approach 0 or 1. Although, strictly speaking, for εd = ±1.5
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the impurity is still in the mixed-valence regime, we asserted by investigation of
the spectral function that qualitatively these values already correspond to the empty
orbital and charge doublet regime. The spin susceptibility could not answer the
question whether Kondo physics still played a role in the mixed-valence regime at
εd = ±1. By virtue of the measurements of the double occupancy, but even more so
by the careful evaluation of the spectral function, we were able to assert that at these
values of εd we had clearly departed the Kondo regime and lost the Kondo effect. Our
investigations have confirmed impressively that Kondo physics is tightly bound to
the presence of a local moment. We loose the local moment by charge fluctuations on
the impurity; either driven by a rising temperature or by straight-forward occupation
(or vacation) of the impurity as εd is varied. The phase space of the spin physics is
diminished. And as we loose the local moment, so we loose the Kondo physics.
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Figure 10: Spectral function at T = 0.008 for different values of εd. (εd = −1.5) Charge
doublet regime, d2. (εd = −1.0) Lower mixed-valence regime. (εd = −0.5, 0.0, 0.5)
Local moment regime, d1, and Kondo regime. The Kondo resonance is prominent
between the two Hubbard bands. (εd = 1.0) Upper mixed-valence regime. (εd = 1.5)
Empty orbital regime, d0. The spectral function is symmetric with respect to εd.





5
C O N C L U S I O N

We have implemented the recently developed DDQMC method in a modern, efficient
and well-tested C++ program. The code, being written from scratch, was applied to
the single impurity Anderson model. Having systematically deduced a parameter
set suited to the study of local moment formation and Kondo physics, high quality
simulations were then carried out. For the very low temperature ranges a simple
parallelisation scheme was devised and successfully put to use, producing very
clean and accurate results. From the Green’s function the spectral function could be
extracted by the Maximum Entropy method. While the spectral function provides a
very intuitive and intimate access to the physics, the obtained graphs also demonstrate
the difficulties of the unbiased Maximum Entropy method in some parameter ranges,
notably at low temperatures. Evaluating the double occupancy, the spin susceptibility
and the spectral function measured over temperature, the local moment formation
and, at lowest temperatures, the emergence of the Kondo effect were observed and
discussed in detail.

Starting from the high temperature limit where the impurity is essentially a simple
scattering potential to the conduction electrons, lowering the temperature would lead
to a drop in the double occupancy and the development of the two Hubbard bands in
the spectral function. This is the local moment regime. We identified the temperature
of the crossover into the regime. We saw the formation of the local moment to be
related to the Hubbard interaction parameter, for a fixed hybridisation. In the local
moment regime, the Curie-Weiss law for the susceptibility could be verified. The
emergence of the Kondo effect was observed as the temperature was lowered still.
Most notably, the spectral function showed the characteristic three-peak imprint of
the Kondo effect, with the developing Kondo resonance at the Fermi energy.

The formation of a local moment on the impurity was studied for a varied εd, as
well. The energy levels of the impurity were shifted from the lower to the upper
band edge of the conduction electrons. Carrying out the measurements at very low
temperatures, the local moment regime and equally the Kondo effect were observed
for the Hubbard bands of the impurity enclosing the Fermi energy. As εd was pushed
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towards the upper or lower band edge, the impurity crossed over to the vacated or
doubly occupied regime and the local moment and Kondo physics were lost.

For future work a very exciting prospect lies in the implementation and subsequent
observation of the space resolved spin correlations. As the Kondo resonance emerges,
this correlation function should reveal the extent and finer structure of the Kondo
screening cloud. Heuristically, we have argued to expect the cloud to scale as 1

TK
in

spatial dimensions. Furthermore we anticipate mid- to long-ranged oscillations in the
bath spins, imposed by the screening at the impurity site.

We have extracted an estimate for the Kondo temperature from the Curie-Weiss-like
behaviour of the spin susceptibility. This approximative description of the suscepti-
bility emerges from a perturbative treatment of the s-d model that takes the Kondo
temperature as the temperature at which the perturbation theory diverges. A more
concise definition understands the Kondo temperature as a scaling invariant. There-
fore it must be a most rewarding exercise to simulate the problem for different sets of
parameters, do a data collapse and observe the fascinating scaling invariance of the
whole Kondo problem. As a nice side-effect we would be able to extract the genuine
Kondo temperature.



A
T E C H N I C A L D E TA I L S O F FA S T U P D AT E S

Update moves in continuous-time quantum Monte Carlo simulations involve cal-
culating the ratio of determinants of the old and the new configuration matrices.
For the two most prominent moves, the addition and removal of vertices, the new
matrix can be obtained from the old matrix by either adding or removing rows and
columns, enabling us to find easy relations for the ratio of determinants. Moreover,
the measurement of observables can be thought of as a similar ratio of determinants,
again involving matrices related to each other through the addition of rows and
columns. It turns out that for these calculations and hence for the simulation at large
the knowledge of the inverse configuration matrix is sufficient and luckily, we again
can find some relations which allow us to obtain the inverse matrices in a fast way
for each update move.

