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The correlated electron problem remains one of the central challenges in solid
state physics. Given the complexity of the problem, numerical simulations
provide an essential source of information to test ideas and develop intuition.
In particular for a given model describing a particular material we would
ultimately like to be able to carry out efficient numerical simulations so as
to provide exact results on thermodynamic, dynamical, transport and ground
state properties. If the model shows a continuous quantum phase transition
we would like to characterize it by computing the critical exponents. Without
restriction on the type of model, this is an extremely challenging goal.

The are however a set of problems for which numerical techniques have
provided invaluable insight and will continue to do so. Here we list a few
which are exact, capable of reaching large system sizes (the computational
effort scales as a power of the volume), and provide ground state, dynami-
cal as well as thermodynamic quantities. i) Density matrix renormalization
group applied to general one-dimensional systems [1, 2] ii) world-line based
Quantum Monte Carlo (QMC) methods such as the loop algorithm [3, 4] or di-
rected loops [5] applied to non-frustrated spin systems in arbitrary dimensions
or to one-dimensional electron-models on bipartite lattices, and iii) auxiliary
field QMC methods [6]. The latter method is capable of handling a class of
models with spin and charge degrees of freedom in dimensions larger than
unity. This class contains fermionic lattice models with an attractive inter-
actions (e.g. attractive Hubbard model), models invariant under particle-hole
transformation, as well as impurity problems modeled by Kondo or Anderson
Hamiltonians.

Here we will concentrate primarily on world line methods with loop up-
dates, for spins and also for spin-phonon systems, as well as on the auxiliary
field QMC method. Both approaches are based on a path integral formulation
of the partition function which maps a d-dimensional quantum system onto a
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d + 1-dimensional classical system. The additional dimension is nothing but
the imaginary time. World line based approaches for quantum spin systems
(see Sec. 1 ) offer a simple realization of the mapping from quantum to clas-
sical, and serve as a nice introduction to quantum Monte Carlo methods for
correlated systems.

In section 2, we discuss worldline representations of exp(−βH) without
Trotter-time discretization errors, including the stochastic series expansion
(SSE). We emphasize that the issue of such a representation of exp(−βH) is
largely independent of the Monte Carlo algorithm used to update the world-
lines. In section 3 we explain the loop algorithm from an operator point of
view, and discuss some applications and generalizations. Section 4 discusses
ways to treat coupled systems of spins and phonons, exemplified for one-
dimensional Spin-Peierls transitions. It includes a new method which allows
the simulation of arbitrary bare phonon dispersions [7].

The final sections are devoted to standard auxiliary field QMC methods ap-
plied to fermionic systems. We will review the basic ideas of those algorithms
both for the finite temperature [8, 9, 10] and the ground state [11, 12, 13]
formulations. Emphasis will be placed on the Hirsch-Fye [14] approach which
allows for efficient simulation of impurity models, such as the Kondo and
Anderson models. This algorithm is widely used in the domain of dynamical
mean field theories [15, 16].

1 Discrete imaginary time World Lines for the XXZ

spin chain.

The attractive feature of the World Line approach [17] is it’s simplicity. Here,
we will concentrate on the one-dimensional XXZ spin chain. The algorithm
relies on a mapping of the one-dimensional XXZ quantum spin chain to the
six vertex model [18]. The classical model may then be solved exactly as in
the case of the six vertex model [19] or simulated very efficiently by means
of cluster Monte Carlo methods [3, 4]. The latter approach has proved to
be extremely efficient for the investigation of non-frustrated quantum spin
systems [20] in arbitrary dimensions. The efficiency lies in the fact that i) the
computational time scales as the volume of the classical system so that very
large system sizes may be achieved and ii) the autocorrelation times are small.

A related method, applicable to more models, are directed loops [5, 21].
A short introduction is provided in ref. [22]. For a general short overview
of advanced worldline Quantum Monte Carlo methods, see refs [23]. Longer
reviews are provided in refs. [4] and [24].

Fermions can also be represented by World Lines. For spinless fermions in
any dimension, the same representation as for the XXY spin model results,
albeit with additional signs corresponding to the exchange of fermions. The
World line approach will allow us to aquire some insight into the resulting sign
problem. This is a major open issue in QMC methods applied to correlated
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systems. When it occurs the computational effort scales exponentially with
system size and inverse temperature. Recent attempts in the form of novel
concepts to tackle correlated electron systems are reviewed in [25, 26].

Finally, at the end of this section, we will discuss extensions of the world-
line approach to tackle the problem of the dynamic of a single-hole in non-
frustrated quantum magnets.

1.1 Basic formulation

To illustrate the World Line quantum Monte Carlo method, we concentrate
on the XXZ quantum spin chain. This model is defined as:

H = Jx

∑

i

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
+ Jz

∑

i

Sz
i Sz

i+1 (1)

where Si are spin 1/2 operators on site i and hence satisfy the commutation
rules: [

Sη
i , Sν

j

]
= δi,jiǫ

η,ν,γSγ
i . (2)

In the above, ǫη,ν,γ is the antisymmetric tensor and the sum over repeated
indices is understood. We impose periodic boundary conditions:

Si+L = Si (3)

where L denotes the length of the chain.
A representation of the above commutation relations is achieved with the

Pauli spin matrices. For a single spin 1/2 degree of freedom, we can set:

Sx =
1

2

(
0 1
1 0

)
Sy =

1

2

(
0 −i
i 0

)
and Sz =

1

2

(
1 0
0 −1

)
(4)

and the Hilbert space of this single spin-1/2 degree of freedom, H1/2, is
spanned by the two state vectors:

| ↑〉 =

(
1
0

)
, | ↓〉 =

(
0
1

)
(5)

It is convenient to define the raising S+ and lowering S− operators:

S+ = Sx + iSy, S− = Sx − iSy (6)

such that:

S−| ↓〉 = S+| ↑〉 = 0, S−| ↑〉 = | ↓〉, S+| ↓〉 = | ↑〉. (7)

The Hilbert space of the L-site chain, HL is given by the tensor product of
L spin 1/2 Hilbert spaces. HL contains 2L state vectors which we will denote
by
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|σ〉 = |σ1, σ2, · · · , σL〉 (8)

with σi =↑ or ↓. A representation of the unit operator in HL is given by:

1 =
∑

σ

|σ〉〈σ|. (9)

We can easily solve the two site problem,

Htwo sites = Jx (Sx
1 Sx

2 + Sy
1Sy

2 )︸ ︷︷ ︸
≡ 1

2 (S+
1 S−

2 +S−
1 S+

2 )

+JzS
z
1Sz

2 . (10)

The eigenstates of the above Hamiltonian are nothing but the singlet and
three triplet states:

Htwo sites
1√
2

(| ↑, ↓〉 − | ↓, ↑〉) =

(
−Jz

4
− Jx

2

)
1√
2

(| ↑, ↓〉 − | ↓, ↑〉)

Htwo sites| ↑, ↑〉 =
Jz

4
| ↑, ↑〉

Htwo sites
1√
2

(| ↑, ↓〉 + | ↓, ↑〉) =

(
−Jz

4
+

Jx

2

)
1√
2

(| ↑, ↓〉 + | ↓, ↑〉)

Htwo sites| ↓, ↓〉 =
Jz

4
| ↓, ↓〉. (11)

The basic idea of this original World Line approach is to split the XXZ
Hamiltonian into a set of independent two site problems. The way to achieve
this decoupling is with the use of a path integral and the Trotter decomposi-
tion. First we write

H =
∑

n

H(2n+1)

︸ ︷︷ ︸
H1

+
∑

n

H(2n+2)

︸ ︷︷ ︸
H2

(12)

with

H(i) = JX

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
+ JZSz

i Sz
i+1

One may verify that H1 and H2 are sums of commuting (i.e. independent) two
site problems. Hence, on their own H1 and H2 are trivially solvable problems.
However, H is not. To use this fact, we split the imaginary propagation e−βH

into successive infinitesimal propagations of H1 and H2. Here β corresponds
to the inverse temperature. This is achieved with the Trotter decomposition
introduced in detail in Appendix 10.1. The partition function is then given
by:

Tr
[
e−βH

]
= Tr

[
(e−∆τH)m

]
= Tr

[
(e−∆τH1e−∆τH2)m

]
+ O(∆τ2)

=
∑

σ1···σ2m

〈σ1|e−∆τH1 |σ2m〉 · · · 〈σ3|e−∆τH1 |σ2〉〈σ2|e−∆τH2 |σ1〉

+O(∆τ2) (13)
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where m∆τ = β. In the last equality we have inserted the unit operator
between each infinitesimal imaginary time propagation. For each set of states
|σ1〉 · · · |σ2m〉 with non-vanishing contribution to the partition function we
have a simple graphical representation in terms of world lines which track the
evolution of the spins in space and imaginary time. An example of a world
line configuration is shown in Fig. 1. Hence the partition function may be
written as the sum of over all world line configurations, w, each world line
configuration having an appropriate weight Ω(w):

Z =
∑

w

Ω(w)

Ω(w) = 〈σ1|e−∆τH1 |σ2m〉 · · · 〈σ3|e−∆τH1 |σ2〉〈σ2|e−∆τH2 |σ1〉 (14)

where w defines the states |σ1〉 · · · |σ2m〉.

Im
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τ = 0

(a) World lines. (b) Weights
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Fig. 1. (a) World line configuration for the XXZ model of Eq. (1). Here, m = 4
and the system size is L = 8. The bold lines follow the time evolution of the up
spins and empty sites, with respect to the world lines, correspond to the down
spins. A full time step ∆τ corresponds to the propagation with H1 followed by
H2. Periodic boundary conditions are chosen in the spatial direction. In the time
direction, periodic boundary conditions follow from the fact that we are evaluating
a trace. (b) The weights for a given world line configuration is the product of the
weights of plaquettes listed in the figure. Note that, although the spin-flip processes
come with a minus sign, the overall weight for the world line configuration is positive
since each world line configuration contains an even number of spin flips.

Our task is now to compute the weight Ω(w) for a given world line con-
figuration w. Let us concentrate on the matrix element : 〈στ+1|e−∆τH2 |στ 〉.
Since H2 is a sum of independent two site problems, we have:
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〈στ+1|e−∆τH2 |στ 〉 =

L/2∏

i=1

〈σ2i,τ+1, σ2i+1,τ+1|e−∆τH(2i) |σ2i,τ , σ2i+1,τ 〉. (15)

Hence, the calculation of the weight reduces to solving the two site problem
(see Eq. 10). We can compute for example the spin-flip matrix element 〈↓, ↑
|e−∆τHtwo sites | ↑, ↓〉 in the following way:

〈↓, ↑ |e−∆τHtwo sites | ↑, ↓〉 =

1√
2
〈↓, ↑ |e−∆τHtwo sites

(
1√
2

(| ↑, ↓〉 − | ↓, ↑〉) +
1√
2

(| ↑, ↓〉+ | ↓, ↑〉)
)

=

1√
2
〈↓, ↑ |

(
e−∆τ(− Jz

4 − Jx
2 ) 1√

2
(| ↑, ↓〉 − | ↓, ↑〉)

+e−∆τ(− Jz
4 + Jx

2 ) 1√
2

(| ↑, ↓〉 + | ↓, ↑〉)
)

= −e∆τ Jz
4 sinh

(
∆τJx

2

)
. (16)

The other five matrix elements are listed in Fig. 1 and may be computed in
the same manner.

We are now faced with a problem, namely that the spin-flip matrix ele-
ments are negative. However, for non-frustrated spin systems, we can show
that the overall sign of the world line configuration is positive. To prove this
statement consider a bipartite lattice in arbitrary dimensions. A bipartite lat-
tice may be split into two sub-lattices, A and B, such that the nearest neigh-
bors of sub-lattice A belong to sub-lattice B and vice-versa. A non-frustrated
spin system on a bipartite lattice has solely spin-spin interactions between
two lattice sites belonging to different sub-lattices. For example, in our one-
dimensional case, the even sites correspond to say sub-lattice A and the odd
sites to sub-lattice B. Under those conditions we can carry out the following
canonical transformation (i.e. the commutation rules remain invariant):

Sx
i → f(i)Sx

i , Sy
i → f(i)Sy

i and Sz
i → Sz

i where

f(i) =

{
1 if i belongs to sublattice A
−1 if i belongs to sublattice B

(17)

Under the above transformation, the matrix element Jx in the Hamiltonian
transforms to −Jx. This renders all matrix elements positive. The above
canonical transformation just tells us that the spin-flip matrix element occurs
an even number of times in any world line configuration. The minus sign in
the spin-flip matrix element may not be omitted in the case of frustrated spin
systems. This negative sign leads to a sign problem which up to date inhibits
large scale quantum Monte Carlo simulations of frustrated spin systems.

1.2 Observables

In the previous section, we have shown how to write the partition function
of a non-frustrated spin system as a sum over world line configurations, each
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world line configuration having a positive weight. Our task is now to compute
observables:

〈O〉 =
Tr
[
e−βHO

]

Tr [e−βH ]
=

∑
w Ω(w)O(w)∑

w Ω(w)
(18)

where Ω(w) corresponds to the weight of a given world line configuration as
obtained through multiplication of the weights of the individual plaquettes
listed in Fig. 1 and O(w) corresponds to the value of the observable for the
given world line configuration.

One of the major drawbacks of the world line algorithm used to be that
one could not measure arbitrary observables. In particular, the correlation
functions such as S+

i S−
j which introduce a cut in a world line configuration

are not accessible with continuous worldlines and local updates. This problem
disappears in the loop algorithm and also with worms and directed loops, as
will be discussed later. Here we will concentrate on observables which locally
conserve the z-component of spin, specifically the total energy as well as the
spin-stiffness.

Energy and spin-spin correlations

Neglecting the systematic error originating from the Trotter decomposition,
the expectation value of the energy is given by:

〈H〉 =
1

Z
Tr
[(

e−∆τH1e−∆τH2
)m

(H1 + H2)
]

= (19)

1

Z
Tr
[(

e−∆τH1e−∆τH2
)m−1 (

e−∆τH1H1e
−∆τH2 + e−∆τH1e−∆τH2H2

)]
.

To obtain the last equation, we have used the cyclic properties of the trace:
Tr [AB] = Tr [BA]. Inserting the unit operator 1 =

∑
σ |σ〉〈σ| at each imagi-

nary time interval yields:

〈H〉 =
1

Z

∑

σ1,···σ2m[
〈σ1|e−∆τH1 |σ2m〉 · · · 〈σ3|e−∆τH1 |σ2〉〈σ2|e−∆τH2H2|σ1〉 +

〈σ1|e−∆τH1 |σ2m〉 · · · 〈σ3|e−∆τH1H1|σ2〉〈σ2|e−∆τH2 |σ1〉
]

=

1

Z

∑

σ1,···σ2m

〈σ1|e−∆τH1 |σ2m〉 · · · 〈σ3|e−∆τH1 |σ2〉〈σ2|e−∆τH2 |σ1〉 ×

[〈σ3|e−∆τH1H1|σ2〉
〈σ3|e−∆τH1 |σ2〉

+
〈σ2|e−∆τH2H2|σ1〉
〈σ2|e−∆τH2 |σ1〉

]
=

∑
w Ω(w)E(w)∑

w Ω(w)
(20)

with
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E(w) = − ∂

∂∆τ

[
ln〈σ2|e−∆τH2 |σ1〉 + ln〈σ3|e−∆τH2 |σ2〉

]
(21)

We can of course measure the energy on arbitrary time slices. Averaging over
all the time slices to reduce the fluctuations yields the form:

E(w) = − 1

m

∂

∂∆τ
lnΩ(w). (22)

Hence the energy of a world line configuration is nothing but the logarithmic
derivative of it’s weight. This can also be obtained more directly by taking
the derivative of Eq. 14.

Observables O which locally conserve the z-component of the spin are easy
to compute. If we decide to measure on time slice τ then O|στ 〉 = O(w)|στ 〉.
An example of such an observable is the correlation function: O = Sz

i Sz
j

Spin stiffness (superfluid density)

The spin stiffness probes the sensitivity of the system under a twist – in spin
space – of the boundary condition along one lattice direction. If long-range
spin order is present, the free energy in the thermodynamic limit will aquire
a dependence on the twist. If on the other hand the system is disordered, the
free energy is insensitive to the twist. The spin stiffness hence probes for long
range or quasi long-range spin ordering. It is identical to the superfluid density
when viewing spin systems in terms of hard core bosons. To define the spin
stiffness, we consider the Heisenberg model on a d-dimensional hyper-cubic
lattice of linear length L:

H = J
∑

〈i,j〉
S̃i · S̃j . (23)

We impose twisted boundary condition in say the x-direction,

S̃i+Lex = R(e, φ)S̃i. (24)

where R(e, φ) is an SO(3) rotation around the axis e with angle φ. In the
other lattice directions, we consider periodic boundary conditions. The spin
stiffness is then defined as:

ρs =
1

Ld−2

−1

β
lnZ(φ)

∣∣∣∣
φ=0

(25)

where Z(φ) is the partition function in the presence of the twist in the bound-
ary condition, and β corresponds to the inverse temperature.

Under the canonical transformation,

Si = R(e,−φ

L
i · ex)S̃i, (26)
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the twist may be eliminated from the boundary condition

Si+Lex = R

[
e,−φ

L
(i + Lex) · ex

]
S̃i+Lex =

R

[
e,−φ

L
(i + Lex) · ex

]
R(e, φ)S̃i =

R

[
e,−φ

L
i · ex

]
S̃i = Si (27)

to appear explicitely in the Hamiltonian:

H = J
∑

〈i,j〉

[
R(e,−φ

L
i · ex)Si

]
·
[
R(e,−φ

L
j · ex)Sj

]
=

J
∑

〈i,j〉
Si · R

[
e,

φ

L
(i − j) · ex

]
Sj =

J
∑

i

Si · R(e,−φa

L
)Si+ax + J

∑

i,a 6=ax

Si · Si+a. (28)

Setting the rotation axis e to ez such that:

R(e,−φa

L
) =




cos(φa/L) sin(φa/L) 0
− sin(φa/L) cos(φa/L) 0

0 0 1


 (29)

the Hamiltonian may be written as:

H = J
∑

i

Sz
i Sz

i+ax
+

1

2

(
eiφa/LS+

i S−
i+ax

+ e−iφa/LS−
i S+

i+ax

)
+

J
∑

i,a 6=ax

Sz
i Sz

i+a +
1

2

(
S+

i S−
i+a + S−

i S+
i+a

)
. (30)

In the spirit of the world-line algorithm, we write the partition function
as:

Z(φ) =
∑

w

∏

p

W (Sp(w), φ)

︸ ︷︷ ︸
Ω(w,φ)

. (31)

The sum runs over all world-line configurations w and the weight of the world-
line configuration, Ω(w), is given by the product of the individual plaquette
weights (W (Sp(w), φ) in the space-time lattice. Sp(w) denotes the spin con-
figuration on plaquette p in the world-line configuration w.

Since at φ = 0 time reversal symmetry holds, the spin current

js = − 1

β

∂

∂φ
lnZ(φ)

∣∣∣∣
φ=0

(32)
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vanishes and the spin stiffness reads:

ρs =
1

Z

∑

w

Ω(w)ρs(w) where (33)

ρs(w) = − 1

βLd−2



∑

p

∂2

∂φ2 W (Sp(w), φ)
∣∣∣
φ=0

W (Sp(w))
+

∑

p6=q

∂
∂φW (Sp(w), φ)

∣∣∣
φ=0

W (Sp(w))

∂
∂φW (Sq(w), φ)

∣∣∣
φ=0

W (Sq(w))




It is instructive to compute the spin stiffness in the limit ∆τ → 0 since in

Note 1. only ? this limit ρs is nothing but average of the square of the total
spatial winding number of the worldlines. Let σ1,p, σ2,p, σ3,p and σ4,p corre-
spond to the spin configuration Sp and ip, jp to the two real space points
associated to the plaquette p such that:

lim
∆τ→0

∂2

∂φ2 W (Sp(w), φ)
∣∣∣
φ=0

W (Sp(w))
=

lim
∆τ→0

−∆τJ

2

[
iex · (jp − ip)

L

]2 〈σ1,p, σ2,p|S+
ip

S−
jp

+ S−
ip

S+
jp
|σ3,p, σ4,p〉

〈σ1,p, σ2,p|1 − ∆τHip,jp |σ3,p, σ4,p〉

=

[
iex · (jp − ip)

L
〈σ1,p, σ2,p|S+

ip
S−

jp
+ S−

ip
S+

jp
|σ3,p, σ4,p〉

]2
(34)

In the last line have used the fact that 〈σ1,p, σ2,p|S+
ip

S−
jp

+S−
ip

S+
jp
|σ3,p, σ4,p〉 = 1

if there is a spin-flip process on plaquette p and zero otherwise. Similarly, we
have:

lim
∆τ→0

∂
∂φW (Sp(w), φ)

∣∣∣
φ=0

W (Sp(w))
=

lim
∆τ→0

−∆τJ

2

iex · (jp − ip)

L

〈σ1,p, σ2,p|(S+
ip

S−
jp

− S−
ip

S+
jp

)|σ3,p, σ4,p〉
〈σ1,p, σ2,p|1 − ∆τHip,jp |σ3,p, σ4,p〉

=
iex · (jp − ip)

L
〈σ1,p, σ2,p|S+

ip
S−

jp
− S−

ip
S+

jp
|σ3,p, σ4,p〉 (35)

Since 〈σ1,p, σ2,p|S+
ip

S−
jp

− S−
ip

S+
jp
|σ3,p, σ4,p〉 = ±1 if there is a spin-flip process

on plaquette p and zero otherwise the identity:

lim
∆τ→0

∂2

∂φ2 W (Sp(w), φ)
∣∣∣
φ=0

W (Sp(w))
=


 lim

∆τ→0

∂
∂φW (Sp(w), φ)

∣∣∣
φ=0

W (Sp(w))




2

(36)
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holds. Hence, one can rewrite the spin stiffness as:

ρs(w) =
1

βLd
(Wx(w))2 (37)

where the winding number along the x-lattice direction, Wx, is given by:

Wx(w) =
∑

p

ex · (jp − ip)〈σ1,p, σ2,p|S+
ip

S−
jp

− S−
ip

S+
jp
|σ3,p, σ4,p〉 (38)

1.3 Updating Schemes

The problem is now cast into one which may be solved with classical Monte
Carlo methods where we need to generate a Markov chain through the space of
World Line configurations. Along the chain the World Line configuration, w,
occurs on average with normalized probability Ω(w). There are many ways
of generating the Markov chain. Here we will first discuss a local updating
scheme and it’s limitations. We will then turn our attention to a more powerful
updating scheme which is known under the name of loop algorithm.

