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Single hole dynamics in the Kondo Necklace and Bilayer Heisenberg models on a

square lattice.

C. Brünger and F.F. Assaad
Institut für Theoretische Physik und Astrophysik,

Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

We study single hole dynamics in the bilayer Heisenberg and Kondo Necklace models. Those
models exhibit a magnetic order-disorder quantum phase transition as a function of the interlayer
coupling J⊥. At strong coupling in the disordered phase, both models have a single-hole dispersion
relation with band maximum at ppp = (π, π) and an effective mass at this ppp−point which scales as
the hopping matrix element t. In the Kondo Necklace model, we show that the effective mass at
ppp = (π, π) remains finite for all considered values of J⊥ such that the strong coupling features of the
dispersion relation are apparent down to weak coupling. In contrast, in the bilayer Heisenberg model,
the effective mass diverges at a finite value of J⊥. This divergence of the effective mass is unrelated
to the magnetic quantum phase transition and at weak coupling the dispersion relation maps onto
that of a single hole doped in a planar antiferromagnet with band maximum at ppp = (π/2, π/2). We
equally study the behavior of the quasiparticle residue in the vicinity of the magnetic quantum phase
transition both for a mobile and static hole. In contrast to analytical approaches, our numerical
results do not unambiguously support the fact that the quasiparticle residue of the static hole
vanishes in the vicinity of the critical point. The above results are obtained with a generalized
version of the loop algorithm to include single hole dynamics on lattice sizes up to 20 × 20.

PACS numbers: 71.27.+a, 71.10.-w, 71.10.Fd

I. INTRODUCTION

The modeling of heavy fermion systems is based on an
array of localized spin degrees of freedom coupled anti-
ferromagnetically to conduction electrons. Those mod-
els show competing interactions which lead to magnetic
quantum phase transitions as a function of the antifer-
romagnetic exchange interaction J . Kondo screening of
the localized spins, dominant at large J , favors a param-
agnetic heavy fermion ground state, where the localized
spins participate in the Luttinger volume. In contrast,
the RKKY interaction favors magnetic ordering and is
dominant at small values of J . There has recently been
renewed interest concerning the understanding this quan-
tum phase transition. In particular, recent Hall experi-
ments [1] suggest the interpretation that in the vicinity
of the quantum phase transition the localized spins drop
out of the Luttinger volume. Starting from the param-
agnetic phase, this transition from a large to small Fermi
surface should coincide with a effective mass divergence
of the heavy fermion band.

Motivated by the above, we consider here a very simpli-
fied situation namely that of a doped hole in the Kondo
insulating state as realized by the Kondo necklace and
related models. Although this is not of direct relevance
for the study of the Fermi surface, it does allow us to in-
vestigate the form of the quasiparticle dispersion relation
from strong to weak coupling for a variety of models. Our
aim here is two fold. On one hand we address the ques-
tion of the divergence of the effective mass as a function
of coupling for different models, and on the other hand
the fate of the quasiparticle residue in the vicinity of the
quantum phase transition.

The KLM emerges from the periodic Anderson model

(PAM), where we have localized orbitals (LO) with on-
site Hubbard interaction Uf and extended orbitals (EO),
which form a conduction band with dispersion ε(ppp) =
−2t (cos px + cos py). The overlap between the LOs and
the EOs within each unit cell is described by the hy-
bridization matrix element V . For large Uf charge fluc-
tuations on the localized orbitals becomes negligible and
the PAM maps via the Schrieffer-Wolff transformation
onto the KLM [2, 3]:

ĤKLM =
∑

ppp,σ

ε(ppp)ĉ†pppσ ĉpppσ + J
∑

i

ŜSS
c

iiiŜSS
f

iii . (1)

Here ŜSS
c

iii and ŜSS
f

iii are spin 1/2 operators for the extended
orbitals and the localized orbitals respectively. In the
first term, which represents the hopping processes, the

fermionic operators ĉ†pppσ (ĉpppσ ) create (annihilate) elec-
trons in the conduction band with wave vector ppp and
z-component of spin σ. At half-filling – one conduc-
tion electron per localized spin – the two-dimensional
KLM is an insulator and shows a magnetic order-disorder
quantum phase transition at a critical value of Jc/t =
1.45 ± 0.05 [4].
By taking into account an additional Coulomb repulsion
U between electrons within the conduction band, one ob-
tains a modification of the KLM, the UKLM:

ĤUKLM =
∑

ppp,σ

ε(ppp)ĉ†pppσ ĉpppσ + J
∑

i

ŜSS
c

iiiŜSS
f

iii

+U
∑

iii

(

n̂iii↑ − 1
2

) (

n̂iii↓ − 1
2

)

. (2)

Here, n̂iiiσ = ĉ†iiiσ ĉiiiσ is the density operator for electrons
with spin σ in the conduction band. The additional
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FIG. 1: (a) Isotropic bilayer Heisenberg model. (b) Kondo
Necklace model, that is related to the UKLM. In both cases
the system dimerizes for large J⊥, so that the AF ordering
breaks down.

Coulomb repulsion displaces the quantum critical point
towards smaller value of Jc/t. However the physics, in
particular the single hole dynamics, remains unchange
[5]. This allows us to take the limit U/t → ∞ to map
the UKLM onto a Kondo necklace model (KNM) which
we write as:

Ĥ = J⊥
∑

iii

ŜSS
(1)

iii ŜSS
(2)

iii +
∑

〈iiijjj〉

∑

m

J
(m)
‖ ŜSS

(m)

iii ŜSS
(m)

jjj . (3)

Here ŜSS
(m)

iii is a spin 1/2 operator, which acts on a spin

degree of freedom at site iii. J
(m)
‖ stands for the intralayer

exchange and the upper index m = 1, 2 labels the two
different layers. The interlayer exchange, formerly the
AF coupling J between LOs and EOs, is now character-
ized by J⊥. Clearly, since we have motivated the KNM
from a strong coupling limit of the UKLM, we have to
set:

J
(1)
‖ ≡ J‖ J

(2)
‖ = 0 for the KNM. (4)

The above models all have in common that the only inter-
action between the localized spins stems from the RKKY
interaction. This in turn leads to the fact that at J = 0
for the KLM and UKLM or J⊥ = 0 for the KNM the
ground state is macroscopically degenerate. To lift the
pathology we finally consider a Bilayer Heisenberg Model
(BHM) in which an independent exchange between the
localized spins is explicitly included in the Hamiltonian.
Hence we will equally consider an Isotropic BHM which
takes the form of Eq. (3) with:

J
(1)
‖ = J

(2)
‖ ≡ J‖ for the isotropic BHM. (5)

Both the KNM and BHM systems are sketched in FIG.
1.

