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Abstract

We propose to reduce the uncertainty on any observable < W > esti-
mated during a Langevin simulation, by measuring (W; + W3)/2, where W;
and W, correspond to 2 Langevin processes using anti-correlated noise. The
Langevin noise of the first process is used in the second process after a rota-
tion chosen to encourage opposite deviations from the average < W >. This
variance reduction is illustrated for simple and realistic models. The vari-
ance is reduced by a factor O(40) or even becomes exactly zero in symmetric
cases. This method is put to best use when W is the sign of a fermionic de-
terminant. Tests on a one-dimensional model show a dramatic improvement
in the determination of the average sign. All these improvements result from
the anti-correlation of the noises, and require no additional computing effort.

1 Introduction

The simulation of systems with many Fermions poses a notorious challenge. The
"minus-sign problem” comes from the anti-commuting properties of the fermion
fields. It is present in Green’s function Monte Carlo methods. There, the ground-
state wave-function alternates in sign. Methods are still being developed [1, 2] to
generate self-consistently the nodal surface. In path-integral Monte Carlo, paths
can have positive or negative weights. Only in (1 + 1) dimension can one find a
formulation which does not exhibit a sign problem [5).

Here we want to address the general case of sampling the partition function Z.
Quadratic fermion interactions can be integrated, and give rise to a determinant,
so that )

z= [laglePaet(M(4)) o 0

where ¢ are bosonic degrees of freedom. Since the determinant can become
negative, Monte Carlo simulations sample the modified partition function

Z = [lag)e® det(m(9))] @)



The missing sign is accounted for in the averaging. For any observable W :

 [[dgle=S@ [det(M($))| sign(det)W($) < Wsign > :
<W>= [{dple=S@®) |det(M(9))| sign(det) < sign >3 3)

—1

The denominator in (3), < sign >;=< sign >3 is called the average sign.
It results from the subtraction of two _Emm numbers, and is consequently very
poorly determined by Monte Carlo sampling. This uncertainty affects in turn every
observable W. The problem gets worse as < sign >; decreases. Unfortunately the
physically interesting region often corresponds to an almost complete cancellation.
Such cases include the Hubbard model away from half- filling {6], QCD with an
odd number of Wilson fermionic flavors [7] , or supersymmetric models [8].

Ergodicity already represents a first challenge, since the effective action contains
a term Ln (Jdet|) . Infinite potential barriers separate regions of opposite signs in
phase space. Fortunately it was shown in [I6] that the Langevin equation still
maintains a finite .E::m:/:m rate as the step size is reduced. We therefore use the
Langevin approach, and try, to reduce the variance of the denominator in (3).

We use two Langevin simulations, and consider the average of pairs of measure-
ments performed at equal Langevin times on both simulations. By anti-correlating
the two Langevin noises, we favor configuration pairs of opposite signs, thereby re-
ducing the variance of the sign. An analogous idea was introduced by Hammersley
and Morton [3] for Monte Carlo integration under the name of antithetic variates.
Parisi [4] also suggested to correlate Langevin noises among two simulations in
order to measure a response function.

If the average sign takes the value s, uncorrelated simulations will yield prob-
abilities Py, P—_, Py_ of forming pairs with sign combinations ++,——, +— re-

n m
spectively equal to AHLNMV , A%v , ﬂ%. The variance of the estimator of s will be

_ W2 1-5%
d.[.mv._\.*.l_l.wll 8" = 9

Let us now correlate the two simulations, while maintaining proper sampling of

Z, so that one still has Py — P__ = s . The variance can be minimized if P__ =0

( assuming s > 0 ; otherwise Pyy =0 ). Then Py, = s, and the new variance will
be .
o' =g — s (4)

The variance is thus reduced by a factor % = H+w 2 | which represents the effective
gain in the computer time required to achieve a given accuracy on the measurement
of any observable. It is unbounded as s goes to zero. v’ itsell goes to zero with s.

To achieve the above redistribution of probabilities, we use the freedom avail-
able in choosing the Langevin noise of simulation 2 as a transform of the noise of
simulation 1 which preserves its Gaussian properties. The method is described in
Section 2. It is by no means restricted to the evaluation of the average sign. The
variance of any observable can be reduced by appropriate noise correlations. Ex-
amples are provided in Section 3, for the average of z in a one-dimension harmonic
potential, for the magnetization in the 2d half-filled Hubbard model, and for the
sign in a one-dimensional potential. The conclusion tries to evaluate the limits of
applicability of our method.

3
2 The method
We wish to evaluate by means of the Monte Carlo method the quantity: .
[ dze S@W (z)
<Wor=r—-—-">-7p——~
> J dze=5@) ()

The uncertainty on the Monte Carlo average < W > is Z 2 , where N is the number
of.independent values of W(z) along the Monte Carlo path, and the variance is :

W) =<W?> — < W >? (6)

In order to reduce o?(W), we carry out two simulations Wy, W, which we correlate
so as to minimize the fluctuations of the quantity W = (W; +W,)/2. The variance

~of W is now given by :

(W) = W%@E + 0°(W) + SCO(Ws, 2) )

where C(W,Ws) =< (Wy — < W >)(Wy — < W, >) >. Whenever one is able
to correlate the two Monte Carlo simulations so as to obtain C' < 0, one reduces
the variance. In the case of complete failure at correlating Wy and S\w (ie. C =0),
there still is no loss in’ computer time : the two simulations combine to reduce the
variance by a factor 1/2, and yield the same uncertainty on < W > as a single
simulation with 2 N measurements.

