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To prove eq.5, consider Sheet 10 1b):
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Now I express the total spin in terms of the product above
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You can conclude now that Stot2|0, 0〉 = 0, Stot2|1, m〉 = 2~2|1, m〉

So we have the Hamiltonian in terms of total Spin. The states given in (7) are eigenstates to (Stot
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thus of Ĥ = J(1/2Stot2 − 3~2/4) as well.
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To determine whether the four states constitute a basis, note that we have 2⊗ 2 state combinations of the
two single spins, which results in the 3 ⊕ 1 linearly independed states given in (7). We know that they
are eigenstates to the hermitian operators S3 and S2 with different eigenvalues, thus they are mutually
orthogonal, and knowing that the Hilbert space has dimension 4, they constitute a basis. You could check
this by calculating
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d)
To show the property, one can demonstrate that the S± commute with the Hamiltonian. The classical
intuition is that the Hamiltonian depends on the relative orientation of the two spins only. Once this is
chosen (l = 1), the energy cannot depend on the absolute direction of the total spin, i.e. is independent
from m.
e)
By switching on the magnetic field in the z direction, rotational invariance around the x- and y-axes
is broken. We can’t expect that S± which are made up of S1,2 still commute with the Hamiltonian
(U †HU 6= H), and the energy will depend on m. There is still rotational symmetry about the z-axis
and therefore eigenstates of Ĥ can still have a sharp m ([Stot3, H] = 0). Furthermore, semi-classically we
would expect precession of the angular momentum around the magnetic field, which does not change the
absolute value of total angular momentum ([S2

tot, H] = 0).
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This is the case since the derivative is nonzero
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know that the components of angular momentum commute with total angular momentum squared because
they satisfy the usual algebra. Also, [Stot3, Stot3] = 0

iii. The states in (7) were eigenstates of Ĥ without magnetic field. They are eigenstates of Stot3 as well
(part c). Thus they are eigenstates of the new Hamiltonian.
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