The main results and organization of the paper are the
following. In section II we give a short overview of the
quantum Monte Carlo (QMC) method. We use a gener-
alization of the loop algorithm which allows for the cal-
culation of the imaginary time Green’s function of the
doped hole [6]. Dynamical information is obtained with
a stochastic Maximum Entropy method [7, 8]. In the
first part of section III we present our results for the
spin dynamics. This includes the determination of the
quantum critical point for the isotropic BHM as well as
the Kondo Necklace model (KNM) by QMC methods.
In the second part of that section we analyze the sin-
gle particle spectral function. It turns out, that there
are significant differences between the models. We can
identify two classes of models: In the isotropic BHM the
dispersion is continously deformed with decreasing inter-
planar coupling J⊥/J‖ resulting in a displacement of the
maximum from ppp = (π, π) to ppp = (π

2 ,
π
2 ). In other words,

the effective mass – as defined by the inverse curvature
of the quasiparticle dispersion relation – at ppp = (π, π) di-
verges at a finite value of the interplanar coupling. This
divergence of the effective mass is not related to the mag-
netic order-disorder transition. In contrast, in the KLM
related models, UKLM and KNM, the maximum of the
quasiparticle dispersion relation is pinned at ppp = (π, π)
irrespective of the value of the interplanar coupling. In
those models the effective mass at ppp = (π, π) grows as a
function of decreasing interplanar coupling, but remains
finite.
In section IV we turn to the analysis of the quasi particle
residue (QPR) across the quantum phase transition. To
gain intuition, we first carry out an approximate calcula-
tion in the lines of Ref. [9]. The physics of the spin sys-
tem may be solved in the framework of a bond mean-field
calculation. Here, the disordered phase is described in
terms of a condensate of singlets between the planes and
gaped spin 1 excitations (magnons). At the critical point
the magnons condense at the AF wave vector thus gen-
erating the static antiferromagnetic order. Within this
framework one can compute the coupling of the mobile
hole with the magnetic fluctuations and study the hole
dynamics within a self-consistent Born approximation.
The result of the calculation shows that the quasiparti-
cle weight at wave vectors on the magnetic Brillouin zone
[ǫ(ppp) = ǫ(ppp +QQQ) with QQQ = (π, π) ] vanish as the square
root of the spin gap. In contrast the QMC determina-
tion of the quasiparticle residue on lattices up to 20× 20
for static and dynamical holes does not unambiguously
support this point of view.

II. NUMERICAL METHODS

We use the world line QMC method with loop updates
[10] to investigate the physics of the BHM and KNM. To
investigate the spin dynamics we compute both the spin
stiffness as well as the dynamical spin structure factor.
Our analysis of the single hole dynamics is based on the
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calculation of the imaginary time Green’s function. Ana-
lytical continuation with the use of the stochastic Maxent
Method provides the spectral function and the quasipar-
ticle residue is extracted from the asymptotic behavior of
the imaginary time Green’s function. Below, we discuss
in more details the calculation of each observables.

Spin Stiffness

To probe for long-ranged magnetic order we introduce a
continuous twist in spin space which, when cumulated
along the length L along (e.g.) the x-axis, amounts to a
twist of angle φ around a certain spin axis eee. This means

thus the boundary conditions read: ŜSSiii+Leeex
= R [eee, φ] ŜSSiii,

where R [eee, φ] is a matrix describing an SO(3) rotation
around the axis eee by the angle φ. The spin stiffness is
then defined as

ρs = − 1

Ld−2

1

β

∂2

∂φ2
lnZ(φ)

∣

∣

∣

∣

φ=0

(6)

with β as inverse temperature, L as the linear size of the
system, d the dimensionality and Z(φ) the twist depen-
dent partition function. In the presence of long-range
order ρs takes a finite value and in a disordered phase it
vanishes.
Within the world-line algorithm, the spin stiffness is re-
lated to the winding number Wx of the world line con-
figurations along the axis of cumulatively twisted spins
(e.g. x-axis). In particular, in the limit ∆τ → 0 it takes
the simple form

ρs =
1

Ld

1

β
W2

x. (7)

Spin Correlations

Within the QMC it is easy to obtain the spin correla-
tions 〈Sz

iii (τ)Sz
jjj (0)〉 in real space and imaginary time τ ,

where the imaginary time evolution of the spin operator

reads Sz
qqq (τ) = eτĤSz

qqq e
−τĤ . Its representation in momen-

tum space is related to the dynamical spin susceptibility
S(qqq, ω) via:

〈Sz
qqq (τ)Sz

−qqq(0)〉 =
1

π

∫

dωe−τωS(qqq, ω). (8)

By using the Stochastic Maximum Entropy (ME) method
[7] we can extract the dynamical spin susceptibility. For
large τ the spin correlation function is dominated by the
lowest excitation:

lim
τ→∞

〈Sz
qqq (τ)Sz

−qqq(0)〉 ∝ e−Ω(qqq)τ (9)

where Ω(qqq) stands for momentum dependent gap to the
first spin excitation. Thus, we obtain the gap energy ∆
from the asymptotic behavior of the spin correlations:
∆ ≡ min [Ω(qqq)].

