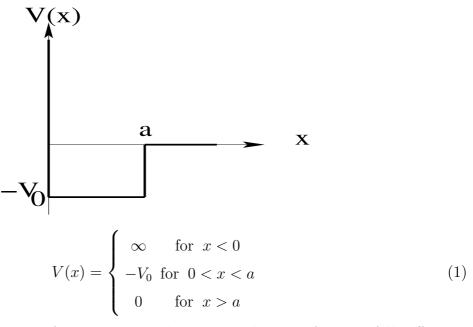
QM1 Exercises. Sheet 5.

Corrections June 12-13


1) Revival of quantum states. (5 Points)

Let E_n be the energy spectrum of a quantum mechanical system described by the Hamiltonian \hat{H} . That is; $\hat{H}|\Psi_n\rangle = E_n|\Psi_n\rangle$. Assume the the energy levels are equidistant as in the Harmonic oscillator for example. Show that for any initial state $\Psi(x, t = 0)$ there is a revival time t_{revival} such that $\Psi(x, t_{\text{revival}}) = e^{i\phi}\Psi(x, t = 0)$.

Such phenomena has been beautifully demonstrated in the context of Bose Einstein Condensates. Here is the reference: Nature 419, 51-54 (5 September 2002), Collapse and revival of the matter wave field of a Bose Einstein condensate by Markus Greiner, Olaf Mandel, Theodor W. Hänsch and Immanuel Bloch.

2) Potential barrier. (10 Points)

Consider the following potential in one dimension.

a) Find the stationary states for E < 0. For those states the wave function falls off exponentially at $x \to \infty$. They are hence normalizable and are called bound states.

b) Find the stationary states for E > 0. Theses states extend to infinity and are hence not normalizable. They are referred to as scattering states.

c) For E > 0 find the phase relation between the incident and reflected waves.

Note. In class we have seen that when V(x), and E are bounded then the wave function

and it's first derivative are continuous. In the present situation the potential diverges for x < 0 and at x = 0 the wave function is continuous but not differentiable !