We sample the partition function with discretized Langevin dynamics:

v & 95(z)

T1a(t+ 8t) = 215(1) o + V26t 7y o(t) (8)

r=z1,2(t)

where < 9(£)1,29(t)12 > = 9.‘? Observables are measured using:

E
A?VlnﬁsiMUs\ 3&:. ‘@v
The above discretization of the Langevin équation introduces a systematic error
of order 6t. In the limit 6 — 0, the random noise ( of order /6t ) completely
dominates the drift term ( of order 6t ), and thus provides a means to correlate the
two Langevin simulations. The constraint is to preserve the Gaussian properties of
the random noise in both simulations. The goal is to minimize C.

We denote by P{(W;) the probability distribution at Langevin time t of W;.
The probability distribution of W3 is given by:

PY(W2)dW, = dW, [ dWiPY(W)Q(W, | W) (10)

where Q(W, | W;) 1s the conditional probability of W, given Wj. Perfect correlation
between the two simulations (¢2(W) = 0 in (6) ) requires:

QW | W) = 6(Wy+ Wo—2< W >) (11)



Assuming that at time ¢ we have perfect correlation, we may preserve it as long as:

where
ow 0S —
S\H n@ + %wv S\H wﬁwv + = ) - .%' ot + 26t Qubﬁv
z z=x12(t) z w=x1,2(t)

so that

ow ow

—_ — t O(6t) =

V25t 5 m(t) P na(t) p + O(6t):

z=z1(t) z=z2(t)

The antithetic condition thus requires:

QS\_&um%v ) = - <$\.

sy 0 (13)

where we have generalized OK:. result to several dimensions. If the random noise
71 (t) increases the value of W;(t), the random noise 75(t) has to be chosen so as to
decrease the value of W5(t) by the same quantity.

The above choice of the conditional probability (11) :Eurmm a symmetric prob-
ability distribution P;(W) around < W >. Only if this is true, can one achieve
perfect anti-correlation. ( See example 1.) Otherwise, the above antithetic condi-
tion needs to be relaxed to :

AQS\_W&S ) SSV Ad

2.1 One-dimensional systems.

ﬁsv <0. (14)

F=Ta(t)

The random noise 7,(t) is built from the random noise 7,(¢) through the w&mﬁofb“
n(t) = ) md),

ow ow
«*) b% s

Il

(15)

—S8tgn

r=z1(t) z=z,(t)

The above construction clearly satisfies the antithetic condition (14). Since e(t)
depends on all the random noises 7;(#'), t' < t but not on 7,(¢), the white noise
properties of 71(t) are transmitted to 72(t). This is shown below.

a) t=1, %Qv =1
< na(O)n(t) > =< mB)m(t) >=1
b t#£t, <t
< na(t)ma(t) >
=< e(t)e@)mE)m(t) >
= < e(t)e(t)m(t) >m=0)..m(t-1)< 71(t) >n(r)
=0 ) (16)

omia(t) = a() nia(t) , a(t) = —sign

2.2 Multi-dimensional systems.

We propose two correlation schemes.
* As in the one-dimensional case, each component of the random vector 7,(t)
is built from the corresponding component of the random vector 7y (t) :

ow w
%8.. =i

17)
=z;1(t) %Hm zi=x; 2(t) A
In analogy with the one-dimensional case, one sees that the white noise proper-
ties of 7, are transmitted to 7,. On closer inspection, however, this correlation
scheme does not Sonmmm@:_% satisfy the antithetic condition CAY because of the
cross-terms mﬂﬂhfﬁ; B0 9,12 10 (14). We thus propose below another way of in-
troducing the correlation which satisfies the antithetic condition but is somewhat
more complicated.

® Denote by P the plane defined by the two drift termis V, W and V,W, and by
a their angle. The random noise 7} is decomposed into a vector 71,1 perpendicular
to P and a vector 7ji,p in P. We rotate 7;,p in the plane P by an angle 8 = 7 —a,
obtaining R(B)7,p. The random noise for the second simulation is then given by:

2 = . + R(B) Mup (18)
where . . . .
hp = |- I ) YW + i - YWia | YWy
_ VWil [V IVWial) [VWL,]
and

Here, we have defined:

VWi = VW, — | VW, W W
. VWi|) VW]

The above correlation scheme preserves the white noise properties of 7, since the
latter is built by rotating the projection in_ the plane P of ;. ( Note that the
rotation is Emovﬁama_ of 7y. ) Furthermore, the antithetic condition (14) is
satisfied.

