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Spin gap and string order parameter in the ferromagnetic
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We consider a spin-1/2 ladder with a ferromagnetic rung coupling J⊥ and inequivalent chains.
This model is obtained by a twist (θ) deformation of the ladder and interpolates between the
isotropic ladder (θ = 0) and the SU(2) ferromagnetic Kondo necklace model (θ = π). We show
that the ground state in the (θ, J⊥) plane has a finite string order parameter characterising the
Haldane phase. Twisting the chain introduces a new energy scale, which we interpret in terms of a
Suhl-Nakamura interaction. As a consequence we observe a crossover in the scaling of the spin gap
at weak coupling from ∆/J‖ ∝ J⊥/J‖ for θ < θc ≃ 8π/9 to ∆/J‖ ∝ (J⊥/J‖)

2 for θ > θc. Those
results are obtained on the basis of large scale Quantum Monte Carlo calculations.

PACS numbers: 75.10.Pq, 71.10.Fd, 73.22.Gk

Low-dimensional quantum magnets are fascinating ob-
jects from both experimental and theoretical points of
view. Spin-1/2 ladders have been widely studied and
interpolate between the physics of one-dimensional an-
tiferromagnetic (AF) spin chains and two-dimensional
systems [1]. In the one-dimensional (1D) case, there
is an important mapping between spin-1/2 Heisenberg
AF chains and Luttinger liquids [2] which allows to
treat such chains by means of exact fermionization and
bosonization methods, resulting in a well-understood
gapless phase [3]. Coupling identical chains to form a
spin ladder is however not a trivial task from a theoreti-
cal point of view [4, 5]. Indeed, the coupling is a relevant
perturbation and, up to logarithmic corrections, opens a
gap proportional to the interchain coupling J⊥ [6, 7].
In this paper, we will focus on the opening of the spin
gap for the case of two inequivalent chains coupled with
a ferromagnetic rung coupling J⊥ < 0. This model is
dubbed the Spiral Staircase Heisenberg Ladder:

Ĥ = J‖

∑

i

(

Ŝ1,i · Ŝ1,i+1 + cos2 (θ/2) Ŝ2,i · Ŝ2,i+1

)

+ J⊥

∑

i

Ŝ1,i · Ŝ2,i. (1)

Here Ŝα,i is a spin-1/2 operator on leg α and lattice site i.
J‖ > 0 sets the energy scale and the interchain coupling
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FIG. 1: (Color online) (a) Sketch of Spiral Staircase Heisen-
berg Ladder. (b) View of the model from the top. (c) For
θ = π, the model maps to the 1D SU(2) ferromagnetic Kondo
necklace model [8].

is taken to be ferromagnetic J⊥ < 0. Geometrically, this
model may be interpreted as a result of twist deforma-
tion of a 2-leg ladder (Fig. 1a) with twist performed along
one of the legs. Such a spiral structure is characterized
by the angle θ (see Fig. 1b) and interpolates between
the isotropic ladder (θ = 0) and a ferromagnetic SU(2)
Kondo Necklace [8] model (θ = π) [9, 10, 11, 12]. A moti-
vation to study this specific geometry comes from the fact
that a realization of the model schematically presented
in Fig. 1c was synthesized as a stable organic biradical
crystal PNNNO [13]. Possible candidates for realizations
with twist angle 0 < θ < π might be found in the families
of molecular chains decorated by magnetic radicals.

In the strong coupling limit, |J⊥/J‖| ≫ 1, the model
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maps onto the spin-1 Heisenberg chain with effective ex-

change interaction Jeff =
J‖
4

(

1 + cos2(θ/2)
)

. This phase
has a spin gap [14] given by ∆H/Jeff = 0.41048(6) [15]
and is characterized by a non-local string order parame-
ter [16] (see a recent discussion in [17]):

〈Ôs(n)〉 = 〈Ŝz
n0

exp



iπ

n0+n
∑

j=n0

Ŝz
j



 Ŝz
1,n+n0

〉 (2)

with Ŝz
j = Ŝz

1,j +Ŝz
2,j. The expectation value picks up the

hidden antiferromagnetic ordering. At weak couplings,
the analysis depends on the twist angle θ. For small twist
angles (i.e. close to the isotropic case), one can rely on
the bosonization and numerical results of Refs. 6, 7 which
yield a spin gap proportional to |J⊥| up to logarithmic
corrections. On the other hand, at θ = π the spin ve-
locity on the second leg vanishes thus inhibiting the very
starting point of Ref. 6. Alternative approaches such as
a mean-field theory based on a Jordan Wigner transfor-
mation, which yields the correct result for the isotropic
ladder, predicts a spin gap ∆ ∝ J2