Let us state our results first – an expression for the ratio of determinants and the
inverse configuration matrix for the vertex removal and addition move, respectively.
To this end we introduce

M =

(
A B

C D

)
, M−1 =

(
P Q

R T

)
, (A.1)

(n+ k)× (n+ k) matrices, with A and P n× n matrices and B, C, D as well as Q, R
and T sized accordingly. M might be obtained from A in a vertex addition move
by adding multiple rows and columns. Reversely, A might be the result of a vertex
removal move which started with M. The Schur complement of the block A of matrix
M is

S = D−CA−1B. (A.2)
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With these definitions, the following statements hold:

detA
detM

= det T (A.3)

A−1 = P−QT−1R (A.4)
detM
detA

= detS (A.5)

M−1 =

(
A−1 +B ′S−1C ′ −B ′S−1

S−1C ′ S−1

)
(A.6)

where we used the shorthand notation B ′ = A−1B and C ′ = CA−1. Appreciate that
for vertex removal the knowledge of M−1 is all we need; for vertex addition A−1 and,
of course, the added rows and columns B, C, D are sufficient.

a.1 setting forth

In our undertaking to derive the above formulas we first state two matrix identities
which we will put to use in due course. The Woodbury identity is

(A+UKV)−1 = A−1 −A−1U(K−1 + VA−1U)−1VA−1, (A.7)

where A is a n× n and K is a k× k regular matrix. U and V are n× k and k× n
matrices, respectively. To prove this relation we directly calculate

(A+UKV)(A+UKV)−1

= (A+UKV)(A−1 −A−1U(K−1 + VA−1U)−1VA−1)

= 1+UKVA−1 −U(K−1 + VA−1U)−1VA−1

−UKVA−1U(K−1 + VA−1U)−1VA−1

= 1+UKVA−1 −U(1+KVA−1U)(K−1 + VA−1U)−1VA−1

= 1 .

(A.8)

Similarly (A+UKV)−1(A+UKV) = 1.
For the matrices A, K, U and V a determinant identity holds as well:

det(1+A−1UKV) = det(1+KVA−1U) (A.9)
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Let us show that this statement is valid by using the known relation ln det F = Tr ln F,
the series expansion ln(1+ F) =

∑∞
k=1

(−1)k+1

k Fk and the cyclic property of the trace.

det(1+A−1UKV) = exp
[
Tr ln(1+A−1UKV)

]
= exp

[ ∞∑
k=1

(−1)k+1

k
Tr
(
A−1U(KVA−1U)k−1KV

)]
= exp

[
Tr ln(1+KVA−1U)

]
= det(1+KVA−1U)

(A.10)

Note that in the following K = K−1 = 1 will simplify the two stated identities.

a.2 vertex addition

We write our new configuration matrix M as

M =

(
A B

C D

)
=

(
A 0

0 1

)
+

(
B

0

)(
0 1

)
+

(
0

1

)(
C D− 1

)
= Aex +U1V1 +U2V2 .

(A.11)

We evaluate detM by applying the determinant identity two times. To simplify the
calculation we first introduce M̃ = Aex +U1V1 and compute its inverse using the
Woodbury identity:

M̃−1 = (Aex +U1V1)
−1

= A−1
ex −A−1

exU1(1+ V1A
−1
exU1︸ ︷︷ ︸
0

)−1V1A
−1
ex

= A−1
ex (1−U1V1A

−1
ex ) = A−1

ex (1−U1V1)

=

(
A−1 −A−1B

0 1

) (A.12)
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Now the determinant is

detM = det(M̃+U2V2)

= det M̃det(1+ M̃−1U2V2)

= detAex det(1+ V1A
−1
exU1) det(1+ V2M̃

−1U2)

= detAdet

[
1+

(
C D− 1

)(A−1 −A−1B

0 1

)(
0

1

)]
= detAdet(D−CA−1B) = detAdetS,

(A.13)

yielding

detM
detA

= detS, (A.14)

but this is precisely result (A.5).
We obtain the inverse matrix M−1 as given by (A.6) by applying the Woodbury

identity a second time:

M−1 = (M̃+U2V2)
−1

= M̃−1 − M̃−1U2(1+ V2M̃
−1U2)

−1V2M̃
−1

=

(
A−1 −A−1B

0 1

)

−

(
A−1 −A−1B

0 1

)(
0

1

)
S−1

(
C D− 1

)(A−1 −A−1B

0 1

)

=

(
A−1 −A−1B

0 1

)
−

(
−A−1B

1

)
S−1

(
CA−1 S− 1

)

=

(
A−1 −B ′

0 1

)
−

(
−B ′S−1C ′ −B ′ +B ′S−1

S−1C ′ 1− S−1

)

=

(
A−1 0

0 0

)
+

(
B ′S−1C ′ −B ′S−1

S−1C ′ S−1

)

(A.15)
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a.3 vertex removal

We establish a multitude of relations between the matrix elements by noting that, of
course, MM−1 = M−1M = 1.