The Green’s Function

To incorporate the dynamics of a single hole into the
KNM and BHM, we consider the tJ-model

ĤtJ = PS

[

−
∑

〈iiijjj〉,σ

tiiijjj(ĉ
†
iiiσ ĉjjjσ + ĉ†jjjσ ĉiiiσ)

+
∑

〈iiijjj〉

Jiiijjj

{

ŜSSiiiŜSSjjj − 1
4 n̂iiin̂jjj

}

]

PS (10)

which describes the more general case of arbitrary filling.
Here, iii and jjj denote lattice sites of the bilayer BHM, tiiijjj
the hopping amplitude, Jiiijjj the exchange, n̂jjj = ĉ†iiiσ ĉiiiσ,
and the sums run over nearest inter- and intraplane
neighbors. Finally PS is a projection operator onto the
subspace S with no double occupation. We apply a map-
ping, introduced by Angelucci [11], which separates the
spin degree of freedom and the occupation number.

| ↑〉 −→ |1,⇑〉 ĉiii↑ −→ σ̂z,+
iii f̂ †

iii − σ̂z,−
iii f̂iii

| ↓〉 −→ |1,⇓〉 ĉ†iii↑ −→ σ̂z,+
iii f̂iii − σ̂z,−

iii f̂ †
iii

|0〉 −→ |0,⇑〉 ĉiii↓ −→ (f̂iii + f̂ †
iii )σ̂+

iii

| ↑↓〉 −→ |0,⇓〉 ĉ†iii↓ −→ σ̂−
iii (f̂ †

iii + f̂iii)

(11)

f̂ †
iii and f̂iii are spinless fermion operators which act on the

charge degree of freedom and create (annihilate) a hole

at site i: f̂ †
iii |1, σ〉 = |0, σ〉, σ̂±

iii are ladder operators for the

spin degree of freedom and σ̂z,±
iii = 1

2 (1±σ̂z
iii ) are projector

operators acting on the spin degree of freedom. Within
this base the Hamilton of the tJ-model (10) writes:

H̃tJ = P̃S

[

∑

〈iiijjj〉

tiiijjj
[

f̂ †
jjj f̂iiiP̃iiijjj + h.c.

]

+
1

2

∑

〈iiijjj〉

Jiiijjj(P̃iiijjj − 1)∆̃iiijjj

]

P̃S (12)

where P̃iiijjj = 1
2 (~̂σiii~̂σjjj + 1) and ∆̃iiijjj = 1 − f̂ †

iii f̂iii − f̂ †
j f̂jjj

P̃S =
∏

iii

(

1− f̂ †
iii f̂iiiσ̂

−
iii σ̂

+
iii

)

is a projection operator in An-
gelucci representation which projects into the subspace
S. This representation (12) has two important advan-
tages which facilitate numerical simulations: (i) Because
the Hamiltonian commutes with the projection operator:
[H̃tJ , P̃S ] = 0, the bare Hamiltonian (H̃tJ without pro-
jections) generates only states of subspace S provided
that the initial state is in the relevant subspace. (ii) The
Hamiltonian is bilinear in the spinless fermion operators.
Within the Angelucci representation the Green’s function
reads:

Gjjjiii(τ) = 〈σ̂z,+
jjj (τ)f̂jjj(τ)σ̂

z,+
iii (0)f̂ †

iii (0)〉 . (13)

The time evolution in imaginary time is given by:

σ̂z,+
jjj (τ)f̂jjj(τ) = eτH̃tJ σ̂z,+

jjj f̂jjje
−τH̃tJ . The authors of Ref.

[6] show in details how to implement the Green’s func-
tion into the world line algorithm of our QMC simula-
tion. The spin dynamics is simulated with the loop algo-
rithm. For each fixed spin configuration, one can readily
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compute the Green’s function since the Hamiltonian is

bilinear in the spinless fermion operators f̂ .
From the Green’s function Gppp(τ) we can extract the sin-
gle particle spectral function A(ppp, ω) with the Stochastic
Maximum Entropy:

Gppp(τ) =
1

π

∫ ∞

0

dωe−τωA(ppp,−ω) . (14)

In the T = 0 limit the asymptotic form of the Green’s
function reads:

Gppp(τ) = |〈ψN−1
0 |ĉppp|ψN

0 〉|2e−µτ (15)

where µ is the chemical potential. As apparent, the pref-
actor,

Zppp = |〈ψN−1
0 |ĉppp|ψN

0 〉|2 , (16)

is nothing but the quasiparticle residue. Hence from the
asymptotic form of the single particle Green’s function,
we can read off the quasiparticle residue.

III. SPIN AND HOLE DYNAMICS

In this section we present our results for the spin dynam-
ics as well as for the spectral function of a doped mobile
hole.

A. Spin Dynamics

All considered models, KLM, UKLM, KNM and BHM,
show a quantum phase transition between an antiferro-
magnetic ordered phase and a disordered phase. It is
believed, that all models belong to the same universality
class. To demonstrate this generic property and to test
our numerical method we determine the quantum critical
point as well as critical exponents in the isotropic BHM
and KNM. Fig. 2a plots the spin stiffness for the KNM
as a function of lattice size. The extrapolated data is
plotted in Fig. 2b. We fit the data to the form:

ρs ∝
[(J⊥
J‖

)

c
−

(J⊥
J‖

)]ν

(17)

to obtain (J⊥/J‖)c = 1.360 ± 0.017 and a critical expo-
nent of ν = 0.582± 0.077, which agrees (within the error
bars) with the value of Ref. [12]: ν = 0.685 ± 0.035.
Similar data for the BHM localizes the quantum criti-
cal point at (J⊥/J‖)c = 2.5121± 0.0044, which conforms

roughly the literature value (J⊥/J‖)
lit
c = 2.525 ± 0.002

of Ref. [13]. For the critical exponent we obtain ν =
0.7357 ± 0.044. Again this is in good agreement with
the critical exponent specified in Refs. [12]. In Ref. [14]
the BHM and the KNM are observed by dimer series ex-
pansions. Within this framework our numerical results
are reflected quite well. FIG. 3 plot the dynamical spin