⊥/J‖ at θ = π [18]. A
flow equation calculation has recently been carried out for
the SU(2) Kondo necklace model [19], (i.e. θ = π in Eq.
(1)) and predicts a finite critical value of J⊥ below which
the spin gap is absent. To disentangle this situation, we
have performed large scale quantum Monte Carlo (QMC)
simulations of the ferromagnetic spiral staircase model.
Two variants of the loop algorithm [20] were applied. For
the string order parameter and the spin-spin correlation
functions, we used a discrete time algorithm and extract
the spectral functions via stochastic analytical continu-
ation schemes [21, 22]. For the spin gap calculation, a
continuous time loop algorithm was used, where the gap
is calculated by a second moment estimator of the corre-
lation length [15].

Our results for the spin gap in units of Jeff in the (θ,J⊥)
plane are plotted in Fig. 2. Enhancing the twist angle
from θ = 0 to θ = π/2 leaves the spin gap, measured
in units of Jeff , next to invariant thereby showing that a
small twist is an irrelevant perturbation [23]. For larger
values of θ, ∆ is suppressed, and in the limit θ = π the
approach to the Haldane value in the limit J⊥ → −∞ is
surprisingly slow. At small values of |J⊥/J‖|, and θ = 0
we reproduce the results of Ref. 7 namely ∆ ∝ J⊥ (see
Fig. 2b). Here and in what follows, we neglect logarith-
mic corrections in our discussion. Fig. 2b shows that
this weak coupling behavior of the spin gap is sustained
up to θ < θc ≃ 8π/9. Beyond this critical angle [24], the
data allows for different interpretations. Let us concen-
trate on the twist angles θ = 8π/9 and θ = π. A linear
extrapolation of the data would lead to the vanishing of
the spin gap at a finite critical value of J⊥ as predicted
in Ref. 19. However, in this parameter range, we find
a finite string order parameter (see below), incompatible
with a gapless phase. As suggested by a Jordan-Wigner
mean-field analysis [18], we instead assume the existence
of an inflection point and fit the data to a quadratic form
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FIG. 2: (Color online) (a) Spin gap ∆(J⊥) as a function of
|J⊥/J‖| for different twist angles θ. The gap is rescaled by

Jeff =
J‖

4

`

1 + cos2(θ/2)
´

such that in the large-|J⊥|-limit, it
converges asymptotically toward the Haldane gap of a spin-1
chain. At weak couplings, we have carried out QMC simula-
tions up to βJ‖ = 2500 and 2 × 512 spins to ensure size and
temperature convergence. Inset: zoom on the weak coupling
region. (b) Results for spin gap on a semi-logarithmic scale.

in the limit J⊥ → 0 (see inset of Fig. 2a). Let us note,
however, that we cannot exclude the possibility of an ex-
ponential scaling.

The scaling of the spin gap at θ > θc implies a rapid in-
crease of the spin correlation length ξ ∝ J‖/∆. For θ = π
and J⊥/J‖ = −0.5, spin correlations decay exponentially
with characteristic length scale ξ ≃ 115 (see Fig. 3). At
J⊥/J‖ = −0.3 no sign of exponential decrease is apparent
on the considered 2× 800 lattice. This is consistent with
a spin gap decreasing as J2

⊥/J‖ (or quicker). Indeed, such
as scaling leads to ξ ≥ 300 which is comparable to the
largest distance L/2 = 400 accessible in our simulation
of a 2 × 800 lattice.

On length scales |i − j| < ξ the spin-spin correlation
functions follow a slow power law. In particular the data
of Fig. 3 at J⊥/J‖ = −0.3 are consistent with S(|i−j|) ∝

(−1)|i−j||i − j|−1/3. At θ = π, the effective interaction
on the second leg is set by the Suhl-Nakamura (SN) [25]
interaction [26]. In second order perturbation theory,
without attempting any self-consistent calculation, this
interaction takes the form in JSN (q) ∝ J2