Local Updates

Local updates deform a World Line configuration locally. As shown in Fig. 2
one randomly chooses a shaded plaquette and, if possible, shifts a world-line
from one side of the shaded plaquette to the other. This move is local and
only involves the four plaquettes surrounding the shaded one. It is then easy
to calculate the ratio of weights of the new to old world-line configurations and
accept the move according to a Metropolis criterion. As it stands, the above
described local move is not ergodic. For example, the z-component of spin is
conserved. This problem can be circumvented by considering a move which
changes a single down world-line into an up one and vice-versa. However, such
a global move will have very low acceptance probability at large β.

Combined, both types of moves are ergodic but only in the case of open
boundary conditions in space. The algorithm is not ergodic if periodic or
antiperiodic boundary conditions are chosen. Consider a starting configuration
with zero winding (i.e. Wx(w) = 0). The reader will readily persuade himself
that with local updates, it will never be possible to generate a configuration
with Wx(w) 6= 0. Hence, for example, a spin stiffness may not be measured
within the world-line algorithm with local updates. However, one should note
that violation of ergodicity lies in the choice of the boundary condition. Since
bulk properties are boundary independent in the thermodynamic limit, the
algorithm will yield the correct results in the thermodynamic limit [27].

Different local updates without such problems have been invented in recent
years, namely Worms and Directed Loops. They work by allowing a partial
world line, and iteratively changing the position of its ends until it closes
again. They will be discussed in section 3.5.
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Fig. 2. Local updates. A shaded plaquette is chosen randomly and a Word Line is
shifted from left to right or vice versa across the shaded plaquette.

Loop updates

To introduce loop updates, it is useful to first map the XXZ model onto the
six vertex model of statistical mechanics.

Equivalence to the six Vertex model
That the XXZ quantum spin chain is equivalent to the classical two-

dimensional 6-vertex model follows from a one to one mapping of a World
Line configuration to one of the 6-vertex model. The identification of single
plaquettes is shown in Fig. 3(a). The world line configuration of Fig. 1 is
plotted in the language of the 6-vertex mode in Fig. 3(b). The vertex model
lies on a 45 degrees rotated lattice denoted by bullets in Fig. 3(b). At each
vertex (bullets in Fig. 3) the number of incoming arrows equals the number of
outgoing arrows. In the case of the XYZ chain, source and drain terms have
to be added, yielding the 8-vertex model.
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(a) (b)

Fig. 3. (a) Identification of world lines configurations on plaquettes with the vertices
of the 6-vertex model. (b) The World Line configuration of Fig. 1 in the language
of the 6-vertex model.

The identification of the XXZ model to the 6-vertex model gives us an
intuitive picture of loop updates [3]. Consider the World Line configuration in
Fig.4a and it’s corresponding vertex formulation (Fig.4b). One can pick a site
at random and follow the arrows of the vertex configuration. At each plaquette
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there are two possible arrow paths to follow. One is chosen, appropriately,
and one follows the arrows to arrive to the next plaquette. The procedure is
then repeated until one returns to the starting point. Such a loop is shown
in Fig. 4c. Along the loop, changing the direction of the arrows generates
another valid vertex configuration (see Fig. 4d). The corresponding World
Line configuration (after flipping the loop) is shown in Fig. 4e. As apparent,
this is a global update which in this example changes the winding number.
This was not achievable with local moves.

(a) (b) (c)

(e)(d)

Fig. 4. Example of a loop update.

Loop updates
In the previous paragraph we have seen how to build a loop. Flipping the
loop has the potential of generating large-scale changes in the World-Line
configuration and hence allows us to move quickly in the space of World-
Lines. There is however a potential problem. If the loops were constructed
at random, then the acceptance rate for flipping a loop would be extremely
small and loop updates would not lead to an efficient algorithm. The loop
algorithm sets up rules to build the loop such that it can be flipped without
any additional acceptance step for the XXZ model.

To do so, additional variables are introduced, which specify for each pla-
quette the direction which a loop should take there (Fig. 5). These speci-
fications, called “breakups” or plaquette-graphs, are completely analoguous
to the Fortuin-Kasteleyn bond-variables of the Swendsen-Wang cluster algo-
rithm, discussed in the contribution by W. Janke. They can also be thought of
as parts of the Hamilton-operator, as discussed in section 3. Note that when
a breakup has been specified for every plaquette, this then graphically deter-
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Fig. 5. Possible plaquette-graphs for vertex configurations. Graph 1 is a vertical
breakup, graph 2 a horizontal one, graph 4 is diagonal. Plaquette-graph 3 is called
“frozen”; it corresponds to the combined flip of all four arrows.

mines a complete decomposition of the vertex-lattice into a set of loops (see
also below). The loop algorithm is a cluster algorithm mapping from such sets
of loops to worldline configurations and back to new sets of loops. In contrast,
“directed loops” are a local method not associated with such graphs.

Which plaquette-graphs are possible ? For each plaquette and associated
vertex (=spin-configuration) there are several possible choices of plaquette-
graphs which are compatible with the fact that the arrow direction may not
change in the construction of the loop. Fig. 5 illustrates this. Given the vertex
configurations 1 in Fig. 5 one can follow the arrows vertically (graph 1) or
horizontally (graph 2). There is also the possibility to flip all the spins of the
vertex. This corresponds to graph 3 in Fig. 5. The plaquette-graph configura-
tion defines the loops along which one will propose to flip the orientation of
the arrows of the vertex model.

In order to find appropriate probabilities for choosing the breakups, we
need to find weights W (S, G) for each of the combinations of spin configuration
S on a plaquette and plaquette-graph G shown in Fig. 5. We require that

∑

G

W (S, G) = W (S) (39)

where W (S) is the weight of the vertex S, i.e. we subdivide the weight of each
spin-configuration on a vertex onto the possible graphs, for example graphs
1, 4, and 3 if S = 3 (See Fig. 5).
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Starting from a vertex configuration S on a plaquette we choose an allowed
plaquette-graph with probability

P (S → (S, G)) =
W (S, G)

W (S)
. (40)

for every vertex-plaquette of the lattice. We then have a configuration of
vertices and plaquette-graphs. When a plaquette-graph has been chosen for
every plaquette, the combined lines subdivide the lattice into a set of loops.
To achieve a constant acceptance rate for the flip of each loop, we require that
for a given plaquette-graph G

W (S, G) = W (S′, G) (41)

where S′ is obtained from S by flipping the arrows of the vertex configuration
according the rules of the graph G. That is for G = 1 in Fig. 5 we require:
W (S = 1, G = 1) = W (S = 3, G = 1). This equation can be satisfied with
weights W (S, G) = V (G) when S and G are compatible, and W (S, G) = 0
otherwise.

When choosing the heat-bath algorithm for flipping, the probability of
flipping the arrows along the loop is given by:

P ((S, G) → (S′, G)) =

W (S′,G)
W (S,G)

1 + W (S′,G)
W (S,G)

≡ 1

2
(42)

Thus each loop is flipped with probability 1/2. This generates a new, highly
independent, worldline configuration. The previous plaquette-graphs are then
discarded, and another update starts with the choice of new plaquette-graphs
according to Eq. 40.

With Eqn. (41) and (42) the detailed balance in the space of graphs and
spins

W (S, G)P [(S, G) → (S′, G)] = W (S′, G)P [(S′, G) → (S, G)] (43)

is trivially satisfied. Detailed balance in the space of spins follows from:

W (S)P (S → S′) = W (S)
∑

G

P [S → (S, G)]P [(S, G) → (S′, G)] =

∑

G

W (S)
W (S, G)

W (S)
P [(S, G) → (S′, G)] =

∑

G

W (S′)
W (S′, G)

W (S′)
P [(S′, G) → (S, G)] = W (S′)P (S′ → S) . (44)

This completes the formal description of the algorithm. We will now illustrate
the algorithm in the case of the isotropic Heisenberg model (J = Jx = Jz)
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since this turns out to be a particularly simple case. Eqn. (39) and (41) lead
to the equations:

e∆τJ/4 cosh(∆τJ/2) ≡ W1 = W1,1 + W1,2 + W1,3

e∆τJ/4 sinh(∆τJ/2) ≡ W2 = W2,2 + W2,4 + W2,3

e−∆τJ/4 ≡ W3 = W3,1 + W3,4 + W3,3 with

W3,1 = W1,1, W1,2 = W2,2 and W2,4 = W3,4. (45)

Here we adopt the notation: Wi,j = W (S = i, G = j) and Wi = W (S = i).
To satisfy the above equations for the special case of the Heisenberg model,
we can set W•,3 = W•,4 = 0 and thereby consider only the graphs G = 1 and
G = 2. The reader will readily verify that the equations

e∆τJ/4 cosh(∆τJ/2) ≡ W1 = W1,1 + W1,2

e∆τJ/4 sinh(∆τJ/2) ≡ W2 = W2,2 = W1,2

e−∆τJ/4 ≡ W3 = W1,1 = W3,1 (46)

are satisfied. We will then only have vertical and horizontal breakups. The
probability of choosing a horizontal breakup is tanh(∆τJ/2) on an antiferro-
magnetic plaquette (i.e. type 1), it is unity on type 2, and zero on a ferromag-
netic plaquette (type 3).

Further aspects of the loop algorithm will be discussed in section 2.

1.4 The sign problem in the World Line approach.

The Quantum Monte Carlo approach is often plagued by the so-called sign
problem. Since the origin of this problem is easily understood in the framework
of the World Line algorithm we will briefly discuss it in this section on a
specific model. Consider spinless electrons on an L-site linear chain

H = −t
∑

i

c†i (ci+1 + ci+2)+H.c. with
{
c†i , c

†
j

}
=
{
ci, cj

}
= 0,

{
c†i , cj

}
= δi,j .

(47)
Here, we consider periodic boundary conditions, ci+L = ci and t > 0.

The world line representation of spinless fermions is basically the same as
the of spin 1

2 degrees of freedom (which themselves are equivalent to so-called
hardcore bosons), on any lattice. For fermions, worldlines stand for occupied
locations in space-time. Additional signs occur when fermion worldlines wind
around each other, as we will now discuss.

For the above Hamiltonian it is convenient to split it into a set of inde-
pendent four site problems:

H =

L/4−1∑

n=0

H(4n+1)

︸ ︷︷ ︸
H1

+

L/4−1∑

n=0

H(4n+3)

︸ ︷︷ ︸
H2

(48)
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with

H(i) = −tc†i

(
1

2
ci+1 + ci+2

)
− tc†i+1 (ci+2 + ci+3) −

t

2
c†i+2ci+3 + H.c.

With this decomposition one obtains the graphical representation of Fig. 6.
[28].

The sign problem occurs from the fact that the weights Ω(w) are not
necessarily positive. An example is shown in Fig. 6. In this case the origin
of negative signs lies in Fermi statistics. Negative weights cannot be inter-
preted as probabilites. To circumvent the problem, one decides to carry out
the sampling with an auxiliary probability distribution:

Pr(ω) =
|Ω(w)|∑
w |Ω(w)| (49)

which in the limit of small values of ∆τ corresponds to the partition function
of the Hamiltonian of Eq. (47) but with fermions replaced by hard-core bosons.
Thus, we can now evaluate Eq. 18 with:

〈O〉 =

∑
w Pr(ω)sign(w)O(w)∑

w Pr(ω)sign(w)
(50)

where both the numerator and denominator are evaluated with MC methods.
Let us first consider the denominator:

〈sign〉 =
∑

w

Pr(ω)sign(w) =

∑
w Ω(w)∑

w |Ω(w)| =
Tr
[
e−βH

]

Tr [e−βHB ]
(51)

Here, HB corresponds to the Hamiltonian of Eq. (47) but with fermions re-
placed by hard-core bosons. In the limit of large inverse temperatures, β, the
partition functions is dominated by the ground state. Thus in this limit

〈sign〉 ∼ e−β(E0−EB
0 ) = e−βL∆ (52)

where ∆ =
(
E0 − EB

0

)
/L is an intensive, in general positive, quantity. The

above equation corresponds to the sign problem. When the temperature is
small or system size large, the average sign becomes exponentially small.
Hence, the observable 〈O〉 is given by the quotient of two exponentially small
values which are determined stochastically. Since 〈sign〉 is the average of val-
ues ±1, its variance is extremely large. When the error-bars become compa-
rable to the average sign, uncontrolled fluctuations in the evaluation of 〈O〉
will occur. Two comments are in order. (i) In this simple example the sign
problem occurs due to Fermi statistics. However, sign problems occur equally
in frustrated spin-1/2 systems which are nothing but hard core boson models.
Note that replacing the fermions by hard core bosons in Eq. (47) and con-
sidering hopping matrix elements of different signs between nearest and next
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nearest neighbors will generate a sign problem in the above formulation. (ii)
The sign problem is formulation dependent. In the World Line algorithm, we
decide to work in real space. Had we chosen Fourier space, the Hamiltonian
would have been diagonal and hence no sign problem would have occured.
In the auxiliary field approach discussed in the next section the sign problem
would not occur for this non-interacting problem since one body operators are
treated exactly. That is, the sum over all World Lines is carried out exactly
in that approach.

Im
ag

in
ar

y 
tim

e.

Real space

Fig. 6. World line configuration for the model of Eq. (47). Here, m = 3. Since the
two electrons exchange their positions during the imaginary time propagation, this
world line configuration has a negative weight.

1.5 Single hole dynamics in non frustrated quantum magnets

In this section we describe generalizations of the loop algorithm which allow
one to investigate the physics of single hole motion in non-frustrated quantum
magnets [29, 30, 31].

The Hamiltonian we will consider is the t-J model defined as:

Ht−J = P


−t

∑

〈i,j〉,σ
c†i,σcj,σ + h.c. + J

∑

〈i,j〉
Si · Sj − 1

4
ninj


P . (53)

The t-J model lives a Hilbert space where double occupancy on a site is
excluded. In the above, this constraint is taken care of by the projection

P =
∏

i

(1 − ni,↑ni,↓) (54)

which filters out all states with double occupancy.
To access the single hole problem, we carry out a canonical transformation

to rewrite the fermionic operators, c†i,σ, in terms of spinless fermions and spin
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1/2 degrees of freedom. On a given site the product space of a spinless fermion
and a spin 1/2 degree of freedom consists of four states:

|n, σ〉 ≡ |n〉 ⊗ |σ〉 with n = 0, 1 and σ =↑, ↓ . (55)

on which the fermionic,

{
f †, f

}
= 1,

{
f †, f †} =

{
f †, f †} = 0, (56)

and spin 1/2 operators,

[
σα, σβ

]
= 2i

∑

γ

ǫα,β,γσγ (57)

act.
We can identify the four fermionic states on a given site to the four states

in the product space of spinless fermions and spins as:

| ↑〉 = c†↑|0〉 ↔ |1, ↑〉 = |vac〉
| ↓〉 = c†↓|0〉 ↔ |1, ↓〉 = σ−|vac〉

|0〉 ↔ |0, ↑〉 = f †|vac〉
| ↓↑〉 = c†↓c

†
↑|0〉 ↔ |0, ↓〉 = f †σ−|vac〉. (58)

Here

σ− =
1

2
(σx − iσy) and σ+ =

1

2
(σx + iσy) . (59)

The fermionic operators (c†σ) are identified as:

c†↑ ↔ σz,+f − σz,−f †, with σz,± =
1

2
(1 ± σz) ,

c†↓ ↔ σ− (f † + f
)
. (60)

Under the above canonical transformation the t-J model reads:

H̃t−J = P̃


t
∑

〈i,j〉
[f †

j fiP̃i,j + h.c.] +
J

2

∑

〈i,j〉
(P̃i,j − 1)∆̃i,j


 P̃

P̃i,j =
1

2
(σi · σj + 1) , ∆̃i,j = 1 − f †

i fi − f †
j fj

P̃ =
∏

i

(
1 − f †

i fiσ
−
i σ+

i

)
(61)

We can check the validity of the above expression by considering the two-

site problem H
(i,j)
t−J . Applying the Hamiltonian on the four states in the pro-

jected Hilbert space with two electrons gives:
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H
(i,j)
t−J | ↑〉i ⊗ | ↑〉j = 0 (62)

H
(i,j)
t−J | ↓〉i ⊗ | ↓〉j = 0

H
(i,j)
t−J | ↑〉i ⊗ | ↓〉j =

P
(
−t|0〉i ⊗ | ↑↓〉j − t| ↑↓〉i ⊗ |0〉j −

J

2
| ↑〉i ⊗ | ↓〉j +

J

2
| ↓〉i ⊗ | ↑〉j

)

= −J

2
| ↑〉i ⊗ | ↓〉j +

J

2
| ↓〉i ⊗ | ↑〉j

H
(i,j)
t−J | ↓〉i ⊗ | ↑〉j =

P
(
−t|0〉i ⊗ | ↓↑〉j − t| ↓↑〉i ⊗ |0〉j −

J

2
| ↓〉i ⊗ | ↑〉j +

J

2
| ↑〉i ⊗ | ↓〉j

)

= −J

2
| ↓〉i ⊗ | ↑〉j +

J

2
| ↑〉i ⊗ | ↓〉j (63)

As apparent, starting from a state in the projected Hilbert space the kinetic
energy term generates states with double occupancy which have to be pro-
jected out. In other words the projection operator does not commute with
the kinetic energy. We can now check that one obtains the same result in the
representation in terms of spinless fermions and spins. The above equations
respectively read:

H̃
(i,j)
t−J |1, ↑〉i ⊗ |1, ↑〉j = 0 (64)

H̃
(i,j)
t−J |1, ↓〉i ⊗ |1, ↓〉j = 0

H̃
(i,j)
t−J |1, ↑〉i ⊗ |1, ↓〉j =

P̃
(
−J

2
|1, ↑〉i ⊗ |1, ↓〉j +

J

2
|1, ↓〉i ⊗ |1, ↑〉j

)

−J

2
|1, ↑〉i ⊗ |1, ↓〉j +

J

2
|1, ↓〉i ⊗ |1, ↑〉j

H̃
(i,j)
t−J |1, ↓〉i ⊗ |1, ↑〉j =

P̃
(
−J

2
|1, ↓〉i ⊗ |1, ↑〉j +

J

2
|1, ↑〉i ⊗ |1, ↓〉j

)

= −J

2
|1, ↓〉i ⊗ |1, ↑〉j +

J

2
|1, ↑〉i ⊗ |1, ↓〉j (65)

which confirms that the matrix elements of H̃
(i,j)
t−J are identical to those of

H
(i,j)
t−J . The reader can readily carry out the calculation in the one and zero

particle Hilbert spaces to see that: 〈η|H(i,j)
t−J |ν〉 = 〈η̃|H̃(i,j)

t−J |ν̃〉 where |ν〉 (|η〉)
and |ν̃〉 (|η〉) correspond to the same states but in the two different represen-
tations. Since the t-J model may be written as a sum of two-sites terms, the
above is equivalent to

〈η|Ht−J |ν〉 = 〈η̃|H̃t−J |ν̃〉 (66)
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In the representation of Eq. 62 the t-J model has two important properties
which facilitate numerical simulations.
i) As apparent from 64 the application of the Hamiltonian (without projection)
on a state in the projected Hilbert space does not generate states with double
occupancy. Hence, the projection operation commutes with the Hamiltonian
in this representation. The reader can confirm that this is a statement which
holds in the full Hilbert space. This leads to the relation

[t
∑

〈i,j〉
[f †

j fiP̃i,j + h.c.] +
J

2

∑

〈i,j〉
(P̃i,j − 1)∆̃i,j , P̃ ] = 0 (67)

which states that the projection operator is a conserved quantity.
ii) The Hamiltonian is bilinear in the spinless fermion operators. This has for
consequence that for a fixed spin configuration the spinless fermion may be
integrated out.

We now use those two properties to study the problem of single hole dy-
namics in un-frustrated quantum magnets. Single hole dynamics is determined
by the Green function. In this section we will define it as:

G(i − j, τ) = 〈c†i,↑(τ)cj,↑〉 =
1

Z
Tr
[
e−(β−τ)Hc†i,↑e

−τHcj,↑

]
(68)

where the trace runs over the Hilbert space with no holes. In the representation
of Eq. 62 the above equation reads:

G(r, τ) = 〈σz,+
i (τ)fi(τ)σz,+

j f †
j 〉 (69)

To use the World-Line formulation to the present problem, we introduce
the unit operator in the Hilbert space with no-holes

1 =
∑

σ

|v, σ〉〈v, σ|, |v, σ〉 = |1, σ1〉1 ⊗ |1, σ2〉2 ⊗ · · · |1, σN 〉N (70)

as well as the unit operator in the Hilbert space with a single hole:

1 =
∑

r,σ

|r, σ〉〈v, r|, |r, σ〉 = σz,+
r f †

r |v, σ〉. (71)

In the above, r denotes a lattice site and N corresponds to the number of
lattice sites. In the definition of the single hole-states, the operator σz,+

r guar-
antees that we will never generate a doubly occupied state on site r (i.e.
|0, ↓〉).