J⊥/J‖ = 1.5
J⊥/J‖ = 1.4
J⊥/J‖ = 1.3
J⊥/J‖ = 1.2
J⊥/J‖ = 1.1
J⊥/J‖ = 1.0
J⊥/J‖ = 0.9(a)

1/L

ρ
s

0.30.250.20.150.10.050

0.3

0.25

0.2

0.15

0.1

0.05

0

fit(b)

J⊥/J‖

ρ
s

1.71.61.51.41.31.21.110.90.8

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

FIG. 2: (a) Spin stiffness ρs as a function of linear lattice size
L for different interplanar couplings J⊥/J‖ in the KN model.
Extrapolation to the thermodynamic limit is carried out by
fitting to the form a+ b/L (b) Extrapolated value of the spin
stiffness as a function of J⊥/J‖. The dashes line corresponds
to the fit according to the form of Eq. (17).

structure factor as a function of J⊥/J‖ for the BHM. In
the deeply disordered phase the dispersion has a cosine-
like shape. In the limit J⊥ → ∞ the ground state wave
function is a tensor product of singlets in each unit cell.
Starting from this state, a magnon corresponds to break-
ing a singlet to form a triplet. In first order perturbation
theory in J⊥/J‖, the magnon acquires a dispersion rela-
tion:

Ω(qqq) ≈ J⊥ + 1
2J‖γ(qqq) (18)

with γ(qqq) = 2 (cos(qx) + cos(qy)). This approximative
approach is roughly consistent with the large-J⊥ case in
Fig. 3a. As as function of decreasing coupling J⊥ the spin
gap progressively closes (see Fig. 4) and at the critical
coupling the magnons at qqq = (π, π) condense to form the
antiferromagnetic order. This physics is captured by the
bond mean field approximation which we discuss below.

Bond Operator Mean Field Approach

The bond mean field approach [15] is a strong coupling
approximation in J⊥. The spins between layers domi-
nantly form singlets and the density of triplets is ”low”.
This assumption allows one to neglect triplet-triplet in-
teraction. The bond operator representation describes
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ω
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(b) J⊥/J‖ = 3.0

ω

10

8

6

4

2

0

6

4

2

0
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(c) J⊥/J‖ = 2.5

ω

10

8

6

4

2

0

qqq

FIG. 3: Dynamical spin susceptibility, respectively magnon
dispersion for different coupling ratios on a 12 × 12 square
lattice.

the system in a base of pairs of coupled spins, which can
either be in a singlet or triplet state.

|s〉iii = ŝ†iii |0〉iii =
1√
2
(| ↑↓〉iii − | ↓↑〉iii)

|tx〉iii = t̂†iiix|0〉iii =
−1√

2
(| ↑↑〉iii − | ↓↓〉iii)

|ty〉iii = t̂†iiiy|0〉iii =
i√
2
(| ↑↑〉iii + | ↓↓〉iii)

|tz〉iii = t̂†iiiz |0〉iii =
1√
2
(| ↑↓〉iii + | ↓↑〉iii) (19)

The operators t̂† and ŝ† satisfy Bose commutation rules
provided that we impose the constraint

ŝ†iii ŝiii +
∑

α

t̂†iiiα t̂iiiα = 1 . (20)

Since the original spin 1/2 degrees of freedom reads,

Ŝ
(1,2)
iiiα = 1

2 (±ŝ†iii t̂iiiα ± t̂†iiiαŝiii − i
∑

βγ

ǫαβγ t̂
†
iiiβ t̂iiiγ) , (21)

the Hamiltonian (3) can be rewritten in the bond opera-
tor representation as:

H̃ = J⊥
∑

iii

(

− 3
4 ŝ

†
iii ŝiii + 1

4

∑

α

t̂†iiiα t̂iiiα
)

−
∑

iii

µiii

(

ŝ†iii ŝiii +
∑

α

t̂†iiiαt̂iiiα − 1
)

+
J‖

2

∑

〈iiijjj〉

∑

α

(

ŝ†iii ŝ
†
jjj t̂iiiα t̂jjjα + ŝ†iii ŝjjj t̂iiiα t̂

†
jjjα + h.c.

)

+
J‖

2

∑

α,β,γ

(t̂†iiiβ t̂iiiγ t̂
†
jjjβ t̂jjjγ − t̂†iiiβ t̂iiiγ t̂

†
jjjγ t̂jjjβ) .

µiii is a Lagrange parameter which enforces locally the
constraint (20). The interplanar part shows the charac-
teristic Hamiltonian of two antiferromagnetically coupled
spins whereas the intraplanar part includes the interac-
tion between singlets and triplets of different bonds. We
now follow the standard method of Sachdev and Bhatt
[15]. In the disordered phase we expect a singlet con-
densate (s̄ = 〈s〉 6= 0) and impose the constraint only on
average (µiii = µ). As mentioned above we neglect triplet-
triplet interactions. Apart from a constant we obtain the
following mean field Hamiltonian in momentum space:

ĤMFA =
∑

α

∑

qqq

Aqqq t̂
†
qqqα t̂qqqα

+
∑

α

∑

qqq

Bqqq

2
(t̂†qqqαt̂

†
−qqqα + h.c.) , (22)

where

Aqqq =
J⊥
4

− µ+ J‖s̄
2
(

cos(qx) + cos(qy)
)

(23)

Bqqq = J‖s̄
2
(

cos(qx) + cos(qy)
)

. (24)

The parameter µ and s̄ = 〈s〉 are determined by

the saddle-point equations: 〈∂ĤMFA/∂µ〉 = 0 and

〈∂ĤMFA/∂s̄〉 = 0. The Hamiltonian is diagonalized by

a Bogoliubov transformation: α̂†
qqqα = uqqq t̂

†
qqqα − vqqq t̂−qqqα. In

terms of magnon creation and annihilation operators the
Mean field Hamiltonian (22) writes:

