Mathematics IV, Exercises 4.

Corrections May 21.

1) Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces over the field (Körper) of complex numbers. Show that $\mathcal{H}_1 \otimes \mathcal{H}_2$ as well as $\mathcal{H}_1 \oplus \mathcal{H}_2$ are also Hilbert spaces. That is you have to show that they are complete unitary spaces.

2) Distributions: Show that

$$
\lim_{\epsilon \to 0} \frac{1}{x + i\epsilon} = \mathcal{P}\frac{1}{x} - i\pi \delta(x)
$$

where $\delta(x)$ is the Dirac δ -function and $\mathcal P$ the principle value defined as:

$$
\int_{-\infty}^{\infty} dx \delta(x) \phi(x) = \phi(0) \text{ and } \int_{-\infty}^{\infty} dx \mathcal{P} \frac{1}{x} \phi(x) = \lim_{\epsilon \to 0} \left[\int_{-\infty}^{-\epsilon} dx \frac{\phi(x)}{x} + \int_{\epsilon}^{\infty} dx \frac{\phi(x)}{x} \right].
$$

Here $\phi(x)$ is in the Schwartz space of test-functions.

3) Let H be a Hilbert-space and A an operator on this Hilbert space as well as a vector $|f_0\rangle$ (in the Dirac notation) such that:

$$
[A, A^{\dagger}] = 1, A|f_0\rangle = 0 \text{ and } \langle f_0|f_0\rangle = 1.
$$

a. Consider

$$
H = \omega A^{\dagger} A. \tag{1}
$$

Show that H is hermitian and that $|f_n\rangle = \frac{1}{\sqrt{n}}$ $\frac{1}{n!} (A^{\dagger})^n | f_0 \rangle$ are eigenvectors of H. Find the eigenvalues.

b. Show that

$$
\langle f_n|f_m\rangle = \delta_{n,m}
$$

c. Let $\mathcal{H} = L^2(\mathbb{R})$ with scalar product

$$
\langle g|f\rangle = \int_{-\infty}^{\infty} dx \, [g(x)]^* f(x)
$$

and

$$
A = \frac{1}{\sqrt{2}} \left(\frac{d}{dx} + x \right), \text{ and } f_0(x) = \frac{e^{-x^2/2}}{\pi^{1/4}}.
$$
 (2)

Show that $[A, A^{\dagger}] = 1$ and that $(Af_0)(x) = 0$. Compute the operator H. Note. This is the Hamilton operator of the quantum mechanical harmonic oscillator. The eigenfunctions $f_n(x)$ are the Hermite functions.

d. Do the functions $f_n(x)$ with $f_0(x)$ defined in **c** form a complete orthonormal set of the Hilbert-space. To show completeness you have to show that the only $g(x) \in \mathcal{H}$ which satisfies $\langle g|f_n \rangle = 0 \quad \forall n$ is $g(x) = 0$. Here are some hints. Show that $\langle g|f_n \rangle = 0 \quad \forall n$ leads to $\langle g|x^n f_0\rangle = 0$ and in turn to $\langle g|e^{ikx} f_0\rangle = 0$ for all $k \in \mathbb{R}$. Then use the properties of Fourier transforms.

e. Let $L_{f_n}(g) \equiv \langle f_n | g \rangle$ for all $g \in \mathcal{H}$. In the Dirac notation one writes this linear functional as $\langle f_n|$. Show than the completeness of the functions $f_n(x)$ leads to

$$
\sum_n |f_n\rangle\langle f_n|=1
$$

and that

$$
H = \sum_{n} E_n |f_n\rangle\langle f_n|
$$

where $H|f_n\rangle = E_n|f_n\rangle$.