The Green function may now be written as:

G(i − j, τ) =
1

Z

∑

σ1

(72)

〈v, σ1|
(
e−∆τH1e−∆τH2

)m−nτ
σz,+

i fi

(
e−∆τH1e−∆τH2

)nτ
σz,+

j f †
j |v, σ1〉
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=
1

Z

∑

σ1···σ2m,r2···r2nτ

〈v, σ1|e−∆τH1 |v, σ2m〉〈v, σ2m−1|e−∆τH2 |v, σ2m−2〉 · · ·

· · · 〈v, σ2nτ+1|σz,+
i fie

−∆τH1 |r2nτ , σ2nτ 〉 ×
〈r2nτ , σ2nτ |e−∆τH2 |r2nτ−1, σ2nτ−1〉 · · · 〈r2, σ2|e−∆τH2σz,+

j f †
j |v, σ1〉

=

∑
w Ω(w)Gw(i − j, τ)∑

w Ω(w)
. (73)

Following comments are in order.
i) We have neglected the controlled systematic error of oder (∆τ)

2
.

ii) nτ∆τ = τ and m∆τ = β.
iii) w denotes a world-line configuration defined by the set of spin states:
|σ1〉 · · · |σ2m〉. The Boltzmann weight of this state is given by:

Ω(w) = 〈v, σ1|e−∆τH1 |v, σ2m〉 · · · 〈v, σ2|e−∆τH2 |v, σ1〉 (74)

such that Z =
∑

w Ω(w) in the partition function of Heisenberg model.
iv) The Green function for a given World-Line (w) configuration reads:

Gw(i − j, τ) =
∑

r2nτ ···r2

(75)

〈v, σ2nτ +1|σz,+
i fie

−∆τH1 |r2nτ , σ2nτ 〉 · · · 〈r2, σ2|e−∆τH2σz,+
j f †

j |v, σ1〉
〈v, σ2nτ +1|e−∆τH1 |v, σ2nτ 〉 · · · 〈v, σ2|e−∆τH2 |v, σ1〉

.

Defining

[A1(σ2, σ1)]r,j =
〈v, σ2|frσz,+

r e−∆τH1σz,+
j f †

j |v, σ1〉
〈v, σ2|e−∆τH1 |v, σ1〉

[A2(σ2, σ1)]r,j =
〈v, σ2|frσz,+

r e−∆τH2σz,+
j f †

j |v, σ1〉
〈v, σ2|e−∆τH2 |v, σ1〉

(76)

and since the single-hole states are given by |r, σ〉 = σz,+
r f †

r |v, σ〉., the Green
function for a given World-Line configuration is given by

Gw(i − j, τ) =

[A1(σ2nτ +1, σ2nτ )A2(σ2nτ , σ2nτ +1) · · ·A1(σ3, σ2)A2(σ2, σ1)]i,j . (77)

We are now left with the task of computing the matrix A. Since H2 is a
sum of commuting bond Hamiltonians (Hb) [A1(σ3, σ2)]i,j does not vanish

only if i and j belong to the same bond b̃. In particular, denoting the two
spin configuration on bond b by σ1,b, σ2,b we have:

A2(σ2, σ1)i,j =[∏
b6=b̃〈v, σ2,b|e−∆τHb |v, σ1,b〉

]
〈v, σ2,b̃|σ

z,+
i fie

−∆τHb̃σz,+
j f †

j |v, σ1,b̃〉∏
b〈v, σb,2|e−∆τHb |v, σb,1〉

=

〈v, σ2,b̃|σ
z,+
i fie

−∆τHb̃σz,+
j f †

j |v, σ1,b̃〉
〈v, σ2,b̃|e−∆τHb̃ |v, σ1,b̃〉

(78)
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Omitting the bond index, the above quantity is given by:

A (σ2 =↑i, ↑j, σ1 =↑i, ↑j) =
i j

i cosh(−∆τt) sinh(−∆τt)
j sinh(−∆τt) cosh(−∆τt)

A (σ2 =↓i, ↓j, σ1 =↓i, ↓j) =
i j

i 0 0
j 0 0

A (σ2 =↓i, ↑j, σ1 =↓i, ↑j) =

i j

i 0 0

j 0 cosh(−∆τt)
e∆τJ/2 cosh(∆τJ/2)

A (σ2 =↑i, ↓j, σ1 =↑i, ↓j) =

i j

i
cosh(−∆τt)

e∆τJ/2 cosh(∆τJ/2)
0

j 0 0

A (σ2 =↓i, ↑j, σ1 =↑i, ↓j) =

i j

i 0 0

j
sinh(−∆τt)

−e∆τJ/2 sinh(∆τJ/2)
0

A (σ2 =↑i, ↓j, σ1 =↓i, ↑j) =

i j

i 0 sinh(−∆τt)
−e∆τJ/2 sinh(∆τJ/2)

j 0 0

(79)

.

τ=0

τ

Fig. 7. Graphical representation of the the propagation of a hole in a given world
line or spin configuration. The solid lines denotes the possible routes taken by the
hole through the spin configuration. One will notice that due to the constraint which
inhibits the states |0, ↓〉 the hole motion tracks the up spins.



24 F.F. Assaad and H.G. Evertz

With the above construction, a loop algorithm for a given non-frustrated
spin system in arbitrary dimensions may be quickly generalized to tackle the
important problem of single-hole dynamics in quantum magnets.

2 Worldline representations without discretization error

The Trotter discretization of imaginary time which was used in the preceeding
section is conceptually easy. It was historically the first approach, but has some
notable disadvantages:

– In order to obtain reliable results, one has to perform calculations at several
different small values of ∆τ and to extrapolate to ∆τ = 0.

– In practice, this extrapolation is often skipped, and instead a “small” value
like ∆τ = 1/32 or 1/20 (or even larger) is used, which implies unknown
systematic discretization errors.

– Small values of ∆τ imply a large number L = β/∆τ of time slices, so that
the computer time needed for each sweep through the lattice increases
like 1/∆τ . In addition, the correlation length in imaginary time, measured
in time slices, grows like 1/∆τ , so that autocorrelation times for local
algorithms typically grow with another factor of (1/∆τ)2.

Fortunately, it has been found in recent years, independently by a number
of authors, that one can overcome the Trotter discretization error entirely. We
will describe the most common representations: continuous imaginary time
and the stochastic series expansion.

Note that such representations of exp(−βĤ) are all worldline-like. They
are almost independent of the algorithm used to update the worldline config-
urations ! That is, there are local and loop-updates both in imaginary time
and in the SSE representation.

A number of other methods without time discretization errors have been
developed in recent years in different contexts. See for example refs. [32, 33,
34, 35, 26, 36, 37, 38]. and the contributions by A.S. Mishchenko and by M.
Hohenadler in this volume.

2.1 Limit of continuous time

In the context of QMC, it was first realized by Beard and Wiese [39] that the
limit ∆τ → 0 can be explicitely taken within the loop algorithm. Actually
this applies to any model with a discrete state space, see Sec. 2.3. Let us look
again at the isotropic Heisenberg AF, eq. 1 with J = Jz = Jx. There are then
only vertical and horizontal breakups in the loop algorithm.

To lowest order in ∆τ , the probability for a horizontal breakup is J
2 ∆τ ,

proportional to ∆τ , and the probability for a vertical breakup is 1− J
2 ∆τ . This

is like a discrete Poisson process: the event of a horizontal breakup occurs with



QMC simulations 25

probability J
2 ∆τ . Note that the vertical breakup does not change the worldline

configuration; it is equivalent to the identity operator (see also section 3).
In the limit ∆τ → 0 the Poisson process becomes a Poisson distribution

in continuous imaginary time, with probability density J
2 for a horizontal

breakup.
In continuous imaginary time there are no plaquettes anymore. Instead,

configurations are specified by the space and time coordinates of the events,
together with the local spin values. On average, there will be about 1 event
per unit of βJ on each lattice bond. Therefore the storage requirements are
reduced by O(1/∆τ) ! The events are best stored as “linked lists”, i.e. for each
event on a bond there should be pointers to the events closest in imaginary
time, for both sites of the bond.

Monte Carlo Loop updates are implemented quite differently for the multi-
loop and for the single-loop variant, respectively. For “multi-loop” updates,
i.e. the construction and flip of loops for every spacetime site of the lattice, one
first constructs a stochastic loop decomposition of the worldline configuration.
To do so, horizontal breakups are put on the lattice with constant probability
density in imaginary time for each bond, but only in time regions where
they are compatible with the worldline configuration, i.e. where the spins are
antiferromagnetic. Horizontal breakups must also be put whereever a worldline
jumps to another site. The linked list has to be updated or reconstructed. The
configuration of breakups is equivalent to a configuration of loops, obtained by
vertically connecting the horizontal breakups (see section 3). These implicitely
given loops then have to be flipped with some constant probability, usually 1

2 .
To do so, one can for example go to each stored event (breakup) and find, and
possibly flip, the one or two loops through this breakup, unless these loop(s)
have already been treated.

In single-loop-updates only one single loop is constructed and then always
flipped. Here it is better to make the breakup-decisions during loop construc-
tion. (See also section 3.1). One starts at a randomly chosen spacetime-site
(i, t0). The loop is constructed piece by piece. It thus has a tail and a moving
head. The partial loop can be called a “worm” (cp. section 3.5). The loop
points into the present spin-direction, say upwards in time.

For each lattice bond 〈ij〉 at the present site, the smallest of the following
times is determined: (i) the time at which the neighboring spin changes, (ii)
if the bond is antiferromagnetic: the present time t0 plus a “decay time”
generated with uniform probability density, (iii) the time at which the spin at
site i changes. The loop head is moved to the smallest of all these times, t1.
Existing breakups between t0 and t1 are removed. If t1 corresponds to case
(ii) or (iii), a breakup is inserted there, and the loop head follows it, i.e. it
moves to the neighboring site and changes direction in imaginary time. Then
the construction described in the present paragraph repeats.

It finishes when the loop has closed. All spins along the loop can then be
flipped.
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2.2 Stochastic Series Expansion (SSE)

The stochastic series expansion (SSE), invented by A. Sandvik [40, 41, 42] is
another representation of exp (−βĤ) without discretization error. Note that it
is not directly connected to any particular MC-update. Any update method
can (with some adjustments) be applied either in imaginary time or in the
SSE representation.

Let the Hamiltonian be a sum of operators defined on lattice bonds,

Ĥ = −
mb∑

b

Ĥb , (80)

like in the nearest neighbor Heisenberg model. The operators Ĥb need to be
“nonbranching”, in some basis, i.e. for each basis state |i〉, Ĥb|i〉 is proportional
to a single basis state. All diagonal matrix elements of these operators need to
be positive in order to avoid a sign problem. For the XXZ Heisenberg model
one can for example use the bond operators 1

2 (Ŝ+
i Ŝ−

j + S−
i Ŝ+

j ) and 1
4 − Ŝz

i Sz
j

for each bond 〈ij〉. We write the series expansion

exp(−βĤ) =
∑

n

βn

n!
(−Ĥ)n

=
∑

n

βn

n!
(Ĥ1 + Ĥ2 + ....) (Ĥ1 + Ĥ2 + ....) . . .

=
∑

n

βn

n!

∑

Sn

Ĥi1Ĥi2Ĥi3 . . . (81)

where
∑

Sn
extends over all sequences (i1, i2, ..., in) of indices iα ∈ {1, 2, . . . , mb}

labelling the operators Ĥb. When we compute the trace tr exp (−βĤ)
=
∑

|i〉〈i| exp (−βĤ)|i〉, the initial state |i〉 is modified in turn by each of

the Ĥb, each time resulting in another basis state. For the XXZ-model and
spin-Sz basis states, a worldline-like configuration results again, but with a
discrete timelike index α = 1, 2, . . . , n, and only one event per value of the
index. The remaining matrix elements can be evaluated easily. With suitable
normalizations of the operators Ĥb, they can usually be made to be 1. They
are 0 for operator configurations which are not possible, e.g. not compatible
with periodic worldlines, which will thus not be produced in the Monte Carlo.
Spins at sites not connected by any operator to other sites can be summed
immediately.

Note that, in contrast to imaginary time, now diagonal operators Ŝz
i Ŝz

j

occur explicitely, since the exponential factor weighing neighboring worldlines
has also been expanded in a power series. Thus, SSE needs more operators on
average than imaginary time for a given accuracy.

The average length 〈n〉 of the operator sequence is β times the average
total energy (as can be seen from d log Z/dβ) and its variance is related to
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the specific heat. Therefore in any finite length simulation, only a finite value
of n of order β〈−Ĥ〉 will occur, so that we get results without discretization
error, despite the finiteness of n.

It is convenient to pad the sum in Eq. 81 with unit operators 1̂1 in order to
have an operator string of constant length N . For details see ref.[40, 41, 42].

Updates in the SSE representation usually proceed in two steps. First, a
“diagonal” update is performed, for which a switch between diagonal parts of
the Hamiltonian, e.g. Ŝz

i Ŝz
j , and unit operators 1̂1 are proposed. This kind of

update does not change the shape of worldlines. Second, nondiagonal updates
are proposed, e.g. local updates analoguous to the local updates of worldlines
in imaginary time, secion 1. Loop updates are somewhat different: see section
3.

2.3 Unified picture: Interaction representation

All previous representations, namely discrete and continuous imaginary time,
as well as SSE, follow easily from the interaction representation of exp (−βĤ)
[43, 44, 45, 46, 5, 23].

Let Ĥ = Ĥ0−V̂ , with Ĥ0 diagonal in the chosen basis. Then the interaction
representation is

Z =Tr
∞∑

n=0

exp(−βĤ0)

∫ β

0

dτn . . .

∫ τ3

0

dτ2

∫ τ2

0

dτ1 V̂ (τ1) . . . V̂ (τn) (82)

where V̂ (τ) = eĤ0τ V̂ e−Ĥ0τ . When the system size and β are finite, this is a
convergent expansion.

Indeed, in the form of eq. 82, this is already the continuous imaginary time

representation of exp (−βĤ) ! When the time integrals are approximated by
discrete sums, then the discrete time representation results.

The SSE representation can be obtained in the special case that one
chooses Ĥ0 = 0 and V̂ = −Ĥ =

∑mb

b Ĥb. Then Ĥ(τ) does not depend on τ
and the time integrals can be performed

∫ β

0

dτn . . .

∫ τ2

0

dτ1 =
βn

n!
(83)

and we end up with the ordered sequence of operators Ĥ1 . . . Ĥn of the SSE
representation.

This unified picture has turned out to be very useful[7], by providing a
stochastic mapping between SSE and continuous time. Starting with a con-
tinuous time configuration, one can just drop the specific times of operators
to get to an SSE configuration. Starting with an SSE configuration of n or-
dered operators, one can draw n times between 0 and β uniformly at random,
sort them, and assign them to the operators, keeping their order intact. This
mapping is useful in order to measure dynamical Greens functions during a
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simulation that uses the SSE representation. In SSE such a measurement is
very costly [47], while in imaginary time it can be done efficiently with FFT.

Interestingly, for the usual representation of the Heisenberg model eq. (10)

Ĥij =
1

2

(
Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j

)
+ Ŝz

i Ŝz
j (84)

the interaction representation immediately provides the continuous time limit
of the discrete time worldline representation, independently of any loops.

One can see the essence of the continuous time limit by looking at the
exponential of some operator Ô with a finite discrete spectrum (state space),

e−β(1−JÔ) =
(
e(JÔ−1)∆τ

)β/∆τ

= lim∆τ→0

(
(1 − ∆τ)11 + ∆τ J Ô

)β/∆τ (85)

The term in brackets can be interpreted as a Poisson process: with probability
∆τ J choose Ô, else choose 11. Its limit ∆τ → 0 is a Poisson distribution in
continuous imaginary time, i.e. the operator Ô occurs with a constant proba-

bility density J in imaginary time.

3 Loop operator representation of the Heisenberg model

At the root of the loop algorithm there is a representation of the model in
terms of loop-operators [4], akin to the Fortuin-Kasteleyn representation of
the Ising model [48, 49], and analoguous to the Swendsen-Wang algorithm
[50, 51] (see also the contribution by W. Janke). The bond operator of the
spin 1

2 Heisenberg antiferromagnet, with a suitable constant added, is a singlet
projection operator:

− ŜiŜj +
1

4
=

1√
2

(
| ↑↓〉 − | ↓↑〉

) 1√
2

(
〈↑↓ | − 〈↓↑ |

)
. (86)

On a bipartite lattice, the minus signs can be removed by rotating Ŝx,y →
−Ŝx,y on one of the two sublattices We now denote the operator (86) pictori-
ally in terms of contributing spin-configurations, as an operator acting towards
a spin configuration at the bottom and producing a new spin configuration
on the top. There are 4 contributing configurations:

− ŜiŜj + 1
4 = 1

2

(
+ + +

)

=: 1
2

(87)

These are just the configurations compatible with the horizontal breakup of
the loop algorithm. The horizontal breakup can thus be interpreted as an op-

erator projecting onto a spin singlet. The partition function of the Heisenberg
model is then
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Z = tr e−βĤ ∼ tr exp


βJ

∑

〈ij〉

1

2


 . (88)

From eq.(82) or eq.(85) we see that exp(−βĤ) then corresponds to a Pois-
son distribution of horizontal breakups (= singlet projection operators) with
density J

2 in imaginary time, on each lattice bond. One instance of such a
distribution is shown in fig.8 on the left.

τ

Trace

Loop−representation One compatible
set of arrows

Compatible
Worldlines

One instance of
operator distribution

Fig. 8. Loop operator representation of the Heisenberg model and of the loop
algorithm.

Taking the trace means to sum over all spin states on the bottom, with
periodic boundary conditions in imaginary time. Between operators, the spin
states cannot change. The operators can therefore be connected by lines,
on which the spin direction does not change. The operator configuration
(fig.8,left) therefore implies a configuration of loops, fig.8(middle left). A hor-
izontal breakup stands for a sum over 2 spin directions on each of its half-
circles. On each loop the spin direction stays constant along the lines. Thus
each loop contributes two states to the partition function. We arrive at the
loop representation of the Heisenberg antiferromagnet [4, 52, 53]

Z =

∫ β

0

(
Poisson distribution of horizontal
breakups with density J/2

)
2number of loops (89)

The loop-algorithm moves back and forth between the worldline represen-
tation and the operator representation. From a loop(-operator) configuration
we get to a ”compatible” worldline configuration by choosing one direction
for each loop (fig.8 (middle right and right)). We get back to a new operator
configuration by choosing one with Poisson probability, and with the con-
straint that it must be compatible to the current worldline configuration (i.e.
operators can only appear where worldlines are antiferromagnetic, and they
must appear where a worldline jumps).

In the SSE representation, loop updates require only the so-called “diag-
onal” update, namely a switch between unit operators and breakups. Once
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the breakups are defined, the loops just have to be found and flipped. Since
there is no second stochastic non-diagonal update step, this has been called,
somewhat misleading, a “deterministic” loop update [54, 55].

3.1 Single loop updates

An alternative to the “multi-loop” method just sketched is to construct and
flip just a single loop at a time This is also a valid Monte Carlo method. One
could magine that all breakups and thus all loops were actually constructed,
but only a single one of them flipped. See also section 2.1. For each update,
one starts with a randomly chosen space-time site and follows the spin arrow
direction from there. One then constructs just the one loop to which this
spin belongs, performing the “breakup-decisions” on the fly, i.e. the decisions
on whether to move vertically in time or to put a horizontal breakup on a
neighboring bond and to move there. During this construction, or afterwards,
all spins on the loop are flipped. Note that the insertion of a horizontal breakup
(=Heisenberg spin singlet projection operator) at some place (plaquette in
case of discrete time) already determines the path of the loop when and if it
should return to the same place again: either it completes then, or it will take
the other “half-circle” of the horizontal breakup. This behavior is different
from the worms and “directed loops” discussed later.

On average, a single loop constructed this way will be bigger than in the
multi-loop variant, since the initial site will on average be more likely on a
big loop than on a small one. This usually results in smaller autocorrelation
times.

3.2 Projector Monte Carlo in Valence bond basis

The fact that a horizontal breakup is a singlet projection operator is also
at the root of a recent efficient Projector Monte Carlo method[56] for the
Heisenberg model. Indeed, a cut through a loop configuration (fig.8,middle
left) at some imaginary time τ provides a spin state in which each pair of
sites that belong to the same loop is in a spin singlet state.

In the limit of large enough projection time and on a bipartite lattice, all
sites will be in such a singlet with probability one. The state is then called
an RVB state (resonating valence bond). This is an alternative way to see the
famous Lieb-Mattis theorem, namely that the ground state of the Heisenberg
antiferromagnet is a global spin singlet.

When one wants to investigate only the ground state, it is sufficient to
restrict configurations to an RVB basis, also called valence bond basis[56].

3.3 Improved estimators

The spin directions on different loops are independent. Therefore the contribu-
tion of a given loop configuration to the spin Greens function 〈Sz(x, t)Sz(x′, t′)〉
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. J

J

Fig. 9. Left: Sketch of regions updated with subsequent loops on an infinite lattice.
Right: Heisenberg spin ladder with 2 legs.

averages to zero when (x, t) and (x′, t′) are on different loops, whereas it gets
4 identical contributions when they are on the same loop [4]. Thus this Greens
function can be measured within the loop representation, and it is particularly
simple there. At momentum π, this Greens function only takes the values 0
and 1: it is 1 when (x, t) and (x′, t′) are on the same loop, and zero otherwise.
Thus its variance is smaller than that of Sz(x, t)Sz(x′, t′) in spin representa-
tion, which takes values +1 and −1. Observables in loop representation such
as this Greens function are therefore called improved estimators.

We also see that the Greens function corresponds directly to the space-
time size of the loops: these are the physically correlated objects of the model,
in the same sense that Fortuin-Kasteleyn clusters are the physically correlated
objects of the Ising model [48, 49, 51].