ĤMFA =
∑

qqq

∑

α

Ω(qqq)α̂†
qqqαα̂qqqα . (25)

The Bogoliubov coefficients uqqq and vqqq satisfy the relation
u2

qqq −v2
qqq = 1, which follows from the bosonic nature of the

magnons: [α̂qqq, α̂
†
qqq′ ] = δqqqqqq′ . The coefficients are given by

uqqq, vqqq =

√

Aqqq

2Ω(qqq)
± 1

2
, (26)

where Ω(qqq) =
√

A2
qqq −B2

qqq is the magnon dispersion. In

the vicinity of the critical point it can be approximated
by

Ω(qqq) =
√

∆2 + v2
s(qqq −QQQ)2 (27)
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(a)

τJ‖

〈S
z (π

,π
)(
τ
)S

z (π
,π

)
(0

)〉

876543210

100

10

1

0.1

L = 20

L = 16

L = 12

(b)

J⊥/J‖

∆
/
J
‖

43.532.52

2

1.5

1

0.5

0

FIG. 4: (a) Spin correlation function (J⊥/J‖ = 2.7) at ppp =
(π, π) for a 12× 12 lattice in the BHM. (Inverse temperature
βJ‖ = 30.0, ∆τJ‖ = 0.02) (b) Spin gap ∆ at ppp = (π, π) for
different coupling ratios J⊥/J‖. The data for a 12×12 lattice

is fitted by ∆ ∝ (g − gc)
−zν with g = J⊥/J‖ and literature

values gc = 2.525 ± 0.002 [13] and z = 1 [12]

with ∆ the energy gap to magnon excitations, vs the
magnon velocity and QQQ = (π, π). Eq. (27) gives an accu-
rate description of the dispersion relation in the vicinity
of the critical point (see FIG. 3c). At the critical point
the gap ∆ vanishes, so that the triplets can condense thus
forming the AF static ordering.

B. Hole dynamics

We now dope our systems with a single mobile hole and
restrict its motion to one layer thereby staying in the
spirit of Kondo lattice models. To understand the cou-
pling of the hole to magnetic fluctuations within the mag-
netic disordered phase we can extend the previously de-
scribed bond mean-field approximation (See Eq. (25)) to
account for the hole motion. For this we introduce the
operator ĥ†iiiσ (ĥiiiσ), that creates (anhilates) a hole with
spin σ in layer 1 at site iii.

ĥ†iiiσ|vac〉 = |0σ〉iii (28)

|σ1σ2〉iii denotes a dimer state at site iii with spin σ1 in
layer 1 and spin σ2 in layer 2. The Hamiltonian now

writes [16]:

Ĥ =
∑

qqq

Ω(qqq)α̂αα†
qqqα̂ααqqq +

∑

ppp

ε(ppp)ĥ†pppĥppp (29)

+
∑

ppp,qqq

g(ppp,qqq)αααqqq ·
(

ĥ†ppp+qqqσσσĥppp

)

+ h.c.

with spinor ĥppp = (ĥppp↑, ĥppp↓) and vector α̂ααqqq =
(α̂qqqx, α̂qqqy, α̂qqqz). σσσ = (σ1, σ2, σ3) denotes the Pauli ma-
trices. The coupling strength between the hole and
magnons is given by g(ppp,qqq). We discuss g(ppp,qqq) in de-
tail later in section IV. For the bare hole dispersion the
calculation yields

ε(ppp) = +ts̄2
(

cos(px) + cos(py)
)

. (30)

In the limit J⊥ → ∞ the magnon excitation energy
diverges (see Eq. (18)) and hence the coupling of the
hole to magnetic excitations becomes negligible. In this
limit the magnon excitations become quite rare, so that:
s̄ ≡ 〈s〉 ≈ 1. Thus, in the strong coupling region we
obtain from (29) a hole dispersion relation:

E(ppp) = t
(

cos(px) + cos(py)
)

. (31)

This agrees with the result given by applying perturba-
tion theory in t/J⊥ [3].
As apparent from Figs. 5 and 6 this strong coupling
behavior is reproduced by the Monte Carlo simulations
where the dispersion exhibits a cosine form with maxi-
mum at ppp = (π, π). The form of this dispersion relation
directly reflects the singlet formation – in other words
Kondo screening – between spin degrees of freedom on
different layers. We note that this strong coupling be-
havior of the dispersion relation sets in at larger values
of J⊥/J‖ for the BHM than for the KNM. This is quite
reasonable since in the BHM the single bonds are coupled
among each other within both layers.
With decreasing coupling ratio the bandwidth of the
quasiparticle dispersion relation diminishes but the over-
all features of the strong coupling remain.
In the weak coupling limit we observe considerable differ-
ences between the single particle spectrum of the BHM
and KNM. Let us start with the BHM. For this model
the point J⊥/J‖ = 0 is well defined (i.e. the ground is
non-degenerate on any finite lattice) and corresponds to
two independent Heisenberg planes with mobile hole in
the upper plane. The problem of the single hole in a two
dimensional Heisenberg model has been addressed in the
framework of the self-consistent Born approximation [17],
and yields a dispersion relation given by:

E(ppp) = J‖ (cos(p)x + cos(py))
2
. (32)

Since at J⊥/J‖ = 0 we have a well defined ground state
we can expect that turning on a small value of J⊥/J‖
will not alter the single hole dispersion relation. This
point of view is confirmed in Fig. 5. At J⊥/J‖ = 1,
the single hole dispersion relation follows of Eq. (32).
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(a) J⊥/J‖ = 10.0

210-1-2-3-4-5-6

(π, π)

(0, 0)

(0, π)

(π, π)

(b) J⊥/J‖ = 2.4

210-1-2-3-4-5-6

(π, π)

(0, 0)

(0, π)

(π, π)

(c) J⊥/J‖ = 2.0

210-1-2-3-4-5-6

(π, π)

(0, 0)

(0, π)

(π, π)

(d) J⊥/J‖ = 1.0

210-1-2-3-4-5-6

(π, π)

(0, 0)

(0, π)

(π, π)
ω/J‖

FIG. 5: Spectrums of a mobile hole for a 12 × 12 lattice in
the BHM. The small dashed lines in (a) tag the dispersion of
a free particle; in (d) they outline a dispersion of the form:
E(ppp) = J‖ (cos(p)x + cos(py))2.