M−1M =

(
P Q

R T

)(
A B

C D

)
=

(
PA+QC PB+QD

RA+ TC RB+ TD

)
=

(
1 0

0 1

)
(A.16)

MM−1 =

(
A B

C D

)(
P Q

R T

)
=

(
AP+BR AQ+BT

CP+DR CQ+DT

)
=

(
1 0

0 1

)
(A.17)

Using these equations it’s easy to show that indeed

A−1 = P−QT−1R (A.18)

as stated in (A.4). We simply calculate A−1A:

A−1A = PA−QT−1RA

= 1−QC+QT−1TC

= 1

(A.19)

Similarly, let us apply the above expression for A−1 and the relations (A.16) and
(A.17) to the Schur complement S.

S = D−CA−1B

= D−CPB+CQT−1RB

= D+DRB+ (1−DT)T−1(1− TD)

= D+D(1− TD) + (1−DT)T−1(1− TD)

= T−1

(A.20)

Together with (A.5) this leads to

detA
detM

= detS−1 = det T . (A.21)

Finally we note that should we desire to remove a vertex which is not the last vertex,
we can swap rows and columns to obtain the required form of M – so that the rows
and columns which are to be removed are the last – do the calculation of A−1 and
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swap the rows and columns right back in A−1. This works as swapping a row in a
matrix corresponds to swapping the same column in its inverse matrix and vice versa.
We can even omit the final swapping in A−1 if we only keep track of the order of
the vertices as we swap rows and columns in M – after all, the order of the vertices
doesn’t matter in principle.



B
R E S O LV E N T G R E E N ’ S F U N C T I O N

Given a general one-particle Hamiltonian with the fermionic creation and annihilation
operators c†i and cj,

H =
∑
i,j

〈i|H |j〉 c†icj =
∑
i,j

Ti,jc
†
icj , (B.1)

we can find a formal solution for the Green’s function

Gi,j(τ) = −
〈
T ci(τ)c

†
j(0)

〉
. (B.2)

The solution is

G(iωm) = (iωm − T)−1 . (B.3)

Here G and T are now matrices in the basis introduced above and the fermionic
Matsubara frequencies are given by

iωm = i
π

β
(2m+ 1) . (B.4)

Let us now derive this simple and beautiful result. First, note that the operators are
in the modified Heisenberg picture

O(τ) = eτHOe−τH (B.5)

and thus the modified Heisenberg equation of motion holds

−
∂

∂τ
O(τ) = [O,H]− . (B.6)

We compute the commutator of the annihilator and the Hamiltonian

[cl,H]− =
∑
i,j

Ti,j

[
cl, c

†
icj

]
=

∑
i,j

Ti,jδl,icj =
∑
j

Tl,jcj (B.7)
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and take the derivative of the Green’s function with respect to the imaginary time.

−
∂

∂τ
Gi,j(τ) =

∂

∂τ

〈
T ci(τ)c

†
j(0)

〉
=
∂

∂τ

(
θ(τ)

〈
ci(τ)c

†
j(0)

〉
− θ(−τ)

〈
c
†
j(0)ci(τ)

〉)
= δ(τ)

(〈
ci(τ)c

†
j(0)

〉
+
〈
c
†
j(0)ci(τ)

〉)
+

〈
T
∂

∂τ
ci(τ)c

†
j(0)

〉
= δ(τ)

〈[
ci(τ), c

†
j(0)

]
+

〉
−
〈
T [ci(τ),H]− c

†
j(0)

〉
= δ(τ)

〈[
ci(0), c

†
j(0)

]
+

〉
−

∑
j

Ti,j

〈
T ci(τ)c

†
j(0)

〉
= δ(τ)δi,j +

∑
j

Ti,jGi,j(τ)

(B.8)

The imaginary time Green’s function can be expanded in a Fourier series

Gi,j(τ) =
1

β

∑
m

G(iωm)e−iωmτ , (B.9)

where G(iωm) is the energy space Matsubara Green’s function. Again taking the
derivative with respect to τ and setting equal to (B.8) yields

1

β

∑
m

Gi,j(iωm) (−iωm)e−iωmτ = −δ(τ)δi,j −
∑
j

Ti,j
1

β

∑
m

G(iωm)e−iωmτ . (B.10)

Noting that δn,m = 1
β

∫β
0 dτ ei(ωn−ωm)τ we consequently multiply with eiωnτ, inte-

grate over τ and finally arrive at

−iωmGi,j(iωm) = −δi,j −
∑
j

Ti,jGi,j(iωm) (B.11)

which is easily rewritten in matrix form

iωmG(iωm) = 1 + T G(iωm) , (B.12)

G(iωm) = (iωm − T)−1 . (B.13)

But that’s just our result (B.3) stated in the beginning. Symbolically we can write
equivalently

G(iωm) =
1

iωm −H
, (B.14)

which we understand as taken with respect to a basis |i〉.
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