In the loop representation one can also easily measure the off-diagonal
Greens function 〈Ŝ+(x, t) Ŝ−(x′, t′)〉. It is virtually inaccessible in the spin
worldline representation with standard local updates, since contributing con-
figurations would require partial worldlines, which do not occur there. How-
ever, in loop representation, Ŝ+(x, t) Ŝ−(x′, t′) does get a contribution when-
ever (x, t) and (x′, t′) are located on the same loop [4]. For the spin-isotropic
Heisenberg model, the estimator in loop representation is identical to that of
the diagonal correlation function 〈Sz(x, t)Sz(x′, t′)〉.

3.4 Simulations on infinite size lattice

One intruiging application of improved estimators is the possibility to do
simulations on an infinite size lattice and/or at zero temperature whenever
〈Ŝ(x, t) Ŝz(x′, t′)〉 goes to zero at infinite distance in space and/or imaginary
time, i.e. in an “unbroken” phase [57].

The idea is to perform single-loop-updates, all starting at the same space-
time site (the “origin”) instead of at a random point. The lattice of spins is
assumed to be infinite in size, but only a finite portion will be needed.

Since the correlation functions go to zero, the size of each single loop will
be finite. For a correlation length ξ and gap ∆ it will reach spatial distances r
with probability ∼ e−r/ξ and temporal distances τ with probability ∼ e−τ∆.
The maximum distance reached will therefore be finite for any finite number
of loops constructed. With each loop flip, the spin configuration is updated. It
will eventually equilibrate in the region of spacetime that was visited by loops
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Fig. 10. Spatial correlation function of Heisenberg ladders at β = ∞, for finite
systems of finite L and, independently, of L = ∞.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

β=2 5 10

β=∞N=2   
0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4

N=2

N=4 (times 10)

Fig. 11. Left: Temporal correlation function (Greens function) of Heisenberg ladders
at L = ∞, at finite inverse temperatures β = 2, 5, 10 and, independently, at β = ∞.
Right: Real frequency spectrum obtained by Maximum Entropy continuation.

often enough. The updated region is sketched schematically in fig. 9. Since
there is no boundary to this region, the physics of the infinite size lattice is
simulated. Its properties can be measured in this region, especially the two-
point Greens function, which is directly available from the loops.

As an example, let us look at simulations of a Heisenberg spin ladder with
N = 2 and with N = 4 legs, illustrated in fig. 9. The behavior of the infinite
size system usually has to be extracted by finite size scaling from results like
those for L = 10 and L = 20 in figure 10. Here they result directly, with an
effort that here amounted to a few hours on a workstation, similar to a finite
lattice simulation at L = 40. The asymptotic behavior is exponential, with
a correlation length that can directly be measured from the Greens function
with high precision.

Similarly, one can measure Greens functions in imaginary time, illustrated
in fig. 11, and directly extract the spin gap with high precision from a linear
fit to log G(q = π, τ). The Greens function can be translated to real frequency
with the Maximum Entropy technique, resulting in the spectrum shown in
fig. 11 on the right.
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3.5 Worms and directed loops

A generalization of single loop updates is provided by worms and directed loops

[23, 44, 22, 5, 21, 24]. They are applicable to any model with a worldline-like
representation. At the same time, they are not cluster algorithms, so that
objects like improved estimators are not available.

A single loop (or “worm”) is constructed iteratively in space-time. The
“worm-head” is a priori allowed to move in any direction, including back-
tracking. Each proposal for such a move is accepted or rejected with (e.g.)
Metropolis probability. Thus only local updates are needed.

In contrast to the single-loop update of the loop-algorithm, the movement
of the worm-head is not determined by previous decisions when it crosses its
own track.

The worm algorithm and directed loops differ in details of the updates.
Note that, like the loop-algorithm, they also allow the measurement of off-
diagonal two-point functions and the change of topological quantum numbers
like the number of particles or the spatial winding. In a suitably chosen version
of directed loops, single-loop updates of the loop algorithm become a special
case. For more information on worms and directed loops we refer to refs.
[23, 44, 22, 5, 21, 24].

4 Spin-Phonon simulations

As an example of worldline Monte Carlo calculations we shall discuss recent
investigations of the Spin-Peierls transition in 1d [7]. Our discussion will also
include a new way to simulate phonons which is suitable for any bare phonon
dispersion ω(q).

The model consists of a 1d Heisenberg chain coupled to phonons

Ĥ = J

N∑

i=1

ŜiŜi+1

{
1 + g x̂i bond phonons
1 + g(x̂i − x̂i+1) site phonons

}

︸ ︷︷ ︸
f({x̂i})

+
1

2

∑

q

p̂2
q + ω2(q) x̂2

q

︸ ︷︷ ︸
Ĥph

(90)
At T = 0 there is a quantum phase transition of the Kosterlitz-Thouless type
at a critical coupling gc to a dimerized phase. In this phase the spin-interaction
ŜiŜi+1 as well as the phonon coordinate xi (resp. xi−xi+1) is larger on every
second lattice bond, and a spin-gap develops, initially exponentially small
[45, 46, 58].

Some of the interesting issues are (see fig. (12)): (1) Does gc depend on
the bare phonon dispersion ω(q) ? (2) Is the phonon spectrum beyond the
transition “softened” (i.e. the bare phonon spectrum moves to lower frequency,
down to zero at momentum π), or does it have a separate central peak ?
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4.1 Bond phonons with Einstein dispersion ω(q) = ω0

These phonons are the easiest to treat by QMC. In order to make the quantum
phonons amenable to numerical treatment, one can express them with the ba-
sic Feynman path integral for each xi (see contribution by M. Hohenadler), by
introducing discrete Trotter times τj , inserting complete sets of states xi(τj)
and evaluating the resulting matrix elements to O(∆τ). A simple Quantum
Monte Carlo for the phonon degrees of freedom can then be done with local

updates of the phonon worldlines xi(τ).
A similar approach is possible in second quantization, by inserting com-

plete sets of occupation number eigenstates ni(τj) at the Trotter times τj .
Again, one can perform Quantum Monte Carlo with local updates on the
occupation number states [45, 46] The discrete Trotter time can be avoided
here, either with continuous time or with SSE [40, 41, 42].

Such local updates suffer from the usual difficulties of long autocorrela-
tion times, which occur especially close to and beyond the phase transition.
They can be alleviated by using “parallel tempering” [59, 60] (or “simulated

tempering”[61]) (see the contribution by W. Janke). In this approach, simula-
tions at many different couplings g (originally: at many temperatures) are run
in parallel. Occasionally, a swap of configurations at neighboring g is proposed.
It is accepted with Metropolis probability. The goal of this strategy is to have
approximately a random walk of configurations in the space of couplings g.
Configurations at high g can then equilibrate by first moving to low g, where
the Monte Carlo is efficient, and then back to high g. The proper choice of
couplings (and of reweighting factors in case of simulated tempering) depends
on the physics of the system and is sometimes cumbersome. It can, however,
be automated [7] efficiently by measuring the distributions of energies during
an initial run.

The results discussed below were obtained using loop updates for spins
and local updates in second quantization for phonons, in SSE representation,
similar to Ref.[45, 46], with additional automated tempering. Spectra were
obtained by mapping the SSE configurations to continuous imaginary time,
as explained in section 2.3, and measuring Greens functions there using FFT.

ω0

π0

ω

k π

ω0

ω

k π

ω0

Fig. 12. Issues for the Spin-Peierls transition. Left: Einstein (=optical) and acous-
tical bare phonon dispersions. Middle: Softening scenario. Right: Central peak sce-
nario.
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Fig. 13. Spectra of phonon coordinates xi above the phase transition for bond
phonons. Left: ω0 = 1J , just above the phase transition. Right: ω0 = 0.25J at
g = 0.3 > gc ≃ 0.23. Lattice size L = 256 and β = 512.

The location of the phase transition is best determined through the finite
size dependence of a staggered susceptibility, of spins, spin-dimers, of phonons.
For spins it reads

χS (π) =
1

N

∑

n,m

(−1)
m
∫ β

0

dτ
〈
Sz

n(τ)Sz
n+m(0)

〉
. (91)

At the phase transition, χS(π) is directly proportional to the system size N ,
whereas above gc there are additional logarithmic corrections. Below gc it is
proportional to lnN for any g > 0, i.e. there is a nonextensice central peak in
the phonon spectrum for any finite spin-phonon coupling.

The phonon spectra exhibit drastic changes at the phase transition. Figure
13 shows that the value of ω0 determines their qualitative behavior: At ω0 = J
the central peak becomes extensive and develops a linear branch at the phase
transition, wich shows the spin-wave velocity. At ω0 = 0.25J the behavior is
completely different: the bare Einstein dispersion has softened and has joined
the previously nonextensive central peak. Thus both the central peak scenario
and the softening scenario occur, depending on the size of ω0.

Note that large system sizes and low temperaturer are essential to get the
correct spectra. The finite size gap of a finite system is of order 1/N . When
1/N is larger than about ω0/10 (!), then there are drastic finite size effects in
the phonon spectrum [7].

At very large values of g, the spin gap ∆S becomes sizeable. The system
enters an adiabatic regime when ∆S > O(ω0) [58]. For the couplings investi-
gated here, it is always diabatic.

4.2 Phonons with arbitrary dispersion ω(q)

Phonons other than those treated in sec. 4.1 have in the past posed great
difficulties for Quantum Monte Carlo.

Site phonons have a coupling
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(1 + g(xi − xi+1)) ŜiŜi+1 (92)

which implies a zero-mode at momentum q = 0. Simulations with local up-
dates for such phonons are extremely slow. In second quantization, simulations
appear impossible, since the difference-coupling induces a sign problem ! For
arbitrary dispersions, there has been a lack of efficient methods.

Let us now discuss a new method [7] which overcomes all these difficulties.
We use the interaction representation, with the pure phonon Hamiltonian as
the diagonal part, and the spin interaction eq.(92) as the interaction part
which is expanded. The partition function then reads

Z =Trs

∞∑

n=0

∑

S

∫ β

0

dτn . . .

∫ τ2

0

dτ1

∫
Dx

n∏

l=0

f({xl})S[l]

︸ ︷︷ ︸
spin operator sequence

e
−
∫ β

0
dτ Hph({x(τ)})

︸ ︷︷ ︸
phonon path integral

(93)
Here S[l] is a spin operator like ŜiŜi+1. The spin-phonon coupling f({x(τ)})

is to be evaluated at the space-time location where the spin operators act.
For a given sequence of spin operators we now construct a Monte Carlo

phonon update. The effective action Seff for the phonons contains log(f({x(τ)}).
It is therefore not bilinear and cannot be integrated directly. However, for pur-
poses of a Monte Carlo update, we can pretend for a moment that the coupling
was fprop(x) := exp(gx) instead of f(x) = 1+gx. Then Sprop

eff is bilinear. For a

given sequence of spin operators, we can diagonalize Sprop
eff in momentum space

and Matsubara frequencies. The result are independent Gaussian distributions
of phonon coordinates in the diagonalized basis. We can then generate a new,
completely independent phonon configuration by taking one sample from this
distribution. In order to achieve a correct Monte Carlo update for the actual
model, we take this sample as a Monte Carlo proposal and accept or reject it
with Metropolis probability for the actual model, eq.(93).

The acceptance probability will depend on the difference between Seff

and Sprop
eff , and thus on the typical phonon extensions. In order to achieve high

acceptance rates it is advantageous to change phonon configurations only in
part of the complete (q, ωn) space for each update proposal. These parts need
to be smaller close to the physically important region (q = π, ω = 0).

Given a phonon-configuration, the effective model for the spins is a Heisen-
berg antiferromagnet with couplings that vary in spacetime. It can be sim-
ulated efficiently with the loop-algorithm, modified for the fact that proba-
bilites are now not constant in imaginary time, but depend on the phonon
coordinates.

The approach just sketched works for site phonons as well as for bond
phonons. Remarkably, any bare phonon dispersion ω(q) can be used, since it
just appears in the Gaussian effective phonon action. Measurements of phonon
properties are easy, since the configurations are directly available in (q, ωn)
space.
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Fig. 14. Spectrum of phonon coordinates xi for acoustical site phonons, at the
phase transition.

Let us now briefly discuss some recent results [7] for site phonons. Their
bare dispersion is acoustical, i.e. gapless at q = 0. In a recent PRL [62] it
was concluded that for this model, the critical coupling is gc = 0, i.e. the
system supposedly orders at any finite coupling. However, it turns out that
this conclusion was based on an incorrect scaling assumption [7].

QMC examination of the spin susceptibility χS(π) on lattices up to length
256 revealed that the critical coupling is actually finite, and almost identical
to that of dispersionless bond phonons with the same ω0(π).

The phonon dispersion slightly above the phase transition is shown, to-
gether with the bare dispersion, in fig. (14). One can see clearly that in this
case of small ω0(π) = 0.25J there is again phonon softening. The Spin-Peierls
phase transition only affects phonons with momenta close to π. The soft bare
dispersion at q = 0 is not affected at all. Indeed, the bare dispersion at small
momenta has no influence on the phase transition [7].

5 Auxiliary field quantum Monte Carlo Methods: basic

formulation

In the present and following sections, we will review the basic concepts in-
volved in the formulation of various forms of auxiliary field QMC algorithms
for fermionic systems. Auxiliary field methods are based on a Hubbard-
Stratonovitch (HS) decomposition of the two-body interaction term thereby
yielding a functional integral expression

Tr
[
e−β(H−µN)

]
=

∫
dΦ(i, τ)e−S[φ(i,τ)] (94)

for the partition function. Here, i runs over all lattice sites and τ from 0 to β.
For a fixed HS field, Φ(i, τ), one has to compute the action, S[Φ(i, τ)], corre-
sponding to a problem of non-interacting electrons in an external space and
imaginary time dependent field. The required computational effort depends on
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the formulation of the algorithm. In the Blankenbecler Scalapino Sugar (BSS)
[6] approach for lattice models such as the Hubbard Hamiltonian, it scales as
βN3 where N corresponds to the number of lattice sites. In the Hirsch-Fye
approach [14], appropriate for impurity problems it scales as (βNimp)

3
where

Nimp corresponds to the number of correlated sites. Having solved for a fixed
HS field, we have to sum over all possible fields. This is done stochastically
with the Monte Carlo method.

In comparison to the loop and SSE approaches, auxiliary field methods
are slow. Recall that the computational effort for loop and SSE approaches –
in the absence of a sign problem – scales as Nβ. However, the attractive point
of the auxiliary field approach lies in the fact that the sign problem is absent
in many non-trivial cases where the loop and SSE methods fail.

This section and the following are organized as follows. We first describe
the basic formulation of the auxiliary field QMC method (See Section 5.1).
This includes the formulation of the partition function, the measurement of
equal time and time displaced correlation functions as well as general con-
ditions under which one can show the absence of negative sign problem. In
Section 6 we concentrate on the implementation of the auxiliary field method
for lattice problems. Here, the emphasis is placed on numerical stabilization
of the algorithm. Section 7 concentrates on the Hirsch-Fye formulation of
the algorithm. This formulation is appropriate for general impurity models,
and is extensively used in the framework of dynamical mean-field theories
and their generalization to cluster methods. Recently, more efficient contin-
uous time algorithms for the impurity problem (diagrammatic determinantal
QMC methods) have been introduced [35, 37]. Finally in section 8 we briefly
provide a short and necessarily biased overview of applications of auxiliary
field methods.

5.1 Basic formulation

For simplicity, we will concentrate on the Hubbard model. Applications to
different models such as the Kondo Lattice or SU(N) Hubbard Heisenberg
models can be found in Refs [63, 64]. The Hubbard model we consider reads:

H = Ht + HU with (95)

Ht = −t
∑

〈i,j〉,σ
c†i,σcj,σ and HU = U

∑

i

(ni,↑ − 1/2) (ni,↓ − 1/2)

If one is interested in ground state properties, it is convenient to use the
projector quantum Monte Carlo (PQMC) algorithm [11, 12, 13]. The ground
state expectation value of an observable O is obtained by projecting a trial
wave function |ΨT 〉 along the imaginary time axis:

〈Ψ0|O|Ψ0〉
〈Ψ0|Ψ0〉

= lim
Θ→∞

〈ΨT |e−ΘHOe−ΘH |ΨT 〉
〈ΨT |e−2ΘH |ΨT 〉

. (96)
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The above equation is readily verified by writing |ΨT 〉 =
∑

n |Ψn〉〈Ψn|Ψ0〉
with H |Ψn〉 = En|Ψn〉. Under the assumptions that 〈ΨT |Ψ0〉 6= 0 and that
the ground state is non-degenerate the right hand side of the above equation
reads:

lim
Θ→∞

∑
n,m〈ΨT |Ψn〉〈Ψm|ΨT 〉e−Θ(En−Em−2E0)〈Ψn|O|Ψm〉

∑
n |〈ΨT |Ψn〉|2e−2Θ(En−E0)

=

〈Ψ0|O|Ψ0〉
〈Ψ0|Ψ0〉

(97)

Finite temperature properties in the grand canonical ensemble are ob-
tained by evaluating

〈O〉 =
Tr
[
e−β(H−µN)O

]

Tr
[
e−β(H−µN)

] (98)

where the trace runs over the Fock space, β = 1/kBT and µ is the chemical
potential. The algorithm based on Eq. (98) will be referred to as finite tem-
perature QMC (FTQMC) method [8, 9]. Comparison of both algorithms is
shown in Fig. 15 for the Hubbard model. At half-filling, the ground state is
insulating so that charge fluctuations are absent in the low temperature limit
on finite lattices. Hence, in this limit both grand canonical and canonical ap-
proaches yield identical results. It is however clear that if one is interested
solely in ground state properties the PQMC is more efficient. This lies in the
choice of the trial wave function which is chosen to be a spin singlet.
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Fig. 15. Fourier transform of the spin-spin correlation functions at Q = (π, π)
(a) and energy (b) for the half-filled Hubbard model (95). •: PQMC algorithm. △:
FTQMC algorithm at β = 2Θ.
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5.2 Formulation of the partition function.

In the world-line approach, one uses the Trotter decomposition (see Appendix
10.1) to split the Hamiltonian into a set of two site problems. In the auxiliary
field approach, we use the Trotter decomposition to separate the single body
Hamiltonian H0 from the two body interaction term in the imaginary time
propagation:

Z = Tr
[
e−β(H−µN)

]
= Tr

[(
e−∆τ HU e−∆τ Ht

)m]
+ O

(
∆2

τ

)
(99)

where we have included the chemical potential in a redefinition of Ht. In the
above m∆τ = β, and the systematic error of order ∆2

τ will be omitted in the
following. At each infinitesimal time step, we use the Hubbard Stratonovitch
(HS) decomposition of Eq. 229 (See Appendix 10.2) to decouple the Hubbard
interaction:

exp

(
−∆τU

∑

i

(ni,↑ − 1/2) (ni,↓ − 1/2)

)
(100)

= C
∑

s1,...,sN =±1

exp

(
α
∑

i

si (ni,↑ − ni,↓)

)
.

where cosh(α) = exp (∆τU/2) and on an N -site lattice, the constant C =
exp (∆τUN/4)/2N .

To simplify the notation we introduce the index x = (i, σ) to define:

Ht =
∑

x,y

c†xTx,ycy ≡ c†Tc and

α
∑

i

si (ni,↑ − ni,↓) =
∑

x,y

c†xV (s)x,ycy ≡ c†V (s)c (101)

We will furthermore define the imaginary time propagators:

Us(τ2, τ1) =

n2∏

n=n1+1

ec†V (sn)ce−∆τ c†Tc (102)

and Bs(τ2, τ1) =

n2∏

n=n1+1

eV (sn)e−∆τ T (103)

where, n1∆τ = τ1 and n2∆τ = τ2.
Using the results of Appendix 10.3 we can now write the partition function

as:

Z = Cm
∑

s1,···,sm

Tr [Us(β, 0)] = Cm
∑

s1,···,sm

det [1 + Bs(β, 0)] (104)
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For the PQMC algorithm, we will require the trial wave function to be a
Slater determinant characterized by the rectangular matrix P (see Appendix
10.3)

|ΨT 〉 =

Np∏

y=1

(∑

x

c†xPx,y

)
|0〉 =

Np∏

y=1

(
c†P

)
y
|0〉 (105)

Hence,

〈ΨT |e−2ΘH |ΨT 〉 = Cm
∑

s1,···,sm

det
[
P †Bs(2Θ, 0)P

]
(106)

where for the PQMC m∆τ = 2Θ.

5.3 Observables and Wick’s theorem

One of the big advantages of the auxiliary field approach is the ability of
measuring arbitrary observables. This is based on the fact that for a given
Hubbard-Stratonovitch field we have to solve a problem of non-interacting
fermions subject to this time and space dependent field. This leads to the
validity of Wick’s theorem. In this section, we will concentrate on equal time
observables, show how to compute Green functions, and finally demonstrate
the validity of Wick’s theorem.
PQMC
In the PQMC algorithm we compute:

〈ΨT |e−ΘHOe−ΘH |ΨT 〉
〈ΨT |e−2ΘH |ΨT 〉

=
∑

s

Ps〈O〉s + O(∆2
τ ). (107)

For each lattice site, i, time slice, n, we have introduced an independent HS
field, s = {si,n} and

Ps =
det
(
P †Bs(2Θ, 0)P

)
∑

s det (P †Bs(2Θ, 0)P )

〈O〉s =
〈ΨT |Us(2Θ, Θ)OUs(Θ, 0)|ΨT 〉

〈ΨT |Us(2Θ, 0)|ΨT 〉
We start by computing the equal time Green function: O = cxc†y = δx,y −
c†A(y,x)c with A

(y,x)
x1,x2 = δx1,yδx2,x. Inserting a source term, we obtain:

〈cxc†y〉s = δx,y − ∂

∂η
ln〈ΨT |Us(2Θ, Θ)eηc†A(y,x)cUs(Θ, 0)|ΨT 〉 |η=0 =

δx,y − ∂

∂η
ln det

(
P †Bs(2Θ, Θ)eηA(y,x)

Bs(Θ, 0)P
)
|η=0 =

δx,y − ∂

∂η
Tr ln

(
P †Bs(2Θ, Θ)eηA(y,x)

Bs(Θ, 0)P
)
|η=0 = (108)

δx,y − Tr
[(

P †Bs(2Θ, 0)P
)−1

P †Bs(2Θ, Θ)A(y,x)Bs(Θ, 0)P
]

(
1 − Bs(Θ, 0)P

(
P †Bs(2Θ, 0)P

)−1
P †Bs(2Θ, Θ)

)
x,y

≡ (Gs(Θ))x,y
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We have used Eqn. (237), (239) to derive the third equality. The attentive
reader will have noticed that Eq. (237) was shown to be valid only in the
case of hermitian or anti-hermitian matrices which is certainly not the case
of A(y,x). However, since only terms of order η are relevant in the calculation,

we may replace eηA by eη(A+A†)/2eη(A−A†)/2 which is exact up to order η2.
For the latter form, one may use Eq. (237). To obtain the fourth equality we
have used the relation: detA = expTr lnA.