Hence and as confirmed by Fig. 5 the dispersion rela-
tion of a single hole in the BHM continuously deforms
from the strong coupling form of Eq. (31) to that of a
doped hole in a planar antiferromagnet (see Eq. (32)).
Hence as a function of J⊥/J‖ there is a point where the
effective mass (as defined by the inverse curvature of the
dispersion relation) at ppp = (π, π) diverges. Upon inspec-
tion of the data (see Fig. 5), the point of divergence of
the effective mass is not related to the magnetic quan-
tum phase transition and since it occurs slightly below
(

J⊥/J‖
)

c
. This crossover between a dispersion with min-

imum at ppp = (π, π) and minimum at ppp = (π/2, π/2) with
a crossover point lying inside the AF ordered phase is
also documented in Ref. [16].
The above argument can not be applied to the KNM,
since the J⊥/J‖ = 0 point is macroscopically degenerate
and hence is not a good starting point to understand the
weak-coupling physics. Clearly the same holds for the
KLM and UKLM. Inspection of the spectral data deep
in the ordered phase of the KNM (see Fig. 6c) shows that
the maximum of the dispersion relation is still pinned at
ppp = (π, π) such that the strong coupling features stem-
ming from Kondo screening is still present at weak cou-
plings. For the KNM and up to the lowest couplings we
have considered the effective mass at ppp = (π, π) increases
as a function of decreasing coupling strength but does
not seem to diverge at finite values of J⊥/J‖. Precisely
the same conclusion is reached in the framework of the
KLM [4] and UKLM [5].

IV. QUASI PARTICLE RESIDUE

In this section we turn out attention to the delicate issue
of the quasiparticle residue in the vicinity of the magnetic
quantum phase transition. We first address this question
within the framework of the the mean-field model of Eq.
(29) and compute the single particle Green’s function
within the framework of the self-consistent Born approx-
imation. In a second step, we attempt to determine the
quasiparticle residue directly from the Monte Carlo data.

A. Analytical Approach

Here we restrict our analysis to the BHM. and return
to the Hamiltonian (29). The coupling between the hole
and magnons g(ppp,qqq) reads:

g(ppp,qqq) = ga(ppp,qqq) + gb(ppp,qqq).

We identify the two coupling constants with the processes
that are shown in Fig. 7: ga(ppp,qqq) is proportional to the
hopping matrix element and hence describes the coupling
of a mobile hole to magnetic background, whereas gb(ppp,qqq)

is proportional to J
(2)
‖ and describes the coupling of a

hole at rest with the magnons. Our calculations give the
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(a) J⊥/J‖ = 4.0

210-1-2-3-4-5-6

(π, π)

(0, 0)

(0, π)

(π, π)

(b) J⊥/J‖ = 2.0

210-1-2-3-4-5-6

(π, π)

(0, 0)

(0, π)

(π, π)

(c) J⊥/J‖ = 0.5

210-1-2-3-4-5-6

(π, π)

(0, 0)

(0, π)

(π, π)
ω/J‖

FIG. 6: Spectrum of the KNM for a 12 × 12 lattice. The
dashed lines tag the dispersion of a free particle.

following momentum dependent coupling strengths:

ga(ppp,qqq) = − ts̄√
N

(

γ(ppp+ qqq)u(qqq) + γ(ppp)v(qqq)
)

(33)

gb(ppp,qqq) = −
J

(2)
‖ s̄

8
√
N
γ(qqq)

(

u(qqq) + v(qqq)
)

(34)

where γ(qqq) = 2
(

cos(qx) + cos(qy)
)

. We concentrate on
the coupling to critical magnetic fluctuations and hence
set qqq = QQQ and place ourselves in the proximity of the
quantum phase transition, on the disordered side. In
this case Ω(QQQ) → 0 and the coherence factors (see Eq.

(26)) are both proportional to Ω(qqq)−
1

2 . Since furthermore
γ(ppp + QQQ) = −γ(ppp) one arrives at the conclusion that
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FIG. 7: Two possible processes where the hole can couple to
magnons: (a) The hole moves to a next neighbor. (b) The
hole is at rest.

ga(ppp,QQQ) vanishes at the critical point. There is hence
no coupling via process (a) to critical fluctuations. In
other words process (a) couples only to short range spin
fluctuations. On the other hand in the vicinity of the
critical point gb scales as gb(ppp,qqq) ∝ Ω(qqq)−

1

2 so that we
can only retain this term to understand the coupling to
critical fluctuations. Summarizing we set:

g(ppp,qqq) → gb(qqq) ∝
1

√

Ω(qqq)
, (35)

for the subsequent calculations. It is intriguing to note

that in this simple approximation gb(qqq) scales as J
(2)
‖ ,

which is strictly speaking null in the KNM. However,
such a coupling should be dynamically generated via an
RKKY-type interaction.
With the above couple the first order self energy diagram
for wave vectors satisfying ǫ(ppp) = ǫ(ppp+QQQ) shows a loga-
rithmic divergence as a function of the spin gap. Hence
we have to sum up all diagrams. We do so in the non-
crossing or self-consistent Born approximation which in
the T = 0 limit boils down to the following set of self-
consistent equations.

