
QM1 Exercises. Sheet 2.

Corrections May 15-16

1) Gaussian wave packet. (10 points)

In class we discussed the physics of the propagation of a wave packet. Now we have to do

the calculations!

Consider a free particle in one dimension which at time t = 0 is described by the wave

function:
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a) Compute Ψ̃(p, t = 0). Hint. You can use the Eq.
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b) Since Ψ(x, t) satisfies the Schrödinger Eq.
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show that Ψ̃(p, t) satisfies
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which is nothing but the Schrödinger Eq. in momentum space. Compute Ψ̃(p, t).

c) Show that:
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Here E(p0) = p2
0/2m, v0 = p0/m and D(t) = D + it~/2m

d) Show that

〈p〉 = p0, 〈x〉 = v0t
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2) Zero point motion. (5 points)

The Schrödinger Eq. of the one-dimensional harmonic oscillator reads:
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a) Show that the wave function:

Ψ(x) =
1√
x0

√
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e−x

2/2x2
0 with x0 =

√
~/mω (8)

is a solution of the stationary Schrödinger Eq.

ĤΨ(x) = EΨ(x) with E = ~ω/2 (9)

E corresponds to the energy eigenvalue.

b) Compute Ψ(x, t).

c) Compute 〈Ĥ〉, 〈P̂ 〉 and 〈X̂〉 for a particle in this state. Can you understand this result

classically?

d) Is it possible to find a wave function with smaller energy? Hint. Use the uncertainty

relation ∆x∆p ≥ ~/2.
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