We now show that any multi-point correlation function decouples into a
sum of products of the above defined Green functions. First, we define the
cumulants:

〈〈On · · ·O1〉〉s =
∂n ln〈ΨT |Us(2Θ, Θ)eηnOn · · · eη1O1Us(Θ, 0)|ΨT 〉

∂ηn · · · ∂η1

∣∣∣∣
η1···ηn=0

with Oi = c†A(i)c. (109)

Differentiating the above definition we obtain:

〈〈O1〉〉s = 〈O1〉s
〈〈O2O1〉〉s = 〈O2O1〉s − 〈O2〉s〈O1〉s

〈〈O3O2O1〉〉s = 〈O3O2O1〉s −
〈O3〉s〈〈O2O1〉〉s − 〈O2〉s〈〈O3O1〉〉s − 〈O1〉s〈〈O3O2〉〉s −
〈O1〉s〈O2〉s〈O3〉s. (110)

The following rule, which may be proven by induction, emerges:

〈On · · ·O1〉s = 〈〈On · · ·O1〉〉s +

n∑

j=1

〈〈On · · · Ôj · · ·O1〉〉s〈〈Oj〉〉s +

∑

j>i

〈〈On · · · Ôj · · · Ôi · · ·O1〉〉s〈〈OjOi〉〉s + · · · +

〈〈On〉〉s · · · 〈〈O1〉〉s (111)

where Ôj means that the operator Oj has been omitted from the product [65].
The cumulant may now be computed order by order. We concentrate on the

form 〈〈c†xn
cyn · · · c†x1

cy1〉〉 so that A
(i)
x,y = δx,xiδy,yi . To simplify the notation

we introduce the quantities:

B〉 = Bs(Θ, 0)P, and B〈 = P †Bs(2Θ, Θ). (112)

We have already computed 〈〈O1〉〉s (see Eq. (108)):

〈〈O1〉〉s = 〈〈c†x1
cy1〉〉 = Tr

(
(1 − Gs(Θ))A(1)

)
= (1 − Gs(Θ))y1,x1 (113)

For n = 2 we have:
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〈〈O2O1〉〉s = 〈〈c†x2
cy2c

†
x1

cy1〉〉s

=
∂2Tr ln

(
P †Bs(2Θ, Θ)eη2A(2)

eη1A(1)

Bs(Θ, 0)P
)

∂η2∂η1

∣∣∣∣∣∣
η2,η1=0

=
∂

∂η2
Tr

[(
B〈eη2A(2)

B〉
)−1

B〈eη2A(2)

A(1)B〉
]∣∣∣∣

η2=0

= −Tr

[(
B〈B〉

)−1

B〈A(2)B〉
(
B〈B〉

)−1

B〈A(1)B〉
]

+Tr

[(
B〈B〉

)−1

B〈A(2)A(1)B〉
]

= Tr
(
Gs(Θ)A(2)Gs(Θ)A(1)

)

= 〈c†x2
cy1〉s〈cy2c

†
x1
〉s, with G = 1 − G (114)

To derive the above, we have used the cyclic properties of the trace as well

as the relation G = 1 − B〉 (B〈B〉)−1
B〈. Note that for a matrix A(η),

∂
∂η A−1(η) = −A−1(η)

(
∂
∂η A(η)

)
A−1(η). There is a simple rule to obtain the

third cumulant given the second. In the above expression for the second cu-

mulant, one replaces B〈 with B〈eη3A(3)

. This amounts in redefining the Green

function as G(η3) = 1 − B〉
(
B〈eη3A(3)

B〉
)−1

B〈eη3A(3)

. Thus,

〈〈O3O2O1〉〉s = 〈〈c†x3
cy3c

†
x2

cy2c
†
x1

cy1〉〉s

=
∂

∂η3
Tr
(
Gs(Θ, η3)A

(2)Gs(Θ, η3)A
(1)
)∣∣∣

η3=0

= Tr
(
Gs(Θ)A(3)Gs(Θ)A(2)Gs(Θ)A(1)

)
−

Tr
(
Gs(Θ)A(3)Gs(Θ)A(1)Gs(Θ)A(2)

)

= 〈c†x3
cy1〉s〈cy3c

†
x2
〉s〈cy2c

†
x1
〉s −

〈c†x3
cy2〉s〈cy3c

†
x1
〉s〈c†x2

cy1〉s (115)

since

∂

∂η3
Gs(Θ, η3)|η3=0 = −Gs(Θ)A(3)Gs(Θ) = − ∂

∂η3
Gs(Θ, η3)

∣∣∣
η3=0

.

Clearly the same procedure may be applied to obtain the nth+1 cumulant
given the nth one. It is also clear that the nth cumulant is a sum of products
of Green functions. Thus with equation (111) we have shown that any multi-
point correlation function may be reduced into a sum of products of Green
functions: Wicks theorem. Useful relations include:

〈c†x2
cy2c

†
x1

cy1〉s = 〈c†x2
cy1〉s〈cy2c

†
x1
〉s + 〈c†x2

cy2〉s〈c†x1
cy1〉s. (116)
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FTQMC
For the FTQMC we wish to evaluate:

Tr
[
e−βHO

]

Tr [e−βH ]
=
∑

s

Ps〈O〉s + O(∆2
τ ). (117)

where

Ps =
det (1 + Bs(β, 0))∑
s det (1 + Bs(β, 0))

, 〈O〉s =
Tr [Us(β, τ)OUs(τ, 0)]

Tr [Us(β, 0)]
.

Here, we measure the observable on time slice τ . Single body observables,
O = c†Ac are evaluated as:

〈O〉s =
∂ ln Tr

[
Us(β, τ)eηOUs(τ, 0)

]

∂η

∣∣∣∣∣
η=0

=
∂ ln det

[
1 + Bs(β, τ)eηABs(τ, 0)

]

∂η

∣∣∣∣∣
η=0

=
∂Tr ln

[
1 + Bs(β, τ)eηABs(τ, 0)

]

∂η

∣∣∣∣∣
η=0

= Tr
[
Bs(τ, 0)(1 + Bs(β, 0))−1Bs(β, τ)A

]

= Tr
[(

1 − (1 + Bs(τ, 0)Bs(β, τ))
−1
)

A
]

(118)

In particular the Green function is given by:

〈cxc†y〉s = (1 + Bs(τ, 0)Bs(β, τ))
−1
x,y (119)

Defining the cumulants as

〈〈On · · ·O1〉〉s =
∂n ln Tr

[
Us(β, τ)eηnOn · · · eη1O1Us(τ, 0)

]

∂ηn · · · ∂η1

∣∣∣∣∣
η1···ηn=0

with Oi = c†A(i)c, (120)

one can derive Wicks theorem in precisely the same manner as shown for the
PQMC. Thus both in the PQMC and FTQMC, it suffices to compute the
equal time Green functions to evaluate any equal time observable.

5.4 Imaginary time displaced Green functions.

Imaginary time displaced correlation yield important information. On one
hand they may be used to obtain spin and charge gaps [66, 67], as well quasi-
particle weights [30]. On the other hand, with the use of the Maximum Entropy
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method [68, 69] and generalizations thereof [70], dynamical properties such as
spin and charge dynamical structure factors, optical conductivity, and single
particle spectral functions may be computed. Those quantities offer the possi-
bility of direct comparison with experiments, such as photoemission, neutron
scattering and optical measurements.

Since there is again a Wick’s theorem for time displaced correlation func-
tions, it suffices to compute the single particle Green function for a given HS
configuration. We will first start with the FTQMC and then concentrate on
the PQMC.
FTQMC

For a given HS field, we wish to evaluate:

Gs(τ1, τ2)x,y = 〈Tcx(τ1)c
†
y(τ2)〉s =

{
〈cx(τ1)c

†
y(τ2)〉s if τ1 ≥ τ2

−〈c†y(τ2)cx(τ1)〉s if τ1 < τ2
(121)

where T corresponds to the time ordering. Thus for τ1 > τ2 Gs(τ1, τ2)x,y

reduces to

〈cx(τ1)c
†
y(τ2)〉s =

Tr
[
Us(β, τ1)cxUs(τ1, τ2)c

†
yUs(τ2, 0)

]

Tr [Us(β, 0)]

=
Tr
[
Us(β, τ2)U

−1
s (τ1, τ2)cxUs(τ1, τ2)c

†
yUs(τ2, 0)

]

Tr [Us(β, 0)]
(122)

Evaluating U−1(τ1, τ2)cxUs(τ1, τ2) boils down to the calculation of

cx(τ) = eτc†Accxe−τc†Ac

where A is an arbitrary matrix. Differentiating the above with respect to τ
yields

∂cx(τ)

∂τ
= eτc†Ac

[
c†Ac, cx

]
e−τc†Ac = −

∑

z

Ax,zcz(τ).

Thus,

cx(τ) =
(
e−Ac

)
x

and similarly c†x(τ) =
(
c†eA

)
x

. (123)

We can use the above equation successively to obtain:

U−1
s (τ1, τ2)cxUs(τ1, τ2) = (Bs(τ1, τ2)c)x

U−1
s (τ1, τ2)c

†
xUs(τ1, τ2) =

(
c†B−1

s (τ1, τ2)
)

x
(124)

Since B is a matrix and not a second quantized operator, we can pull it out
of the trace in Eq. (122) to obtain:

Gs(τ1, τ2)x,y = 〈cx(τ1)c
†
y(τ2)〉s = [Bs(τ1, τ2)Gs(τ2, τ2)]x,y τ1 > τ2 (125)
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where Gs(τ2) is the equal time Green function computed previously. A similar
calculation will yield for τ2 > τ1

Gs(τ1, τ2)x,y = −〈c†y(τ2)cx(τ1)〉s = −
[
(1 − Gs(τ1, τ1))B−1

s (τ2, τ1)
]
x,y

.

(126)
The above equations imply the validity of Wick’s theorem for time dis-

placed Green functions. Any n-point correlation function at different imag-
inary times may mapped onto an expression containing n-point equal time
correlation functions. The n-point equal time correlation function may then
be decomposed into a sum of products of equal time Green functions. For
example, for τ1 > τ2 let us compute

〈c†x(τ1)cx(τ1)c
†
y(τ2)cy(τ2)〉 =

Tr
[
U(β, τ2)U

−1(τ1, τ2)c
†
xU−1(τ1, τ2)U(τ1, τ2)cxU(τ1, τ2)c

†
ycyU(τ2, 0)

]

Tr [U(β, 0)]

=
∑

z,z1

B−1(τ1, τ2)z,xB(τ1, τ2)x,z1〈c†z(τ2)cz1(τ2)c
†
y(τ2)cy(τ2)〉 =

∑

z,z1

B−1(τ1, τ2)z,xB(τ1, τ2)x,z1 ×
[
(1 − G(τ2, τ2))z1,z (1 − G(τ2, τ2))y,y + (1 − G(τ2, τ2))y,z G(τ2, τ2)z1,y

]
=

[
B(τ1, τ2) (1 − G(τ2, τ2))B−1(τ1, τ2)

]
x,x

[1 − G(τ2, τ2)]y,y

+
[
(1 − G(τ2, τ2))B−1(τ1, τ2)

]
y,x

[B(τ1, τ2)G(τ2, τ2)]x,y =

[1 − G(τ1, τ1)]x,x [1 − G(τ2, τ2)]y,y − G(τ2, τ1)y,xG(τ1, τ2)x,y. (127)

In the above, we have omitted the index s, used Eqn. (126) and (125), used
Wick’s theorem for equal time n-point correlation functions as well as the
identity:

Bs(τ1, τ2)Gs(τ2, τ2)B
−1
s (τ1, τ2) = Gs(τ1, τ1) (128)

We conclude this paragraph, by a method proposed by Hirsch [71] to
compute imaginary time displaced Green functions. This equation provides
a means to circumvent numerical instabilities which we will discuss in a sub-
sequent chapter and is the basis of the so-called Hirsch-Fye [14] algorithm.
Let β be a multiple of τ1 and lτ1 = β. Using the definition τi = iτ1 with
i = 1 · · · l. Let

O =




1 0 . 0 Bs(τ1, 0)
−Bs(τ2, τ1) 1 0 . 0

0 −Bs(τ3, τ2) 1 . 0
. 0 −Bs(τ4, τ3) . .
. . 0 . .
. . . .
0 . 0 −Bs(τl, τl−1) 1




and



QMC simulations 47

G =




Gs(τ1, τ1) Gs(τ1, τ2) . . Gs(τ1, τl)
Gs(τ2, τ1) Gs(τ2, τ2) . . Gs(τ2, τl)

. . . . .
Gs(τl, τ1) Gs(τl, τ2) . . Gs(τl, τl)


 , (129)

then
O−1 = G. (130)

The above equation is readily verified by showing that OG = 1. Here, we
illustrate the validity of the above equation for the case l = 2. Using Eqn.
(126),(125) and (128), bearing in mind that in this case τ2 = β and omitting
the index s we have:

G(τ1, τ1) + B(τ1, 0)G(τ2, τ1) = [1 + B(τ1, 0)B(τ2, τ1)]︸ ︷︷ ︸
G−1(τ1,τ1)

G(τ1, τ1) = 1,

G(τ1, τ2) + B(τ1, 0)G(τ2, τ2) =

−(1 − G(τ1, τ1))B
−1(τ2, τ1) + B(τ1, 0)B(τ2, τ1)G(τ1, τ1)B

−1(τ2, τ1) =
−G−1(τ1, τ1) + 1 + B(τ1, 0)B(τ2, τ1)︸ ︷︷ ︸

G−1(τ1,τ1)


G(τ1, τ1)B

−1(τ2, τ1) = 0,

−B(τ2, τ1)G(τ1, τ1) + G(τ2, τ1) = −G(τ2, τ1) + G(τ2, τ1) = 0

and

−B(τ2, τ1)G(τ1, τ2) + G(τ2, τ2) =

B(τ2, τ1)(1 − G(τ1, τ1))B
−1(τ2, τ1) + G(τ2, τ2) =

1 − G(τ2, τ2) + G(τ2, τ2) = 1

so that:
(

1 B(τ1, 0)
−B(τ2, τ1) 1

)(
G(τ1, τ1) G(τ1, τ2)
G(τ2, τ1) G(τ2, τ2)

)
=

(
1 0
0 1

)
. (131)

PQMC
Zero temperature time displaced Green functions are given by:

Gs

(
Θ +

τ

2
, Θ − τ

2

)
x,y

(132)

=
〈ΨT |Us

(
2Θ, Θ + τ

2

)
cxUs

(
Θ + τ

2 , Θ − τ
2

)
c†yUs(Θ − τ

2 , 0)|ΨT 〉
〈ΨT |Us(2Θ, 0)|ΨT 〉

=
[
Bs

(
Θ +

τ

2
, Θ − τ

2

)
Gs

(
Θ − τ

2

)]
x,y
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and

Gs

(
Θ − τ

2
, Θ +

τ

2

)
x,y

(133)

= −
〈ΨT |Us(2Θ, Θ + τ

2 )c†yUs(Θ + τ
2 , Θ − τ

2 )cxUs(Θ − τ
2 , 0)|ΨT 〉

〈ΨT |Us(2Θ, 0)|ΨT 〉
= −

[(
1 − Gs

(
Θ − τ

2

))
B−1

s

(
Θ +

τ

2
, Θ − τ

2

)]
x,y

.

Here τ > 0 and we have used Eq. (124), as well as the equal time Green
function of Eq. (108). Two comments are in order. (i) For a given value of τ the
effective projection parameter is Θ−τ . Thus, before starting a simulation, one
has to set the maximal value of τ which will be considered, τM and the effective
projection parameter Θ − τM should be large enough to yield the ground
state within the desired precision. (ii) In a canonical ensemble, the chemical
potential is meaningless. However, when single particle Green functions are
computed it is required to set the reference energy with regards to which a
particle will be added or removed. In other words, it is the chemical potential
which delimits photoemission from inverse photoemission. Thus, it is useful to
have an estimate of this quantity if single particle or pairing correlations are
under investigation. For observable such as spin-spin or charge-charge time
displaced correlations this complication does not come into play since they
are in the particle-hole channel.

5.5 The sign problem

One of the big advantages of the auxiliary field method, is that one can use
symmetries to show explicitly that the sign problem does not occur. The
generic way of showing the absence of sign problem is through the factorization
of the determinant. In general, particle-hole symmetry allows one to avoid the
sign problem (see for example [63] for the case of the Kondo Lattice, Hubbard
and Periodic Anderson models.) In this case, the weight decouples into the
product of a two determinants in the spin up and spin down sectors. Particle-
hole symmetry locks in together the sign of both determinants such that
the weight remains positive. Models with attractive interactions which couple
independently to an internal symmetry with an even number of states lead
to weights, for a given HS configuration, which are an even power of a single
determinant. If the determinant itself is real (i.e. absence of magnetic fields),
the overall weight will be positive. An example is the attractive Hubbard
model. The attractive Hubbard model falls into the above class and is hence
free of the sign problem.

Here we will give more general conditions under which the sign problem is
absent [72]. The proof is very similar to Kramers degeneracy for time reversal
symmetric Hamiltonians [73]. Let us assume the existence of an antiunitary
transformation K with following properties (we adopt the notation of Eq.
(101)):
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K†TK = T, K†V (s)K = V (s) K†K = 1 and K2 = −1. (134)

It then follows that the eigenvalues of the matrix 1+Bs(β, 0) occur in complex
conjugate pairs. Hence,

det (1 + B(β, 0)) =
∏

i

|λi|2. (135)

and no sign problem occurs.
Proof. Let us first remind the reader that an antilinear operator K satis-
fies the property: K (αv + βu) = α†Kv + β†Ku where α and β are complex
numbers. An antiunitary operator, corresponding to time reversal symmetry
for example, is a unitary antilinear transformation so that the scalar product
remains invariant: (Kv,Ku) = (v, u). Let us assume that v is an eigenvector
of the matrix 1 + Bs(β, 0) with eigenvalue λ.

(1 + Bs(β, 0))v = λv. (136)

From Eqn. (134) and (102) follows that, K† (1 + Bs(β, 0))K = 1 + Bs(β, 0)
such that

(1 + Bs(β, 0))Kv = λ†Kv. (137)

Hence Kv is an eigenvector with eigenvalue λ†. To complete the proof, we
have to show that v and Kv are linearly independent.

(v,Kv) =
(
K†v, v

)
=
(
KK†v,Kv

)
= − (v,Kv) . (138)

In the above, we have used the unitarity of K and the relation K2 = −1.
Hence, since v and Kv are orthogonal, we are guaranteed that λ and λ† will
occur in the spectrum. In particular, if λ is real, it occurs an even number of
times in the spectrum. QED.

It is interesting to note that models which show spin-nematic phases can
be shown to be free of sign problems due the above symmetry even though
the factorization of the determinant is not present [74].

Clearly, the sign problem remains the central issue in Monte Carlo sim-
ulations of correlated electrons. It has been argued that there is no general
solution to this problem [75]. This does not exclude the possibility of find-
ing novel algorithms which can potentially circumvent the sign problem for
a larger class of models than at present. A very interesting novel algorithm,
the Gaussian Monte Carlo approach, has recently been introduced by Corney
and Drummond [25, 76] and is claimed to solve the negative sign problem
for a rather general class models containing the Hubbard model on arbitrary
lattices and at arbitrary dopings. As it stands, this method does not produce
accurate results and the interested reader is refered to Ref. [26] for a detailed
discussion of those problems.
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5.6 Summary

In principle, we now have all the elements required to carry out a QMC
simulation. The space we have to sample is that of Nm Ising spins. Here N
is the number of lattice sites and m the number of imaginary time slices. For
each configuration of Ising spins, s, we can associate a weight. For the PQMC
it reads:

Ws = Cm det
[
P †Bs(2Θ, 0)P

]
(139)

and for the FTQMC:

Ws = Cm det [1 + Bs(β, 0)] (140)

Here we will assume that the weight is positive. A Monte Carlo simulation
may now be carried out as follows.

• To generate a Markov chain we can adopt a sequential, or random, sin-
gle spin flip upgrading scheme. We accept the proposed change from s to
s′ with probability max (1, Ws′/Ws) corresponding to a Metropolis algo-
rithm. Since we can in principle compute the weight Ws at the expense
of a set of matrix multiplications and estimation of a determinant we can
compute the quotient Ws′/Ws. This procedure will be repeated until an
independent Ising spin configuration is obtained. That is after the auto-
correlation time.

• For a given Ising spin configuration, and with the help of the formulas
given in the preceeding section, we can compute the time displaced Green
functions. Since a Wick’s theorem holds for a given Hubbard Stratonovitch
configuration of Ising spins, we have access to all observables.