Σ(ppp, ω) =
1

N

∑

qqq

g2(ppp,qqq)G(ppp− qqq, ω − Ω(qqq))

G(ppp, ω) =
1

ω − ε(ppp) − Σ(ppp, ω)
(36)

Here we use a magnon dispersion relation of the form
Ω(qqq) =

√

∆2 + v2
s (1 + γ(qqq)/4) with γ(qqq) = 2

(

cos(qx) +

cos(qy)
)

, which agrees in the limit qqq → QQQ = (π, π) with
the form of Eq. (27). Iterating the Green’s function up
to the 15th order to ensure convergence, we calculate the
spectrum, ρ(ppp, ω) = 1

π
Im[G(ppp, ω)] via the imaginary part

of the Green’s function and compute the quasi-particle
residue (QPR) at the first pole of the spectrum.

Z(ppp) =
∣

∣

∣
1 − ∂

∂ω
Σ′(ppp, ω)

∣

∣

∣

−1

ω=ωi

(37)

Figure 8 shows the QPR for ppp = (π, π) as a function of
linear length L of the square lattice for different values of
the spin gap ∆. The large-L limit is indicated by a line.
Figure 9 plots the quasiparticle weight as a function of
the spin gap for hole momenta ppp = (π

2 ,
π
2 ), (0, π), (π, π).

For hole momenta satisfying ǫ(ppp) = ǫ(ppp+QQQ) ( ppp = (π
2 ,

π
2 )

and ppp = (0, π) ) there is no energy denominator pro-
hibiting the logarithmic divergence of the first order self-
energy and the QPR shows an obvious decrease right up
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∆/J‖ = 0.60
∆/J‖ = 0.22
∆/J‖ = 0.06

1/L

Z

0.10.080.060.040.020

0.5

0.4

0.3

0.2

0.1

0

FIG. 8: Self consistent Born approximation: QPR as a func-
tion of linear lattice size, L, for different spin gap energies,
∆.

(π/2, π/2)
(π, 0)
(π, π)

(a)

∆/J‖

Z

21.510.50

0.5

0.4

0.3

0.2

0.1

0

(π/2, π/2)
(π, 0)
(π, π)

(b)

∆/J‖

Z

1010.10.01

1

0.1

0.01

FIG. 9: Self consistent Born approximation: QPR in the
vicinity of the quantum critical point for selected hole mo-
menta (a) in a linear plot and (b) in a double logarithmic
plot. ∆ corresponds to the spin gap.

to a complete vanishing at the critical point. Further-
more, the data is consistent with Z ∝

√
∆. The case

ppp = (π, π) is more complicated since ǫ(ppp) 6= ǫ(ppp+QQQ). In
first order, the self-energy remains bounded. The scat-
tering of the hole ofQQQ = (π, π) magnons leads to the pro-
gessive formation of shadow bands as the critical point
is approached such that at the critical point, the relation
E(1)(ppp) = E(1)(ppp + QQQ) holds. This back folding of the
band can lead to the vanishing of the QPR when higher
order terms are included. Although the SCB results show
a decrease of the QPR in the vicinity of the critical point,
they are not accurate enough to answer the question of
the vanishing of the QPR at this wave vector.

L=12L=16L=20
(a)

�Jk
G(�)

6543210

1

0.1

L=12

L=16

L=20

(b)

τJ‖

G
(τ

)e
τ
µ

6543210

0.6

0.5

0.4

0.3

L = 20

L = 16

L = 12

(c)

J⊥/J‖

Z

32.82.62.42.22

0.6

0.5

0.4

0.3

FIG. 10: Green’s function in the vicinity of the phase transi-
tion (J⊥/J‖ = 2.5) for a static hole and various lattice sizes in
the BHM (a) on a logarithmic plot and (b) on a plot where we
adjusted the chemical potential in such a way that the Green’s
function converges to a constant value. Within the error bars
and for lattice sizes greater then 12× 12 there is no size scal-
ing recognisable. (Inverse temperatures: βJ‖ = 30 (L = 12),
βJ‖ = 50 (L = 16)), βJ‖ = 70 (L = 20); ∆τJ‖ = 0.02) (c)
QPR in the vicinity of the quantum critical point.

B. QMC approach

As shown in section II we can extract the QPR from the
asymptotic behavior of the Green’s function. We first
concentrate on the static hole in the BHM for which the
QMC data is of higher quality that for the dynamic hole.
Fig. 10a plots the Green’s funtion as a function of lattice
size at J⊥/J‖ = 2.5. As apparent within the consid-
ered range of imaginary times no size and temperature
effect is apparent. We fit the tail ( 5 < τJ‖ < 6) of the

Green’s function to the form Ze−τµ and plot in Fig. 10b
G(τ)eτµ. In the large imgaginary time limit this quan-
titiy converges to the QPR Z. The so obtained value
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L = 20
L = 16
L = 12

J⊥/J‖

η h

2.82.72.62.52.42.32.2

0.2

0.1

0

FIG. 11: ηh (see Eq. (38)) as a function of J⊥/J‖ for a static
hole in the BHM.

of Z is plotted for values of J⊥/J‖ across the magnetic
quantum phase transition. As apparent no sign of the
vanishing of the QPR is apparent as we cross the quan-
tum critcal point.
Our QMC data allows a different interpretation. Follow-
ing the work of Sachdev et al. [18] we fit the imaginary
time Green function to the form:

G(τ) ∝ τ−ηh exp (−τµ) (38)

in the the range 2.0 < τJ‖ < 6.0 as done in Ref. [18].
Clearly, if ηh > 0 then the QPR vanishes. Our results
for ηh are plotted in Fig. 11. At J⊥/J‖ = 2.5 our result,
ηh = 0.0875±0.0085 compares very well to that quoted in
Ref. [18], ηh = 0.087± 0.040. The fact that the result of
Ref. [18] is obtained on a 64×64 lattice and ours on 20×
20 confirms that for the considered imaginary time range,
size effects are absent. Given the above interpretation of
the data, Fig. 11 suggests that QPR of a static hole
vanishes for all J⊥/J‖ ≤

(

J⊥/J‖
)

c
≃ 2.5.