In practice, the rotation in equation (18) is realized ﬁrnozmr“

. <s\ L. VW YW,
- R(BYihp = r=—"2 — [fip =t | =2 (19)
_QS\F 2 VW] VW,
where . .
VWia = VW — (9w ooz | YWa
[VWa| ] [VWs|
and . .
o VW, VWi

r==xifpe - |Nr =] =—
[VWi| ] [V



3 Examples

3.1 One-dimensional harmonic potential.

We want to reduce the variance of

2

<z>= %ﬁ% (20)

The antithetic condition (14) requires: ,
m(t) = —m(t) (2
We start the simulation in the unfavorable situation z1(0) = x2(0). The state
z1(t) = —xo(¢) is an attractor of the dynamics, and one obtains < & > = 0 with

zero variance after thermalization ( See Fig. 1 ). This zero variance result occurs
whenever the Boltzmann distribution of W is symmetric around < W >, so that
(13) can be satisfied exactly at every step.

3.2 Two-dimensional Hubbard model at half filling.

The simulation of the two-dimensional Hubbard model is carried out with a pro-
jected trial wave function technique. The sampling is done with Langevin dynamics
[11, 9]. We wish to evaluate the magnetic quantities:

1 ._
<Wy>= <8 i>= ——=)>) <o;> 22
M= <S> JRg e @

as well as

< Wspm>= MUA]:a..i\.. <Si>= Tt g > (23)

1 :
s_ VR
Here S, ; denotes the z component of the spin on lattice site i, U the on-site Coulomb
repulsion, o the Hubbard-Stratonovitch fields and é7 the imaginary time interval
introduced through the Trotter decomposition. We have chosen to correlate the
two random noises component by component, following (17). The linearity of both
observables in the ¢’s results in the simple prescription :

Nz = —Nia (24)

and guarantees that the antithetic condition (14) will be satisfied. Figures 2 to 7
show the Langevin histories of Wy and Wsps for individual and combined simu-
lations. The equilibrium distribution of W is symmetric around 0, so that again
one achieves zero variance for the combined simulation. For Wgyy, the variance is

reduced by O(40).

3.3 Fermionic sign.

In order to minimize the fluctuations of the sign we choose to correlate the two
simulations with respect to W = det(M(¢)). Optimally, when the average sign
vanishes, the antithetic simulations will select exlusively (4, —) pairs thus reducing
the error on < signy + signg > /2 to zero.

In order to test the above correlation scheme we have modified a toy model
proposed in [16]). The effective action is given by (see Fig. 8) :

Sess(4) = ¢* — In | ¢* — 34> + 0.75|. (25)

Here, (¢* — 34* + 0.75) plays the role of the determinant and the parameters
have been chosen so that the average sign is zero. In this example, ergodicity is
essential since there are several disconnected regions of same sign. The results (
see Fig. 10 ) show that after very long runs, results of the individual simulations
are still wrong. On the other hand the quantity < sign; + sign. > /2 rapidly
converges to the right value. This is due to the anti- correlation of ¢; and ¢, as
shown in Fig. 9. At the same time, fluctuations are reduced by a factor 2.

4 Conclusion

We have explained how to reduce the variance of any observable W by correlat-
ing the noises of 2 Langevin simulations and measuring E The method has
been illustrated on both simple (1d harmonic potential) and noam:&.ox (2d Hubbard

model) systems. When the system has an n-fold symmetry, zero variance can be

‘achieved by correlating n simulations. This variance reduction is most crucial in

measurements of the average sign of the fermionic determinant. Simulation of a
one-dimensional médel shows a dramatic improvement.

Work is under way to assess the variance reduction achievable for the sign
of a 2d Hubbard determinant [9], and for Wilson and Polyakov loops in QCD
[10]. Preliminary results indicate that the Langevin time steps commonly used in
Hubbard simulations [11] are large compared to the width of the potential barrier
separating regions of opposite signs. There isho precursory sign announcing the
proximity of the barrier. This is very good from the point of view of ergodicity,
but makes any correlation scheme rather inefficient. An attractive feature of our
approach however is that, even in the case of complete failure, the 2 sets of results
are uncorrelated and can still be averaged together, yielding the variance of a
normal simulation at no extra cost of computer time.

Finally it is easy to generalize the idea to antithetic Metropolis steps [12], and
to the integration of complex functions. The latter adaptation might help in the
evaluation of fast oscillating integrals which appear in one reformulation of the

Hubbard model [13], and more generally in the presence of a chemical potential -
[14, 15].
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Figure captions

Fig. 1. Langevin history of z, versus z; for a one-dimensional harmonic potential.
The system is attracted to z3 = —x;.

Fig. 2. Langevin history of Wjs for first simulation in half-filled 2d Hubbard
model. See text, eq.(22).

Fig. 3. Langevin history of W), for second simulation in half-filled 2d Hubbard
model.

Fig. 4. Langevin history of Wy for combined simulations in half-filled 2d
Hubbard model.

Fig. 5 to 7. Same as Fig. 2 to 4, for Wap. See text, eq.(23). The variance is
reduced by O(40) for the combined simulations.

Fig. 8. Effective action Sg; for one-dimensional determinant model. See text,
eq.(25). .

Fig. 9. ¢, versus ¢;.

Fig. 10. Average sign for the single and combined simulations g successive
H&:mmﬁs times. Individual simulations give a wrong answer.
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