• After having measured an observable, we will return to step one so as to
generate a new, independent configuration of Ising spins.

The implementation of the above program will not work due to the oc-
currence of numerical instabilities at low temperatures. It also leads to a very
inefficient code. In the next two sections will show first to implement efficiently
the algorithm. We will first concentrate on simulations for lattice models and
then on the so called Hirsch-Fye approach which is triggered at solving impu-
rity models.

6 Numerical stabilization schemes for lattice models.

This chapter is organized as follows. We will first show how to compute
the equal time Green functions both in the finite (FTQMC) and projective
(PQMC) formalisms. The equal time Green function is the fundamental quan-
tity on which the whole algorithm relies. On one hand and in conjunction with
Wick’s theorem, it allows to compute any equal time observable. On the other
hand, it determines the Monte Carlo dynamics since the ratio of statistical
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weights under a single spin flip is determined by the equal time Green function
(see Section 6.2). In section 6.3 we will show how to compute imaginary time
displaced Green functions in a efficient and numerically stable manner.

6.1 Numerical stabilization and calculation of the equal time
Green function.

The fundamental quantity on which the entire algorithm relies is the equal
time Green function. For a given HS configuration of auxiliary fields, this
quantity is given by

〈cxc†y〉s =
(
1 − Bs(Θ, 0)P

(
P †Bs(2Θ, 0)P

)−1
P †Bs(2Θ, Θ)

)
x,y

(141)

for the PQMC (See Eq. 108) and by

〈cxc†y〉s = (1 + Bs(τ, 0)Bs(β, τ))
−1
x,y (142)

for the FTQMC (See Eq. 119). On finite precision machines a straightforward
calculation of the Green function leads to numerical instabilities at large val-
ues of β or projection parameter Θ. To understand the sources of numerical
instabilities, it is convenient to consider the PQMC. The rectangular matrix
P accounting for the trial wave function is just a set of column orthonor-
mal vectors. Typically for a Hubbard model, at weak couplings, the extremal
scales in the matrix Bs(2Θ, 0) are determined by the kinetic energy and range
from e8tΘ to e−8tΘ in the two-dimensional case. When the set of orthonormal
vectors in P are propagated, the large scales will wash out the small scales
yielding an numerically ill defined inversion of the matrix P †Bs(2Θ, 0)P . To
be more precise consider a two electron problem. The matrix P then consists
of two column orthonormal vectors, v(0)1 and v(0)2. After propagation along
the imaginary time axis, will be dominated by the largest scales in Bs(2Θ, 0)
so that v(2Θ)1 = v(2Θ)2 + ǫ, where v(2Θ)1 = Bs(2Θ, 0)v1. It is the infor-
mation contained in ǫ which renders the matrix P †Bs(2Θ, 0)P non-singular.
For large values of Θ this information is lost in round-off errors.

To circumvent this problem a set of matrix decomposition techniques were
developed [12, 13, 9]. Those matrix decomposition techniques are best intro-
duced with the Gram-Schmidt orthonormalization method of Np linearly in-
dependent vectors. At imaginary time τ , Bs(τ, 0)P ≡ B〉 is given by the Np

vectors v1 · · ·vNp . Orthogonalizing those vectors yields:

v′
1 = v1

v′
2 = v2 −

v2 · v′
1

v′
1 · v′

1

v′
1

.

.

v′
Np

= vNp −
Np−1∑

i=1

vNp · v′
i

v′
i · v′

i

v′
i. (143)
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Since v′
n depends only on the vectors vn · · ·v1 we can write,

(
v′

1, · · · , v′
Np

)
=
(
v1, · · · , vNp

)
V −1

R (144)

where VR is an upper unit triangular Np × Np matrix, that is the diagonal
matrix elements are equal to unity. One can furthermore normalize the vectors
v′

1, · · · , v′
Np

to obtain:

B〉 ≡
(
v1, · · · , vNp

)
=

(
v′

1

|v′
1|

, · · · ,
v′

Np

|v′
Np

|

)

︸ ︷︷ ︸
≡U〉

DRVR (145)

where D is a diagonal matrix containing the scales. One can repeat the pro-
cedure to obtain: B〈 ≡ P †Bs(2Θ, τ) = VLDLU 〈. The Green function for the
PQMC is now particularly easy to compute:

1 − Gs(τ) = B〉
(
B〈B〉

)−1

B〈

= U 〉DRVR

(
VLDLU 〈U 〉DRVR

)−1

VLDLU 〈

= U 〉DRVR (DRVR)−1
(
U 〈U 〉

)−1

(VLDL)−1 VLDLU 〈

= U 〉
(
U 〈U 〉

)−1

U 〈 (146)

Thus, in the PQMC, all scales which are at the origin of the numerical insta-
bilities disappear from the problem when computing Green functions. Since
the entire algorithm relies solely on the knowledge of the Green function, the
above stabilization procedure leaves the physical results invariant. Note that
although appealing, the Gram-Schmidt orthonormalization is itself unstable,
and hence is is more appropriate to use singular value decompositions based on
Housholder’s method to obtain the above UDV form for the B matrices [77].
In practice the frequency at which the stabilization is carried out is problem
dependent. Typically, for the Hubbard model with ∆τ t = 0.125 stabilization
at every 10th time slice produces excellent accuracy.

The stabilization procedure for the finite temperature algorithm is more
subtle since scales do not drop out in the calculation of the Green function.
Below, we provide two ways of computing the Green function.

The first approach relies on the identity:

(
A B
C D

)−1

=

((
A − BD−1C

)−1 (
C − DB−1A

)−1

(
B − AC−1D

)−1 (
D − CA−1B

)−1

)
(147)

where A, B, C and D are matrices. Using the above, we obtain:
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(
1 Bs(β, τ)

−Bs(τ, 0) 1

)−1

=

(
Gs(0) −(1 − Gs(0))B−1

s (τ, 0)
Bs(τ, 0)Gs(0) Gs(τ)

)
(148)

The diagonal terms on the right hand side of the above equation correspond
to the desired equal time Green functions. The off-diagonal terms are nothing
but the time displaced Green functions (See Eqn. 125, 126 ). To evaluate
the left hand side of the above equation, we first have to bring Bs(τ, 0) and
Bs(β, τ) in UDV forms. This has to be done step by step so as to avoid mixing
large and small scales. Consider the propagation Bs(τ, 0), and a time interval
τ1, with nτ1 = τ , for which the different scales in Bs(nτ1, (n − 1)τ1) do not
exceed machine precision. Since Bs(τ, 0) = Bs(nτ1, (n− 1)τ1) · · ·Bs(τ1, 0) we
can evaluate Bs(τ, 0) for n = 2 with:

Bs(2τ1, τ1)Bs(τ1, 0)︸ ︷︷ ︸
U1D1V1

= ((Bs(2τ1, τ1)U1)D1)︸ ︷︷ ︸
U2D2V

V1 = U2D2V2 (149)

where V2 = V V1. The parenthesis determine the order in which the matrix
multiplication are to be done. In all operations, mixing of scales is avoided.
After the multiplication with diagonal matrix D1 scales are again separated
with the use of the singular value decomposition.

Thus, for Bs(τ, 0) = URDRVR and Bs(β, τ) = VLDLUL we have to invert:

(
I VLDLUL

−URDRVR I

)−1

=




(
VL 0
0 UR

)(
(VRVL)−1 DL

−DR (ULUR)−1

)

︸ ︷︷ ︸
UDV

(
VR 0
0 UL

)



−1

=

[(
(VR)−1 0

0 (UL)−1

)
V −1

]
D−1

[
U−1

(
(VL)−1 0

0 (UR)−1

)]
(150)

In the above, all matrix multiplications are well defined. In particular, the ma-
trix D contains only large scales since the matrices (VRVL)−1 and (ULUR)−1

act as a cutoff to the exponentially small scales in DL and DR. This method
to compute Green functions is very stable and has the advantage of producing
time displaced Green functions. However, it is numerically expensive since the
matrices involved are twice as big as the B matrices.

Alternative methods to compute Gs(τ) which involve matrix manipula-
tions only of the size of B include:

(1 + Bs(τ, 0)Bs(β, τ))−1 = (1 + URDRVRVLDLUL)−1

= (UL)−1((ULUR)−1 + DR(VRVL)DL︸ ︷︷ ︸
UDV

)−1U−1
R
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= (V UL)−1D−1(URU−1). (151)

Again, (ULUR)−1 acts as a cutoff to the small scales in DR(VRVL)DL so that
D contains only large scales.

The accuracy of both presented methods may be tested by in the following
way. Given the Green function at time τ we can can upgrade and wrap (see Eq.
(128)) this Green function to time slice τ + τ1. Of course, for the time interval
τ1 the involved scales should lie within the accuracy of the the computer,
∼ 1−12 for double precision numbers. The thus obtained Green function at
time τ + τ1 may be compared to the one computed from scratch using Eq.
(150) or Eq. (151). For a 4× 4 half-filled Hubbard model at U/t = 4, βt = 20,
∆τ t = 0.1 and τ1 = 10∆τ we obtain an average (maximal) difference between
the matrix elements of both Green functions of 1−10 ( 1−6) which is orders of
magnitude smaller than the statistical uncertainty. Had we chosen τ1 = 50∆τ

the accuracy drops to 0.01 and 100.0 for the average and maximal differences.

6.2 The Monte Carlo Sampling

The Monte Carlo sampling used in the auxiliary field approach is based on
a single spin-flip algorithm. Acceptance or rejection of this spin flip requires
the knowledge of the ratio

R =
Ps′

Ps

(152)

where s and s′ differ only at one point in space, i, and imaginary time, n. For
the Ising field required to decouple the Hubbard interaction (Eqn. (229) and
(232)):

s′i′,n′ =

{
si′,n′ if i′ 6= i and n′ 6= n
−si,n if i′ = i and n′ = n

(153)

The calculation of R boils down to computing the ratio of two determi-
nants:

det[1+Bs′ (β,0)]
det[1+Bs(β,0)] for the FTQMC

det[P †Bs′(2Θ,0)P ]
det[P †Bs(2Θ,0)P ] for the PQMC

(154)

For the Hubbard interaction with HS transformation of Eq. (229) only the
matrix V (sn) will be effected by the move. Hence, with

eV (s′

n) =


1 +

(
eV (s′

n)e−V (sn) − 1
)

︸ ︷︷ ︸
∆


 eV (sn) (155)

we have:
Bs′(•, 0) = Bs(•, τ) (1 + ∆)Bs(τ, 0) (156)



QMC simulations 55

where the • stands for 2Θ or β and τ = n∆τ .
For the FTQMC, the ratio is given by:

det [1 + Bs(β, τ)(1 + ∆)Bs(τ, 0)]

det [1 + Bs(β, 0)]
=

det
[
1 + ∆Bs(τ, 0) (1 + Bs(β, 0))−1 Bs(β, τ)

]
=

det
[
1 + ∆

(
1 − (1 + Bs(τ, 0)Bs(β, τ))

−1
)]

=

det [1 + ∆ (1 − Gs(τ))] (157)

Where the last line follows from the fact that the equal time Green function
reads: Gs(τ) = (1 + Bs(τ, 0)Bs(β, τ))

−1
. Hence the ratio is uniquely deter-

mined from the knowledge of the equal time Green function.
Let us now compute the ratio for the PQMC. We again introducing the

notation B
〈
s = P †Bs(2Θ, τ) and B

〉
s = Bs(τ, 0)P we have to evaluate:

det
[
B

〈
s

(
1 + ∆(i)

)
B

〉
s

]

det
[
B

〈
sB

〉
s

] = det

[
B〈

s

(
1 + ∆(i)

)
B〉

s

(
B〈

sB
〉
s

)−1
]

(158)

= det

[
1 + B〈

s∆
(i)B〉

s

(
B〈

sB
〉
s

)−1
]

= det

[
1 + ∆(i)B〉

s

(
B〈

sB
〉
s

)−1

B〈
s

]

where the last equation follows from the identity det [1 + AB] = det [1 + BA]
for arbitrary rectangular matrices. 3 We can recognize the Green function of

the PQMC B
〉
s

(
B

〈
sB

〉
s

)−1

B
〈
s = 1−Gs(τ). The results is thus identical to that

of the FTQMC provided that we replace the finite temperature equal time
Green function with the zero temperature one. Hence, in both algorithms, the
ratio is essentially given by the equal time Green function which we at this
point know how to compute in a numerically stable manner.

Having calculated the ratio R for a single spin-flip one may now decide
stochastically within for example a Metropolis scheme if the move is accepted
or not. In case of acceptance, we have to update the Green function since this
quantity is required at the next step.

Since in general the matrix ∆ has only a few non-zero entries, it is conve-
nient to use the Sherman-Morrison formula [77] which states that

(A + u ⊗ v)−1 = (1 + A−1u ⊗ v)−1A−1 = (159)
1 − A−1u ⊗ v + A−1u ⊗ vA−1u︸ ︷︷ ︸

≡λ

⊗v + A−1u ⊗ λ2v − · · ·


A−1 =

[
1 − A−1u ⊗ v

(
1 − λ + λ2 − · · ·

)]
A−1 = A−1 −

(
A−1u

)
⊗
(
vA−1

)

1 + v • A−1u

3 This identity may be formally shown by using the relation det(1 + AB) =
expTr log(1 + AB), expanding the logarithm and using the cyclic properties of
the trace.
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where A is a N × N matrix, u, v N-dimensional vectors with tensor product
defined as (u ⊗ v)x,y = uxvy.

To show how to use this formula for the updating of the Green function,
let us first assume that matrix ∆ has only one non-vanishing entry: ∆x,y =

δx,zδy,z′η(z,z′). In the case of the FTQMC we will then have to compute:

Gs′(τ) = [1 + (1 + ∆)Bs(τ, 0)Bs(β, τ)]
−1

= B−1
s (β, τ) [1 + Bs(β, τ)(1 + ∆)Bs(τ, 0)]

−1
Bs(β, τ)

= B−1
s (β, τ) [1 + Bs(β, τ)Bs(τ, 0) + u ⊗ v]

−1
Bs(β, τ) (160)

where
ux = [Bs(β, τ)]x,z η(z,z′) and vx = [Bs(τ, 0)]z′,x . (161)

Using the Sherman-Morrison formula for inverting 1+Bs(β, τ)Bs(τ, 0)+u⊗v

yields

[Gs′(τ)]x,y = [Gs(τ)]x,y −
[Gs(τ)]x,z η(z,z′) [1 − Gs(τ)]z′,y

1 + η(z,z′) [1 − Gs(τ)]z′,z

(162)

Precisely the same equation holds for the PQMC provided that one re-
places the finite temperature Green function by the zero temperature one. To
show this, one will first compute:

(B
〈
s′B

〉
s′)

−1 =
(
B〈

s(1 + ∆)B〉
s

)−1

=
(
B〈

sB
〉
s + u ⊗ v

)−1

= (B〈
sB

〉
s)

−1 − (B
〈
sB

〉
s)−1u ⊗ v(B

〈
sB

〉
s)−1

1 + η(z,z′) [1 − G0
s(τ)]z′,z

(163)

with ux =
[
B

〈
s

]
x,z

η(z,z′) and vx =
[
B

〉
s

]
z′,x

. Here x runs from 1 · · ·Np where

Np corresponds to the number of particles contained in the trial wave function

and the zero temperature Green function reads: G0
s(τ) = 1−B

〉
s(B

〈
sB

〉
s)−1B

〈
s.

After some straightforward algebra, one obtains:

[
G0

s′(τ)
]
x,y

=
[
1 − (1 + ∆)B〉

s(B
〈
s(1 + ∆)B〉

s)−1B〈
s

]
x,y

=
[
G0

s(τ)
]
x,y

−
[
G0

s(τ)
]
x,z

η(z,z′)
[
1 − G0

s(τ)
]
z′,y

1 + η(z,z′) [1 − G0
s(τ)]z′,z

(164)

In the above, we have assumed that the matrix ∆ has only a single non-
zero entry. In general, it is convenient to work in a basis where ∆ is diagonal
with n non-vanishing eigenvalues. One will then iterate the above procedure
n-times to upgrade the Green function.
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6.3 Numerical calculation of imaginary time displaced Green
functions.

In section 5.4 we introduced the time displaced Green functions both within
the ground state and finite temperature formulations. Our aim here is to show
how to compute them in a numerically stable manner. We will first start with
the FTQMC and then concentrate on the PQMC.

FTQMC

For a given HS field, we wish to evaluate:

Gs(τ1, τ2)x,y = 〈cx(τ1)c
†
y(τ2)〉s = Bs(τ1, τ2)Gs(τ2) τ1 > τ2 (165)

where Gs(τ1) is the equal time Green function computed previously and,

Gs(τ1, τ2)x,y = −〈c†y(τ2)cx(τ1)〉s = − (1 − Gs(τ1)) B−1
s (τ2, τ1) τ2 > τ1

(166)
(See Eqn. (126,125))

Returning to Eq. (148) we see that we have already computed the time
displaced Green functions Gs(0, τ) and Gs(τ, 0) when discussing a stabiliza-
tion scheme for the equal time Green functions. However, this calculation is
expensive and is done only at times τ = nτ1 where τ1 is time scale on which
all energy scales fit well on finite precision machines. To obtain the Green
functions for arbitrary values of τ one uses the relations:

Gs(0, τ + τ2) = Gs(0, τ)B−1
s (τ2, τ)

Gs(τ + τ2, 0) = Bs(τ2, τ)Gs(τ, 0) (167)

where τ2 < τ1.
With the above method, we have access to all time displaced Green func-

tions Gs(0, τ) and Gs(τ, 0). However, we do not use translation invariance
in imaginary time. Clearly, using this symmetry in the calculation of time
displaced quantities will reduce the fluctuations which may sometimes be de-
sirable. A numerically expensive but elegant way of producing all time dis-
placed Green functions relies on the inversion of the matrix O given in Eq.
(129). Here, provided the τ1 is small enough so that the scales involved in
Bs(τ + τ1, τ) fit on finite precision machines, the matrix inversion of O−1 is
numerically stable and and yields the Green functions between arbitrary time
slices: nτ1 and mτ1. For β/τ1 = l, the matrix to inverse has the dimension
l times the size of the B matrices, and is hence expensive to compute. It is
worth noting that on vector machines the performance grows with growing
vector size so that the above method can become attractive. Having computed
the Green functions Gs(nτ1, mτ1) we can obtain Green functions on any two
time slices by using equations of the type (167).
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PQMC

Zero temperature time displaced Green functions are given by:

Gs

(
Θ +

τ

2
, Θ − τ

2

)
x,y

=
[
Bs

(
Θ +

τ

2
, Θ − τ

2

)
Gs

(
Θ − τ

2

)]
x,y

(168)

and

Gs

(
Θ − τ

2
, Θ +

τ

2

)
x,y

= −
[(

1 − Gs

(
Θ − τ

2

))
B−1

s

(
Θ +

τ

2
, Θ − τ

2

)]
x,y

(169)
with τ > 0 (See Eq. (133).

Before showing who to compute imaginary time displaced Green functions,
we first note that a direct multiplication of the equal time Green function with
B matrices is unstable for larger values of τ . This can be understood in the
framework of free electrons on a two-dimensional square lattice:

H = −t
∑

<i,j>

c†icj , (170)

where the sum runs over nearest-neighbors. For this Hamiltonian one has:

〈Ψ0|c†k(τ)ck|Ψ0〉 = exp (τ(ǫk − µ)) 〈Ψ0|c†kck|Ψ0〉, (171)

where ǫk = −2t(cos(kax) + cos(kay)), ax, ay being the lattice constants.
We will assume |Ψ0〉 to be non-degenerate. In a numerical calculation the
eigenvalues and eigenvectors of the above Hamiltonian will be known up to
machine precision, ǫ. In the case ǫk − µ > 0, 〈Ψ0|c†kck|Ψ0〉 ≡ 0. However, on
a finite precision machine the later quantity will take a value of the order
of ǫ. When calculating 〈Ψ0|c†k(τ)ck|Ψ0〉 this roundoff error will be blown up
exponentially and the result for large values of τ will be unreliable. In Eq.
(133) the B matrices play the role of the exponential factor exp (τ(ǫk − µ))

and the equal time Green functions correspond to 〈Ψ0|c†kck|Ψ0〉. In the PQMC,
the stability problem is much more severe than for free electrons since the
presence of the time dependent HS field mixes different scales.

A elegant and efficient method [78] to alleviate this problem rests on the
observation that in the PQMC the Green function is a projector. Consider
again the free electron case. For a non-degenerate Ground state, 〈Ψ0|c†kck|Ψ0〉 =
0, 1 so that

〈Ψ0|c†k(τ)ck|Ψ0〉 =
(
〈Ψ0|c†kck|Ψ0〉 exp ((ǫk − µ))

)τ

. (172)

The above involves only well defined numerical manipulations even in the
large τ limit provided that all scales fit onto finite precision machines for a
unit time interval.