The choice of the fitting function reflects different order-
ing of the limits τ → ∞ and N → ∞. On any finite size
lattice the QPR is finite and hence it is appropriate to fit
the tail of the Green’s function to the form Z(N)e−τµ to
obtain a size dependend QPR, and subsequently take the
thermodynamic limit. This strategy has been used suc-
cessfully to show that the QPR of a doped mobile hole in
a one dimensional Heisenberg chain vanishes [6]. On the
other hand, the choice of Eq. (38) for fitting the data im-
plies that we first take the thermodynamic limit. Only in
this limit, can the assymptotic form of the Green’s func-
tion follow Eq. (38) with ηh 6= 0. The fact that both pro-
cedures yield different results sheds doubt on the small
imaginary time range used to extract the quasiparticle
residue. In particular, using data from τJ‖ = 2 onwards
implies that we are looking at a frequency window around
the lowest excitation of the order ω/J ≃ 0.5. Given this,
it is hard to resolve the difference between a dense spec-
trum and a well defined low-lying quasiparticle pole and
a branch cut.
We conclude this section by presenting data for a mobile
hole in the BHM (see Fig. 12) and KNM (see Fig. 13).
Recall that in our simulations we restrict the motion of

(a)

τJ‖

G
(τ

)e
τ
µ

3.532.521.510.50

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(π/2, π/2)

(π, 0)

(π, π)(b)

J⊥/J‖

Z

32.82.62.42.22

0.6

0.5

0.4

0.3

FIG. 12: Green’s function of a dynamic hole (ppp = (π, π)) in
the BHM for a 12 × 12 lattice at J⊥/J‖ = 2.4. (b) QPR in
the vicinity of the quantum critical point.

the hole to a single plane. The data for the QPR in the
above mentioned figures stem from fitting the tail of the
Green’s function to the form Ze−τµ. The fit to the form
of Eq. (38) yields values of ηh which within the error
bars are not distinguishable form zero.

V. CONCLUSION

We have analyzed single hole dynamics across magnetic
order-disorder quantum phase transitions as realized in
the Kondo Necklace and bilayer Heisenberg models. The
hole motion is restricted to the upper layer as appro-
priate for interpretation of the data in terms in Kondo
physics. Both models have identical spin dynamics since
the quantum phase transition is described by the O(3)
three-dimensional sigma model [12]. On the other hand
the single hole dynamics shows marked differences. In
the strong coupling limit, deep in the disordered phase,
the ground state of both models is well described by a di-
rect product of singlets between the layers. This Kondo
screening leads to a single hole dispersion relation with
maximum at ppp = (π, π). In the Kondo Necklace model,
where the spin degrees of freedom on the lower layer in-
teract indirectly through polarization of spin on the up-
per layer (RKKY type interaction), the single hole dis-
persion preserves it’s maximum at ppp = (π, π) down to
arbitrarily low interplanar couplings. This situation is
very similar to the Kondo Lattice model of Eq. (1). In
this case, down to J /t = 0.2, substantially below the
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J⊥/J‖ = 1.0

J⊥/J‖ = 1.5

J⊥/J‖ = 2.0(a)

τJ‖

G
(τ

)e
τ
µ

543210

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

(0, π)

(π, π)

(b)

J⊥/J‖

Z

543210

0.5

0.4

0.3

0.2

0.1

0

FIG. 13: (a) Green’s function Gppp(τ ) in the Kondo Neck-
lace model at ppp = (π, π) for J⊥/J‖ = 1.0, 1.5, 2.0. (b) Ex-
tracted values for the QPR. The critical point is localised at
(J⊥/J‖)c = 1.360 ± 0.017.

magnetic phase transition Jc/t = 1.45 ± 0.05, the max-
imum of the the hole dispersion is pinned at ppp = (π, π)
and the effective mass at this ppp-point tracks the single
ion Kondo temperature [19]. We note that this result
is not supported by recent series expansions which show
that there is a critical value of the coupling where the ef-
fective mass diverges [20]. Hence the interpretation that
in both the Kondo necklace and Kondo lattice models,
the localized spins remained partially screen down to ar-
bitrarily low values of the interlayer coupling. In other
words, signatures of strong coupling physics in the single
hole dispersion relation is present down to arbitrary low
interplanar couplings.
In the bilayer Heisenberg model where there is an in-

dependent energy scale coupling the spins on the lower
layer, the situation differs. At values of J⊥ < J⊥,c the
maximum of the single hole dispersion relation drifts to-
wards ppp = (π/2, π/2) and the dispersion relation evolves
continuously to that of a single hole doped in a planar
antiferromagnetic [21]. Hence the interpretation that at
weak couplings, Kondo screening in this model is com-
pletely suppressed. In other words, the small but fi-
nite J⊥ results can be well understood starting form the
J⊥ = 0 point.

We have equally, analyzed the quasiparticle residue
across the magnetic order-disorder transition. In the dis-
ordered phase using a bond mean-field approximation,
there are two processes in which the hole couples to mag-
netic fluctuations (see Fig. 7): i) The hole propagates
from one lattice site to another thereby rearranging the
spin background. In the proximity of the critical point,
and still within the bond-mean field approximation those
processes do not couple to long range QQQ = (π, π) mag-
netic fluctuations. A very similar result is obtained in
the ordered phase [17]. ii) In bilayer models the hole can
remain immobile and the spin in the lower layer can flip.
Those processes couple to critical magnetic fluctuations.
Within a self-consistent Born approximation, this drives
the quasiparticle residue to zero both for a static hole and
mobile hole with momenta ppp satisfying ǫ(ppp +QQQ) = ǫ(ppp).
We have attempted to confirm this point of view with
Monte Carlo simulations. Within our quantum Monte
Carlo approach, where the accuracy of the single particle
Green’s function at large imaginary times is limited, we
have found no convincing evidence of the vanishing of the
quasiparticle residue both for a static and a mobile hole.
Furhter work and algortihmic developments are required
to clarify this delicate issue.
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