⊥χs(q, ω = 0)
in Fourier space. Here, χs(q, ω = 0) is the spin sus-
ceptibility of the spin 1/2-chain. A first step towards
a self-consistent treatment is to allow for a gap, ∆, in
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FIG. 3: (Color online) Spin-spin correlation function on both
legs for the Kondo necklace model (θ = π) at different cou-
plings J⊥/J‖ on a 2 × 800 lattice. Simulations are carried
out at βJ‖ = 7000 (J⊥/J‖ = −0.3,−0.4), βJ‖ = 5000
(J⊥/J‖ = −0.5) and βJ‖ = 2000 (J⊥/J‖ = −0.6).
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FIG. 4: (Color online) Dynamical spin-spin correlations at
J⊥/J‖ = 1 for the ladder system (θ = 0) and the Kondo
necklace model (θ = π). Here we consider a bonding combi-
nation of the spins across the rungs. (βJ‖ = 200, L = 100)

χs(q, ω = 0). Thereby and in real space we expect SN
interaction to have a range set by ξ. We interpret the
above mentioned very slow decay of the spin-spin corre-
lations on both legs and on a length scale set by ξ as a
consequence of the SN interaction. The SN interaction
at θ = π sets a new low-energy scale in the problem, cor-
responding to the slow dynamics of the spins degrees of
freedom on the second leg. Due to the ferromagnetic cou-
pling between the chains, this slow dynamics will equally
dominate the low energy physics of the spins on the first
chain. This new energy scale is also apparent in the dy-
namical spin structure factor S(q, ω) plotted in Fig. 4.
As apparent, a narrow magnon band emerges as the an-
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FIG. 5: (Color online) (a) String order parameter Os and OH

as a function coupling J⊥/J‖ and several twist angles. For θ =
8π/9, π finite size effects are still present for the considered
L = 800 lattice in the parameter range |J⊥/J‖| < 0.5. For
|J⊥/J‖| > 1.0 the system size L = 400 is sufficiently large
enough to guarantee convergence. Simulations are carried
out up to βJ‖ = 7000. (b) Finite size scaling of the order
parameters for the parameter sets J⊥/J‖ = −0.2, θ = 8π/9
(blue) and J⊥/J‖ = −0.3, θ = π (red). The data for OH are

fitted to the form: OH ∝ L−α exp(−L/ξ).

gle θ grows from 0 to π. To lend support to the inter-
pretation in terms of the SN interaction, we have checked
with exact diagonalization methods that the width of the
magnon band at θ = π indeed scales as J2

⊥/J‖ in the
weak interleg coupling limit (data not shown). In the
vicinity of θ = π, we hence expect that the low energy
effective model is given by a spin-1 Heisenberg chain with
exchange coupling set by the SN interaction. Assuming
the validity of this low energy model, we predict a spin
gap which scales as JSN ∝ J2

⊥/J‖.

The above arguments and data suggest that irrespec-
tive of the twist angle and coupling J⊥, the ground state
of the model corresponds to a Haldane phase.

We confirm this point of view by computing the string
order parameter Os = 〈Ôs(n)〉|n=L/2 on a 2×800 lattice
(see Fig. 5a), which is finite in the Haldane phase [16].
Strictly speaking, this is not a sufficient condition to as-
certain the Haldane physics since we also need to show

that OH = 〈exp
[

iπ
∑n0+n

j=n0
Ŝz

j

]

〉|n=L/2 vanishes in the

thermodynamic limit (when both Os > 0 and OH > 0,
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an Ising order is present [16]).
In the region where the correlation length ξ exceeds the

lattice length, finite-size effects are present (see caption
of Fig. 5). In particular when the lattice size is smaller
than the correlation length, both OH and Os take non-
zero values, since the very slow decay of the spin cor-
relations mimics Ising type order. As the system size
grows beyond the correlation length, OH decreases expo-
nentially whereas Os in enhanced. Those size effects are
explicitly shown in Fig. 5b at J⊥/J‖ = −0.2, θ = 8π/9
where L ≫ ξ and J⊥/J‖ = −0.3, θ = π where our maxi-
mal system size barely exceeds the estimated correlation
length. Taking those size effects into account, we con-
clude that in the thermodynamic limit, only the string
order parameter Os is finite in the whole (θ, J⊥) plane.

In conclusion we have established that the ferromag-
netic spiral staircase is a Haldane system, irrespective on
the twist θ and coupling constant J⊥. In the weak cou-
pling region, twisting the ladder introduces a new low
energy scale which we interpret in terms of a SN interac-
tion. As a consequence and for θ > θc ∼ 8π/9, we have
provided numerical data showing that at weak coupling,
the spin gap decreases quicker than the linear J⊥ behav-

ior of the 2-leg ladder (θ = 0). Analysis of the data is
consistent with the picture that, for θ ≥ θc, the spin gap
tracks the SN scale and is hence proportional to J2

⊥/J‖.
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