The implementation of this idea in the QMC algorithm is as follows. First,
one has to notice that the Green function Gs(τ) is a projector:
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Gs(τ)2 = Gs(τ). (173)

We have already seen that for P †Bs(2Θ, τ) = VLDLU 〈 and Bs(τ, 0) =
U 〉DRUR, Gs(τ) = 1 − U 〉(U 〈U 〉)−1U 〈. Since

[
U 〉(U 〈U 〉)−1U 〈

]2
= U 〉(U 〈U 〉)−1U 〈 (174)

we have:
G2

s(τ) = Gs(τ) and (1 − Gs(τ))2 = 1 − Gs(τ). (175)

This property implies that Gs(τ1, τ3) obeys a simple composition identity

Gs(τ1, τ3) = Gs(τ1, τ2)Gs(τ2, τ1). (176)

In particular for τ1 > τ2 > τ3

Gs(τ1, τ3) = Bs(τ1, τ3)G
2
s(τ3) = Gs(τ1, τ3)Gs(τ3)

= Gs(τ1, τ3)B
−1
s (τ2, τ3)︸ ︷︷ ︸

Gs(τ1,τ2)

Bs(τ2, τ3)Gs(τ3)︸ ︷︷ ︸
Gs(τ2,τ3)

A similar proof is valid for τ3 > τ2 > τ1

Using this composition property (176) we can break up a large τ interval
into a set of smaller intervals of length τ = Nτ1 so that

Gs

(
Θ +

τ

2
, Θ − τ

2

)
=

N−1∏

n=0

Gs

(
Θ − τ

2
+ [n + 1] τ1, Θ − τ

2
+ nτ1

)
(177)

The above equation is the generalization of Eq. (172). If τ1 is small enough
each Green function in the above product is accurate and has matrix elements
bounded by order unity. The matrix multiplication is then numerically well
defined.

We conclude this section by comparing with a different approach to com-
puted imaginary time correlation functions in the framework of the PQMC
[66]. We consider the special case of the Kondo lattice model (see Fig. 16).
As apparent the results are identical within error-bars. The important point
however, is that the method based on Eq. (177) is for the considered case an
order of magnitude quicker in CPU time than the method of Ref [66].

6.4 Practical implementation

In this section we first describe in detail a possible efficient implementation
of the finite temperature algorithm and then comment on the differences re-
quired for the implementation of the projector formalism. It is convenient to
split the total imaginary time propagation, β, into intervals of length τ1 such
that nτ1 = β. We require τ1 to be small enough such that all scales in the ma-
trices Bs(τ1, 0) fit into say 64 bit reals. The organization of the time slices is
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Fig. 16. Imaginary time displaced on-site spin-spin correlation function (a) and
Green function (b). We consider a 6× 6 lattice at half-filling and J/t = 1.2. In both
(a) and (b) results obtained form Eq. (177) (△) and from an alternative approach
presented in [66] (▽) are plotted.

τ 1 τ 1τ 1

������������ ������ ������

n (n−1)=β 1

Fig. 17. Each line (solid or dashed) denotes a time slice separated by a imaginary
time propagation ∆τ . The solid lines correspond to time slices where we store the
UDV decomposition of the matrices Bs(β, nττ1) or Bs(nττ1, 0) depending upon the
direction of the propagation. ( 1 ≤ nτ ≤ n)

schematically in Fig. 17. To save computer time, we will need enough memory
to store n + 1 orthogonal matrices U , n + 1 triangular matrices V and n + 1
diagonal matrics D

At the onset, we start from a randomly chosen Hubbard-Stratonovich con-
figuration of fields, s. We then compute Bs(τ1, 0) carry out a singular value
decomposition and store the result in U1, D1 and V1. Given the UDV decom-
position of Bs(nττ1, 0) (1 ≤ nτ < n) we compute the UDV decomposition
of Bs [(nτ + 1)τ1, 0] using Eq. 149 and store the results in Unτ+1, Dnτ+1 and
Dnτ+1. Hence, our storage now contains:

Unτ Dnτ Vnτ = Bs(nτ τ1, 0), 1 ≤ nτ ≤ n. (178)

At this stage we can sequentially upgrade the Hubbard Stratonovich fields
from τ = β to τ = ∆τ . In doing so, we will take care to store information to
subsequently carry out a sweep from τ = ∆τ to τ = β.
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From τ = β to τ = ∆τ . From the UDV decomposition of Bs(β = nτ1, 0)
which we read out of the storage (Un, Dn, Vn), we compute in a numerically
stable way the equal time Green function on time slice τ = β. Having freed
the arrays Un, Dn and Vn we set then to unit such that: Bs(β, nτ1 = β) ≡
1 = VnDnUn. We can now sweep down from time slice τ = β to time slice
τ = ∆τ .

Given the Green function at time τ = nττ1 we sequentially upgrade all the
Hubbard Stratonovich fields on this time slice. Each time a move is accepted,
we will have to update the equal time Green function. To move to the next
time slice, τ − ∆τ , we make use of the equation:

Gs(τ − ∆τ ) = B−1
s (τ, τ − ∆τ )Gs(τ)Bs(τ, τ − ∆τ ) (179)

We will repeat the above procedure till we arrive at time slice τ = (nτ − 1)τ1.
At this stage, we have to recompute the equal time Green function due to
the accumulation of round-off errors and hence loss of precision. To do so,
we read from the storage: UR = Unτ−1, DR = Unτ−1 and VR = Unτ−1 such
that Bs((nτ − 1)τ1, 0) = URDRVR. Note that we have not yet upgraded the
Hubbard Stratonovich fields involved in Bs((nτ − 1)τ1, 0) so that this storage
slot is still up to date. We then compute the matrix Bs(nτ τ1, (nτ − 1)τ1)
and read from the storage ṼL = Vnτ , D̃L = Vnτ and ŨL = Vnτ such that
Bs(β, nτ τ1) = ṼLD̃LŨL. With this information and the computed matrix
Bs(nττ1, (nτ − 1)τ1) we will calculate Bs(β, (nτ − 1)τ1) = VLDLUL. (See Eq.
149 ). We now store this result as: Vnτ−1 = VL, Dnτ−1 = DL and Unτ−1 =
UL. and recompute the Green function. Note that as a cross check, one can
compare the both Green functions to test the numerical accuracy. Hence, we
now have a fresh estimate of the Green function at time slice τ = (nτ − 1)τ1

and we can iterate the procedure till we arrive at time slice ∆τ .
Hence, in this manner, we sweep down from time slice β to time slice ∆τ ,

upgrade sequentially all the Hubbard Stratonovich fields and have stored:

Bs(β, nτ τ1) = Vnτ Dnτ Unτ 0 ≤ nτ ≤ n. (180)

We can now carry out a sweep from ∆τ to β and take care of storing the
information required for the sweep from β to ∆τ .

From τ = ∆τ to β. We initially set nτ = 0, read out from the storage
Bs(β, 0) = V0D0U0 and compute the Green function on time slice τ = 0. This
storage slot is then set to unity such that Bs(0, 0) = U0D0V0 ≡ 1.

Assuming that we are on time slice τ = nτ τ1, we propagate the Green
function to time slice τ + ∆τ with

Gs(τ + ∆τ ) = Bs(τ + ∆τ , τ)Gs(τ)B−1
s (τ + ∆τ , τ) (181)

and upgrade the Hubbard Stratonovich fields on time slice τ +∆τ . The above
procedure is repeated till we reach time slice (nτ + 1)τ1, where we have to re-
compute the Green function. To do so, we read from the storage: VL = Vnτ+1
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DL = Dnτ+1 and UL = nτ + 1 such that Bs(β, (nτ + 1)τ1) = VLDLUL. We
then compute Bs((nτ + 1)τ1, nτ τ1) and from the UDV form of Bs(nττ1, 0)
which we obtain from the storage slot nτ , we calculate Bs((nτ + 1)τ1, 0) =
URDRVR. The result of the calculation is stored in slot nτ +1, and we recom-
pute the Green function on time slice (nτ + 1)τ1. We can now proceed till we
reach time slice β and we will have accumulated all the information required
for carrying out a sweep from β to ∆τ .

This completes a possible implementation of the finite temperature method.
The zero temperature method follows exactly the same logic. However, it turns
out that it is more efficient to keep track of (P †Bs(2Θ, 0)P )−1 since (i) it is
of dimension Np × Np in contrast to the Green function which is a N × N
matrix and (ii) it is τ independent. When Green functions are required they
are computed from scratch.

7 The Hirsch-Fye impurity algorithm

As it’s name suggests, this algorithm is triggered at solving impurity problems
such as the Kondo and Anderson models. The strong point of the algorithm is
that the CPU time is independent on the volume of the system thus allowing
one to carry out simulations directly in the thermodynamic limit. The price
however is a β3 scaling of the CPU time where β is the inverse temperature.
Diagrammatic determinantal methods, provide an alternative approach [35,
37] to solve impurity problems. Those algorithms are formulated in continuous
time and hence do not suffer from Trotter errors. The computational effort
equally scales as β3, but there is a prefactor which renders them more efficient.
We will nevertheless concentrate here on the Hirsch-Fye algorithm since it is
extensively used in the framework of dynamical mean-field theories [15, 16].

We will concentrate on the Anderson model defined as:

H − µN = H0 + HU with

H0 =
∑

k,σ

(ǫ(k) − µ) c†k,σck,σ +
V√
N

∑

k,σ

(
c†k,σfσ + f †

σck,σ

)
+ ǫf

∑

σ

f †
σfσ,

HU = U
(
f †
↑f↑ − 1/2

)(
f †
↓f↓ − 1/2

)
. (182)

For an extensive overview of the Anderson and related Kondo model, we refer
the reader to Ref. [79].

In the next section, we will review the finite temperature formalism. Since
the CPU time scales as β3 it is expensive obtain ground state properties
and projective formulations of Hirsch-Fye algorithm become attractive. This
corresponds to the topic of section 7.2.
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7.1 The finite temperature Hirsch-Fye method

In Chapter 5 we have shown that the grand canonical partition function may
be written as:

Z ≡ Tr
[
e−β(H−µN)

]
=
∑

s

[∏

σ

det
[
1 + Bσ

mBσ
m−1 · · ·Bσ

1

]
]

. (183)

with m∆τ = β.
To define the matrices Bσ

n , we will label all the orbitals (conduction and
impurity) with the index i and use the convention that i = 0 denotes the
f -orbital and i = 1 · · ·N the conduction orbitals. We will furthermore define
the fermionic operators:

a†
i,σ =

{
f †

σ if i = 0

c†i,σ otherwise
(184)

such that the non-interacting term of the Anderson takes the form:

H0 =
∑

σ

Hσ
0 , Hσ

0 =
∑

i,j

a†
i,σ(h0)i,jaj,σ. (185)

Using the HS transformation of Eq. (229), the B matrices read:

Bσ
n = eV σ

n e−∆τ h0

(V σ
n )i,j = δi,jδi,0ασsn, cosh(α) = e∆τ U/2 (186)

The determinant in a given spin sector may be written as

det
[
1 + Bσ

mBσ
m−1 · · ·Bσ

1

]
= detOσ with (187)

Oσ =




1 0 . . 0 Bσ
1

−Bσ
2 1 0 . . 0

0 −Bσ
3 1 . . 0

. 0 −Bσ
4 . . .

. . 0 . . .

. . . . . .
0 . . 0 −Bσ

m 1




. (188)

The above identity, follows by considering – omitting spin indices – the matrix
A = O − 1. Since

Tr [An] =
∑

r

δn,rm (−1)
r(m+1)

mTr [(Bm · · ·B1)
r
] (189)

we obtain:
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detO = expTr ln (1 + A) = exp

( ∞∑

n=1

(−1)n+1

n
Tr [An]

)
(190)

= exp

( ∞∑

r=1

(−1)r+1

r
Tr [(Bm · · ·B1)

r]

)

= expTr ln (1 + Bm · · ·B1) = det (1 + Bm · · ·B1)

From Eq. (129) we identify:

(Oσ)−1 ≡ gσ =




Gσ(1, 1) Gσ(1, 2) . . Gσ(1, m)
Gσ(2, 1) Gσ(2, 2) . . Gσ(2, m)

. . . . .
Gσ(m, 1) Gσ(m, 2) . . Gσ(m, m)


 (191)

where Gσ(n1, n2) are the time displaced Green functions:

[Gσ(n1, n2)]i,j =





Tr[B̂σ
m···B̂σ

n1+1ai,σB̂σ
n1

···B̂σ
n2+1a†

j,σ
B̂σ

n2
···B̂σ

1 ]
Tr[B̂σ

m···B̂σ
1 ]

if n1 ≥ n2

−Tr[B̂σ
m···B̂σ

n2+1a†
j,σ

B̂σ
n2

···B̂σ
n1+1ai,σB̂σ

n1
···B̂σ

1 ]
Tr[B̂σ

m···B̂σ
1 ]

if n1 < n2

(192)

(see Eqn.(125) and (126)). The operators B̂σ
n are given by:

B̂σ
n = eασsnf†

σfσe−∆τ Hσ
0 (193)

Given a HS configuration s and s′ and associated matrices

V σ =




V σ
1 0 . . . 0
0 V σ

2 0 . . 0
0 0 V σ

3 0 . 0
. . . . . .
0 . . . 0 V σ

m




(194)

and V ′σ the Green functions gσ and g′σ satisfy the following Dyson equation.

gσ = g′σ + g′σ∆(1 − gσ) with ∆σ = (eV ′σ

e−V σ − 1) (195)

To demonstrate the above, we consider

Õσ = e−V σ

Oσ =




e−V σ
1 0 . . 0 e−∆τ h0

−e−∆τ h0 e−V σ
2 0 . . 0

0 −e−∆τ h0 e−V σ
3 . . 0

. 0 −e−∆τ h0 . . .

. . 0 . . .

. . . . . .
0 . . 0 −e−∆τ h0 e−V σ

m




(196)
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so that (omitting the spin index σ)

g̃ ≡ Õ−1 = [Õ′ + Õ − Õ′
︸ ︷︷ ︸

≡e−V −e−V ′

]−1 = g̃′ − g̃′
(
e−V − e−V ′

)
g̃. (197)

The above equation follows from the identity: 1
A+B = 1

A − 1
AB 1

A+B . Substi-

tution, g̃ = geV , leads to the Dyson Eq. (195).
The above Dyson equation is the central identity in the Hirsch-Fye algo-

rithm: all quantities required for the algorithm may be derived directly from
this equality. An implementation of the algorithm involves two steps.

Calculation of the impurity Green function for a given HS config-
uration The starting point of the algorithm is to compute the green function
for a random HS configuration of Ising spins s′. We will only need the Green
function for the impurity f-site. Let x = (τx, ix) with Trotter index τx and
orbital ix. Since

(eV ′

e−V − 1)x,y = (eV ′

e−V − 1)x,xδx,yδix,0 (198)

we can use the Dyson equation only for the impurity Green function:

gσ
f,f ′ = g′σf,f ′ +

∑

f ′′

g′σf,f ′′∆σ
f ′′,f ′′(1 − gσ)f ′′,f ′ (199)

with indices f ≡ (τ, 0) running from 1 · · ·m. Hence, the m×m impurity Green
function matrix,

gI,σ
f,f ′ = gσ

f,f ′ (200)

satisfies the Dyson equation:

gI,σ = g′I,σ + g′I,σ∆I,σ(1 − gI,σ) with ∆I,σ
f,f ′ = ∆σ

f,f ′ (201)

For V = 0, gI is nothing but the impurity Green function of the non-
interacting Anderson model which may readily be computed. Thus using the
Dyson equation, we can compute the Green function g′I for an arbitrary HS
configuration s′ at the cost of a m×m matrix inversion. This involves a CPU
cost scaling as m3 or equivalently β3.

Upgrading. At this point we have computed the impurity Green function
for a given HS configuration s. Adopting a single spin flip algorithm we will
propose the configuration

s′
f =

{
−sf if f = f1

sf otherwise
(202)

and accept it with probability

R =
∏

σ

Rσ with Rσ =
det
[
1 + B′σ

mB′σ
m−1 · · ·B′σ

1

]

det
[
1 + Bσ

mBσ
m−1 · · ·Bσ

1

] =

det
[
gσ(g′σ)−1

]
= det [1 + ∆σ (1 − gσ)] (203)
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The last identity follows from the Dyson equation to express gσ as gσ =
g′σ [1 + ∆σ (1 − gσ)]. Since s and s′ differ only by one entry the matrix ∆σ

has one non-zero matrix element: ∆σ
f1,f1

. Hence, Rσ = 1+∆σ
f1,f1

(
1 − gσ

f1,f1

)
.

Since the impurity Green function gI,σ is at hand, we can readily compute R
If the move –spin flip– is accepted, we will have to recalculate (upgrade)

the impurity Green function. From the Dyson equation (201), we have:

g′I,σ = gI,σ
[
1 + ∆I,σ

(
1 − gI,σ

)]−1
. (204)

To compute
[
1 + ∆I,σ

(
1 − gI,σ

)]−1
we can use the Sherman-Morrison for-

mula of Eq. (159). Setting A = 1, uf = ∆I,σ
f1,f1

δf1,f and vf = (1 − gI,σ)f1,f

we obtain:

g′I,σ
f,f ′ = gI,σ

f,f ′ +
gI,σ

f,f1
∆σ

f1,f1
(gI,σ − 1)f1,f ′

1 + (1 − gI,σ)f1,f1∆
σ
f1,f1

(205)

Thus, the upgrading of the Green function under a single spin flip is an op-
eration which scales as m2. Since for a single sweep we have to visit all spins,
the computational cost of a single sweep scales as m3.

By construction, the Hirsch-Fye algorithm is free from numerical stabi-
lization problems. For the here considered Anderson model, it has recently
been shown that there is no sign problem irrespective of the conduction band
electron density [80]. Clearly the attractive feature of the Hirsch-Fye impurity
algorithm is that the algorithm may be formulated directly in the thermody-
namic limit. This is not possible within the lattice formulation of the auxiliary
field QMC method. Within this approach the dimension of the matrices scale
as the total number of orbitals, N , and the CPU time for a single sweep as
N3β. The Hirsch-Fye algorithm is not limited to impurity models. However,
when applied to lattice models, such as the Hubbard model, it is not efficient
since the CPU time will scale as (βN)

3
.
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0.50.40.30.20.10

Fig. 18. Impurity spin susceptibility of the Kondo model as computed with the
Hirsch-Fye impurity algorithm. [81]

To conclude this section we show a typical example of the use of the
Hirsch-Fye algorithm for the Kondo model:
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H =
∑

k,σ

ε(k)c†k,σck,σ + JSc
I · Sf

I . (206)

For the Monte Carlo formulation, the same ideas as for the lattice problem
may be used for the HS decoupling of the interaction as well as to impose the
constraint of no charge fluctuations on the f−sites. Fig. 18 plots the impurity
spin susceptibility

χI =

∫ β

0

dτ〈Sf
I (τ) · Sf

I 〉 (207)

for various values of J/t for a half-filled conduction band. As apparent and at
low energies the data collapse to the universal form χI = 1

T f
(
T/T I

K

)
where

T I
K is the Kondo temperature [79].

7.2 Ground state formulation

In the above finite temperature formulation of the Hirsch-Fye algorithm, the
CPU time scales as β3 thus rendering it hard to reach the low temperature
limit. Here we show how to formulate a projector version of the Hirsch Fye
algorithm. Although the CPU time will still scale as β3 a good choice of the
trial wave function may provide quicker convergence to the ground state that
the finite temperature algorithm.

In the projector approach, the trial wave function |ΨT 〉 is required to be a
Slater determinant non-orthogonal to the ground state wave function. Hence,
we can find a one body Hamiltonian,

HT =
∑

i,j,σ

a†
i,σ (hT )i,j aj,σ. (208)

which has |ΨT 〉 as a non-degenerate ground state. In the above, and in the
context of the Anderson model, aj,σ denotes c- or f -fermionic operators. Our
aim is to compute:

〈ΨT |e−
Θ
2 HOe−

Θ
2 H |ΨT 〉

〈ΨT |e−ΘH |ΨT 〉
≡ lim

β→∞

Tr
[
e−

Θ
2 HOe−

Θ
2 He−βHT

]

Tr [e−ΘHe−βHT ]
(209)

and subsequently take the limit Θ → ∞. As apparent, the above equation
provides a link between the finite temperature and projection approaches.
To proceed, we will consider the right hand side of the above equation and
retrace the steps carried out for the standard finite temperature formulation
of the Hirsch-Fye algorithm. After Trotter decomposition, discrete Hubbard
Startonovitch transformation we obtain:

〈ΨT |e−ΘH |ΨT 〉 = lim
β→∞

∑

s

[∏

σ

det
[
1 + Bσ

mBσ
m−1 · · ·Bσ

1 e−βhT
]
]

(210)
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with m∆τ = Θ. Replacing Bσ
1 by Bσ

1 e−βhT in Eq. (188) and following the
steps described for the finite temperature version, we derive a Dyson equation
(omitting spin indices) for the ground state Green function matrix g0:

gσ
0 = g′σ0 + g′σ0 ∆(1 − gσ

0 ) with ∆σ = (eV ′σ

e−V σ − 1) (211)

with

g0 =




G0(1, 1) G0(1, 2) . . G0(1, m)
G0(2, 1) G0(2, 2) . . G0(2, m)

. . . . .
G0(m, 1) G0(m, 2) . . G0(m, m)


 , (212)

and

[G0(n1, n2)]i,j = (213)

lim
β→∞





Tr[B̂m···B̂n1+1ai,σB̂n1 ···B̂n2+1a†
j,σ

B̂n2 ···B̂1e−βHT ]
Tr[B̂m···B̂1e−βHT ]

if n1 ≥ n2

−Tr[B̂m···B̂n2+1a†
j,σ

B̂n2 ···B̂n1+1ai,σB̂n1 ···B̂1e−βHT ]
Tr[B̂m···B̂1e−βHT ]

if n1 < n2

=





〈ΨT |B̂m···B̂n1+1ai,σB̂n1 ···B̂n2+1a†
j,σ

B̂n2 ···B̂1|ΨT 〉
〈ΨT |B̂m···B̂1|ΨT 〉 if n1 ≥ n2

− 〈ΨT |B̂m···B̂n2+1a†
j,σ

B̂n2 ···B̂n1+1ai,σB̂n1 ···B̂1|ΨT 〉
〈ΨT |B̂m···B̂1|ΨT 〉 if n1 < n2

As shown for the finite temperature formulation, the simulation is entirely
based on the Dyson equation. Since this equation also holds for the zero tem-
perature formulation precisely the same algorithm as in the finite temperature
case can be used.

In Fig. 19 we compare both algorithms and consider the double occupancy
on the impurity site. As apparent, the ground state formulation converges
more quickly to the ground state expectation value than the finite temperature
formulation.

The projector formulation of the Hirsch-Fye algorithm has been efficiently
incorporated in the DMFT self-consistent cycle thus offering a route to com-
pute T = 0 quantities within this framework [82]. Finally we note that dia-
grammatic determinantal methods can be extended very easily to projective
schemes [83].

8 Selected Applications of the Auxiliary field method

The applications of the auxiliary field algorithms to correlated electron sys-
tems are numerous. Here we will only mention a few.

Let us start with the attractive Attractive Hubbard model. This model
essentially describes the electron-phonon problem in terms of Holstein model
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• : Finite T
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Anderson model U/t = 2, V/t = 0.75.
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Fig. 19. Comparison between the zero and finite temperature Hirsch-Fye algorithms
for the symmetric Anderson model, with a one-dimensional density of states.

which in the antiadiabatic limit maps onto the attractive Hubbard model [84].
Both models are free of sign problem in arbitrary dimensions and on arbitrary
lattice topologies. The salient features of those models have been investigated
in details. For instance, the crossover from long coherence length (BCS) to
short coherence length superconductors. In the short coherence length limit,
a liquid of preformed pairs with non-Fermi liquid character is apparent above
the transition temperature [85, 86]. Furthermore, the disorder driven super-
fluid to insulator transition has been studied in the framework of the attractive
Hubbard model [87].

Recently, a new class of models of correlated electron models showing no
sign problem has been investigated [88, 89, 90, 72]. Those models, have exotic
ground states including phases with circulating currents [90, 64] striped phases
[88], as well as possible realizations of gapless spin liquid phases [64].

A lot of the work using the BSS algorithm is centered around the repul-
sive Hubbard model in two dimensions, as well as the three-band Hubbard
model of the CuO2 planes in the cuprates. On the basis of Monte Carlo sim-
ulations, it is now accepted that at half-band filling those models are Mott
(charge transfer for the three-band model) insulators with long-range antifer-
romagnetic order [91, 9, 92]. In the case of the three band Hubbard model, a
minimal set of parameters were found so as to reproduce experimental find-
ings [93]. The issue of superconductivity at low doping away from half-filling
is still open. General concepts – independent on the symmetry of the pair
wave function and including possible retardation effects – such as flux quanti-
zation and superfluid density have been used to attempt to answer the above
question [94, 95]. Within the algorithmic limitations, no convincing sign of
superconductivity has been found to date.

The nature of the doping induced metal-insulator transition in the two-
dimensional Hubbard model, has attracted considerable interest [96, 97, 98].
In particular it has been argued the the transition is driven by the divergence
of the effective mass rather than by the vanishing of the number of charge
carriers. The origin of such a metal insulator transition is to be found in a very
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flat dispersion relation around the (π, 0) and (0, π) points in the Brillouin zone
[99, 100]. An extensive review of this topic as well as a consistent interpretation
of the numerical data in terms of hyperscaling Ansatz may be found in Ref.
[101].

Aspects of the physics of heavy fermion systems have been investigated in
the framework of the two-dimensional the periodic Anderson model (PAM)
[102] and of the Kondo lattice model (KLM) [63]. It is only recently that
a sign free formulation of the KLM for particle-hole symmetric conduction
bands has been put forward [67]. Extensive calculations both at T = 0 and at
finite T allow to investigate the magnetic order-disorder transition triggered
by the competition between the RKKY interaction and the Kondo effect [63].
Across this quantum phase transition single hole dynamics as well as spin
excitations were investigated in detail. One can show numerically that the
quasiparticle residue in the vicinity of k = (π, π) tracks the the Kondo scale
of the corresponding single impurity problem. This statement is valid both in
the magnetically ordered and disordered phases [103]. This suggest that the
coherence temperature tracks the Kondo scale. Furthermore, the effect of a
magnetic field on the Kondo insulating state was investigated. For the particle-
hole symmetric conduction band, results show a transition from the Kondo
insulator to a canted antiferromagnet [104, 105]. Finally, models with regular
depletion of localized spins can be investigated [81]. Within the framework of
those models, the typical form of the resistivity versus temperature can be
reproduced.

The most common application of the Hirsch-Fye algorithm is in the frame-
work of dynamical mean-field theories [16] which map the Hubbard model onto
an Anderson impurity problem supplemented by a self-consistency loop. At
each iteration, the Hirsch-Fye algorithm is used to solve the impurity problem
at finite temperature [15] or at T = 0 [82]. For this particular problem, many
competing methods such as DMRG [106] and NRG [107] are available. In
the dynamical mean-field approximation spatial fluctuations are frozen out.
To reintroduce them, one has to generalize to cluster methods such as the
dynamical cluster approximation (DCA) [108] or cellular-DMFT (CDMFT)
[109]. Within those approaches, the complexity of the problem to solve at
each iteration is that of an N -impurity Anderson model (N corresponds to
the cluster size). Generalizations of DMRG and NRG to solve this problem
is difficult. On the other hand, as a function of cluster size the sign problem
in the Hirsch-Fye approach becomes more and more severe but is, in many
instances, still tractable. It however proves to be one of the limiting factors
in achieving large cluster sizes.

9 Conclusion

We have discussed in details a variety of algorithms which can broadly be clas-
sified as world-line based or determinantal algorithms. For fermionic models,
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such as the Hubbard model, the determinental quantum Monte Carlo (QMC)
algorithm should be employed because of the reduced sign problem in this
formulation. For purely one-dimensional fermion systems and for spin mod-
els the world line algorithms are available, which have lower autocorrelations,
and better scaling because of their almost linear scaling with system size, in
contrast to the cubic scaling of the determinental algorithms.

10 Appendix

10.1 The Trotter Decomposition.

Given a Hamiltonian of the form,

H = H1 + H2 (214)

the Trotter decomposition states that the imaginary time propagator can be
split into a product of infinitesimal time propagations such that:

e−βH = lim
∆τ→0

[
e−∆τH1e−∆τH2

]m
(215)

where m∆τ = β. For [H1, H2] 6= 0 and finite values of the time step ∆τ this
introduces a systematic error. In many quantum Monte Carlo algorithms, we
will not take the limit ∆τ → 0 and is important to understand the order of
the systematic error produced by the above decomposition. 4 A priori, it is of
the oder ∆τ . However, in many non-trivial cases, the prefactor of the error of
order ∆τ vanishes [110].

For a time step ∆τ ,

e−∆τ(H1+H2) = e−∆τH1e−∆τH2 − ∆τ2

2
[H1, H2] + O(∆τ3) (216)

such that:

e−∆τ(H− ∆τ
2 [H1,H2]) = e−∆τH1e−∆τH2 + O(∆τ3) (217)

We can now exponentiate both sides of the former equation to the power m:

e−β(H−∆τ
2 [H1,H2]) =

[
e−∆τH1e−∆τH2

]m
+ O(∆τ2). (218)

The systematic error is now of order ∆τ2 since in the exponentiation, the
systematic error of order ∆τ3 occurs m times and m∆τ = β.

To evaluate the left hand side of the above equation we use time dependent
perturbation theory. Let h = h0 + h1 where h1 is small in comparison to h0.
The imaginary time propagation in the interacting picture reads

4 For cases where a continuous time formulation is possible see section 2.
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UI(τ) = eτh0e−τh (219)

such that:

∂

∂τ
UI(τ) = eτh0(h0 − h)e−τh = − eτh0h1e

−τh0

︸ ︷︷ ︸
≡hI

1(τ)

UI(τ) = −hI
1(τ)UI(τ). (220)

Since UI(0) = 1 we can transform the differential equation to an integral one:

UI(τ) = 1 −
∫ τ

0

dτ ′hI
1(τ

′)UI(τ
′) = 1 −

∫ τ

0

dτ ′hI
1(τ

′) + O(h2
1) (221)

Returning to Eq. 218 we can set h0 = H , h1 = −∆τ
2 [H1, H2] and τ = β

to obtain:
(
e−∆τH1e−∆τH2

)m
= e−β(H−∆τ [H1,H2]/2) + O(∆τ2)

= e−βH +
∆τ

2

∫ β

0

dτe−(β−τ)H [H1, H2]e
−τH

︸ ︷︷ ︸
≡A

+O(∆τ2)

In the quantum Monte Carlo approaches with finite time steps we will com-
pute:

Tr
[(

e−∆τH1e−∆τH2
)m

O
]

Tr
[
(e−∆τH1e−∆τH2)

m] =
Tr
[
e−βHO

]
+ ∆τ

2 Tr [AO]

Tr [e−βH ] + ∆τ
2 Tr [A]

+ O(∆τ2). (222)

where O = O† is an observable. We now show that A is an antihermetian
operator:

A† = −
∫ β

0

dτe−τH [H1, H2]e
−(β−τ)H

=

∫ 0

β

dτ ′e−(β−τ ′)H [H1, H2]e
−τ ′H = −A (223)

where we have carried out the substitution τ ′ = β − τ Since A is an an-
tihermetian operator it follows that Tr [A] = Tr

[
A†] = −Tr [A] as well as

Tr [AO] = −Tr [AO]. Recall that the observable O is a hermitian operator.
Thus, if O, H1 and H2 are simultaneously real representable in a given basis,
the systematic error proportional to ∆τ vanishes since in this case the trace
is real. Hence the systematic error is of order ∆τ2.

Clearly there are other choices of the Trotter decomposition which irre-
spective of the properties of H1, H2 and O yield systematic errors of the order
∆τ2. For example we can mention the symmetric decomposition:

e−∆τ(H1+H2) = e−∆τH1/2e−∆τH1e−∆τH2/2 + O∆τ3. (224)

However, in many cases higher order decompositions are cumbersome and
numerically expensive to implement.
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10.2 The Hubbard-Stratonovitch decomposition

Auxiliary field quantum Monte Carlo methods are based on various forms
of the Hubbard-Stratonovitch (HS) decomposition. This transfomation is not
unique. The efficiency of the algorithm as well as of the sampling scheme
depends substantially on the type of HS transformation one uses. In this
appendix we will review some aspects of the HS transformation with emphasis
on its application to the auxiliary field quantum Monte Carlo method.

The generic HS transformation is based on the Gaussian integral

∫ +∞

−∞
dφe−

(φ+A)2

2 =
√

2π (225)

which may be rewitten as:

eA2/2 =
1√
2π

∫ +∞

−∞
dφe−

φ2

2 −φA . (226)

Hence, if A is a one-body operator, the two body operator eA2/2, may be
spin into the integral of single-body operators interacting with a bosonic field
φ. The importance of this identity in the Monte Carlo approach lies in the
fact that for a fixed field φ the one-boby problem may be solved exactly. The
integral over the field φ can then be carried out with Monte Carlo methods.
However, the Monte Carlo integration over a continuous field is much more
cubersome than the sum over a discrete field.

Let us consider for example the Hubbard interaction for a single site:

HU = U

(
n↑ −

1

2

)(
n↓ −

1

2

)
. (227)

Here, nσ = c†σcσ where c†σ are spin 1/2 fermionic operators. In the Monte Carlo
approach after Trotter decomposition of the kinetic and interaction term, we
will have to compute e−∆τHU . Since,

HU = −U

2
(n↑ − n↓)

2 +
U

4
(228)

we can set A2 = ∆τU (n↑ − n↓)
2 and use Eq. 226 to compute e−∆τHU . There

are however more efficient ways of carrying out the transformation which are
based on the fact the the Hilbert space for a single site, consists of four states:
|0〉| ↑〉| ↓〉 and | ↑, ↓〉. Let us propose the identity:

e−∆τHU = γ
∑

s=±1

eαs(n↑−n↓) (229)

and see if it is possible to find values of α and γ to satisfy it on the single
site Hilbert space. Applying each state vector on both sides of the equation
yields:
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e−∆τU/4|0〉 = 2γ|0〉
e−∆τU/4| ↑↓〉 = 2γ| ↑↓〉

e∆τU/4| ↑〉 = 2γ cosh(α)| ↑〉
e∆τU/4| ↓〉 = 2γ cosh(α)| ↓〉 (230)

Hence Eq. 229 is satisfied provided that:

γ =
1

2
e−∆τU/4 and cosh(α) = e∆τU/2. (231)

This choice of HS transformation leads to an efficient Monte Carlo algorithm
for Hubbard type models. However, and as apparent it breaks SU(2) spin
symmetry. Since the HS fields s couples to the z-component of the magnetiza-
tion the spin symmetry is broken for a fixed value of the field and is restored
only after summation over the field. To avoid this symmetry breaking, one
can consider alternative HS transformations which couple to the density. In
the same manner as above, we can show that:

e−∆τHU = γ̃
∑

s=±1

eiα̃s(n↑+n↓−1). (232)

where cos(α̃) = e−∆τU/2 and γ̃ = 1
2e∆τU/4. Clearly choice of HS transfor-

mation conserves the SU(2) spin symmetry for each realization of the field.
The price however, is that one will have to work with complex numbers. It
turns out that when the sign problem is absent, the above choice of the HS
transformation yields in general more efficient codes.

We conclude this appendix with a general decrete HS transformation which
replaces Eq. 226. For small time steps ∆τ we have the identity:

e∆τλA2

=
∑

l=±1,±2

γ(l)e
√

∆τλη(l)O + O(∆τ4) (233)

where the fields η and γ take the values:

γ(±1) = 1 +
√

6/3, γ(±2) = 1 −
√

6/3

η(±1) = ±
√

2
(
3 −

√
6
)
, η(±2) = ±

√
2
(
3 +

√
6
)
.

This transformation is not exact and produces an overall systematic error
proportional to ∆τ3 in the Monte Carlo estimate of an obsevable. However,
since we already have a systematic error proportional to ∆τ2 from the Trotter
decomposition, the transformation is as good as exact. It also has the great
advantage of being discrete thus allowing efficient sampling.

10.3 Slater determinants and their properties.

In this appendix, we review the properties of Slater determinants required for
the formulation of auxiliary field QMC alogirithms. Consider a single particle
Hamiltonian of the form:
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H0 =
∑

x,y

c†x [h0]x,y cy,
{
c†x, cy

}
= δx,y,

{
c†x, c†y

}
= 0 (234)

where h0 is a hermetian matrix and x runs over the Ns single particle states.
Since h0 is hermitian, we can find a unitary matrix U such that U †h0U = λ
where λ is a diagonal matrix. Hence,

H0 =
∑

x

λx,xγ†
xγx, γx =

∑

y

U †
x,ycy, γ†

x =
∑

y

c†yUy,x (235)

Since U is a unitary transformation the γ operators statisfy the commutation
relations

{
γ†

x, γy

}
= δx,y, and

{
γ†

x, γ†
y

}
= 0. An Np particle eigenstate of the

Hamiltonian H0 is characterized by the occupation of Np single particle levels,
α1 · · ·αNp and is given by:

γ†
α1

γ†
α2

· · · γ†
Np

|0〉 =

Np∏

n=1

(∑

x

c†xUx,αn

)
|0〉 =

Np∏

n=1

(
c†P

)
n
|0〉 (236)

In the last equation, P denotes an rectagular matrix with Ns rows and Np

columns. The last equation defines the Slater determinant. The Slater de-
terminant, is a solution of a single particle Hamiltonian, and is completely
characterized by the rectangular matrix P .

We will now concentrate on the properties of Slater determinants.
The first important property is that

ec†Tc

Np∏

n=1

(
c†P

)
n
|0〉 =

Np∏

n=1

(
c†eT P

)
n
|0〉. (237)

The propagation of a Slater determinant with a single particle propagator,

ec†Tc is a Slater determinant. We will show the above under the assumtion
that T is a hermetian or anti-hermetian matrix. It is useful to go into a basis
where T is diagonal: U †TU = λ. U is a unitary matrix and λ a real (purely
imaginary) diagonal matrix provided that T is hermetian (anti-hermetian).
Thus we can define the fermionic operators γ† = c†U to obtain:

ec†Tc

Np∏

n=1

(
c†P

)
n
|0〉 = eγ†λγ

Np∏

n=1

(
γ†UP

)
n
|0〉 =

∑

y1,···,yNp

e
∑

x
λx,xγ†

xγxγ†
y1

· · · γ†
yNp

|0〉 (UP )y1,1 · · · (UP )yNp ,Np
=

∑

y1,···,yNp

eλy1,y1 γ†
y1

· · · eλyNp
,yNp γ†

yNp
|0〉 (UP )y1,1 · · · (UP )yNp ,Np

=

Np∏

n=1

(
γ†eλUP

)
n
|0〉 =

Np∏

n=1

(
c†U †eλUP

)
n
|0〉 =

Np∏

n=1

(
c†eT P

)
n
|0〉.
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The second property we will need is the overlap of two slater determinants.
Let

|Ψ〉 =

Np∏

n=1

(
c†P

)
n
|0〉 and |Ψ̃〉 =

Np∏

n=1

(
c†P̃

)
n
|0〉 and (238)

then
〈Ψ |Ψ̃ 〉 = det

[
P †P̃

]
. (239)

The above follows from:

〈Ψ |Ψ̃〉 = 〈0|
1∏

n=Np

(
P †c

)
n

Np∏

ñ=1

(
c†P̃

)
ñ
|0〉 =

∑

y1,···yNp

ỹ1···ỹNp

×

×P †
Np,yNp

· · ·P †
1,y1

P̃ỹ1,1 · · · P̃ỹNp ,Np〈0|cyNp
· · · cy1c

†
ỹ1

· · · c†ỹNp
|0〉 (240)

The matrix element in the above equation does not vanish provided that all
the yi, i : 1 · · ·Np take different values and that there is a permutation, π , of
Np numbers such that:

ỹi = yπ(i) (241)

Under those conditions, the matrix element is nothing but the sign of the
permutation, (−1)π. Hence,

〈Ψ |Ψ̃〉 =
∑

y1,···yNp

|c†y1
· · · c†yNp

|0〉|2 ×

∑

πǫSNp

(−1)
π

P †
Np,yNp

· · ·P †
1,y1

P̃yπ(1),1 · · · P̃yπ(Np),Np (242)

In the above, we have explicitly included the matrix element: |c†y1
· · · c†yNp

|0〉|2
to insure that terms in the sum with yi = yj do not contribute since under this
assumption the matrix element vanishes due to the Pauli principle. We can
however omit this term since the sum over permutations will guarentee that if
yi = yj for any i 6= j then

∑
πǫSNp

(−1)
π

P †
Np,yNp

· · ·P †
1,y1

P̃yπ(1),1 · · · P̃yπ(Np),Np

vanishes. Consider for example Np = 2 and y1 = y2 = x then the sum

reduces to P †
2,xP †

1,xP̃x,1P̃x,2

∑
πǫS2

(−1)π = 0 since the sum over the sign of
the permutations vanishes.

With the above observation:

〈Ψ |Ψ̃ 〉 =
∑

y1,···yNp ,πǫSNp

(−1)
π

P †
Np,yNp

· · ·P †
1,y1

P̃yπ(1),1 · · · P̃yπ(Np),Np =

∑

y1,···yNp ,πǫSNp

(−1)
π−1

P †
Np,yNp

· · ·P †
1,y1

P̃y1,π−1(1) · · · P̃yNp ,π−1(Np) =

∑

πǫSNp

(−1)
π
(
P †P̃

)
1,π(1)

· · ·
(
P †P̃

)
Np,π(Np)

= det
[
P †P̃

]
(243)
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Finally, we will need to estabish the relation:

Tr
[
ec†T1cec†T2c · · · ec†Tnc

]
= det

[
1 + eT1eT2 · · · eTn

]
(244)

where the trace is over the Fock space. To verify the validity of the above

equation, let us set: B = eT1eT2 · · · eTn and U = ec†T1cec†T2c · · · ec†Tnc.

det (1 + B) =∑

πǫSNs

(−1)π
(
1 + Bπ(1),1

)
· · ·
(
1 + Bπ(Ns),Ns

)
=

∑

πǫSNs

(−1)πδ1,π(1) · · · δNs,π(Ns) +

∑

x

∑

πǫSNs

(−1)πBπ(x),xδ1,π(1) · · · ̂δx,π(x) · · · δNs,π(Ns) +

∑

y>x

∑

πǫSNs

(−1)πBπ(x),xBπ(y),y ×

δ1,π(1) · · · ̂δx,π(x) · · · ̂δy,π(y) · · · δNs,π(Ns) +
∑

y>x>z

∑

πǫSNs

(−1)πBπ(x),xBπ(y),yBπ(z),z ×

δ1,π(1) · · · ̂δx,π(x) · · · ̂δy,π(y) · · · ̂δz,π(z) · · · δNs,π(Ns) + · · ·

Here, ̂δy,π(y) means that this term is omitted in the product:
∏Ns

x=1 δx,π(x). To
proceed, let us consider in more details the second term starting with

∑
y>x

in the last equality. Due to the δ-functions the sum over the permutation
of Ns numbers reduces to two terms, namely the unit permutation and the
transposition π(x) = x and π(y) = y. Let us define the P (x,y) as a rectangular
matrix of dimension Ns × 2, with entries of the first (second) column set to 1
at row x (y) and zero otherwise. Hence, we can write:

∑

πǫSNs

(−1)πBπ(x),xBπ(y),yδ1,π(1) · · · ̂δx,π(x) · · · ̂δy,π(y) · · · δNs,π(Ns) =

det
[
P (x,y),†BP (x,y)

]
= 〈0|cxcyUc†yc†x|0〉

where in the last Eq. we have used the properties of Eqn. 239 and 237. Re-
peating the same argument for different terms we obtain:

det (1 + B) =

1 +
∑

x

〈0|cxUc†x|0〉 +
∑

y>x

〈0|cxcyUc†yc†x|0〉 +

∑

y>x>z

〈0|cxcyczUc†zc
†
yc†x|0〉 + · · · = Tr [U ] . (245)

This concludes the demonstration of Eq. 244.
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