

Superconductivity and Magnetism in novel Fe-based superconductors

Ilya Eremin^{1,2} and Maxim Korshunov¹

1 - Max-Planck Institut für Physik komplexer Systeme, Dresden, 2- Institut für Theoretische Physik, TU Braunschweig

More a progress report than a talk

$Re(O_{1-x}F_x)FeAs$ Superconductors

Compound (powder & single crystals)	Τ _c	Reference
LaOFeP	~5 K	Y. Kamihara et al., J. Am. Chem. Soc.128, 10012 (2006)
LaNiOP	~3 K	T. Watanabe et al., Inorg. Chem. 46, 7719 (2007)
$La[O_{1-x}F_{x}]FeAs La[O_{1-x}Ca^{2+}_{x}]FeAs$	26 K (x=0.05-0.12) 0 K	Y. Kamihara et al., J. Am. Chem. Soc.130, 3296 (2008)
La[O _{1-x} F _x]NiAs	3.8 K (x=0.1)2.75 K (x=0)	Z. Li et al., arXiv:0803.2572
(La _{1-x} Sr _x)ONiAs	3.7 K (x=0.1-0.2) 2.75 K (x=0)	L. Fang et al., arXiv:0803.3978
(La _{1-x} Sr _x)OFeAs	25 K (x=0.13)	HH. Wen et al., EPL 82, 17009 (2008)
Ce[O _{1-x} F _x]FeAs	41 K (x=0.2)	G.F. Chen et al., PRL 100, 247002 (2008)
Pr[O _{1-x} F _x]FeAs Nd[O _{1-x} F _x]FeAs	52 K (x=0.11)	ZA. Ren et al., arXiv:0803.4283; ZA. Ren et al., EPL, 82 (2008)
Gd[O _{1-x} F _x]FeAs	36 K (x=0.17)	P. Cheng et al., Science China 51(6), (2008).
Sm[O _{1-x} F _x]FeAs	55 K (x=0.1-0.2)	ZA. Ren et al., Chin. Phys. Lett. 25, (2008); R.H. Liu et al., arXiv:0804.2105

Crystal Structure of ReFeAs($O_{1-x}F_x$)

Quasi-2D Fe-As layers divided by La with Fe forming a square lattice

Tetragonal *P4/nmm* space group

The unit cell contains two molecules, and the chemical formula is represented by $(La_2O_2)(Fe_2As_2)$

	a (Å)	c (Å)
$\operatorname{SmOFeAs}$	3.940	8.496
NdOFeAs	3.965	8.575
$\operatorname{PrOFeAs}$	3.985	8.595
CeOFeAs	3.996	8.648
LaOFeAs	4.038	8.753

Y. Kamihara et al., J. Am. Chem. Soc. 130, 3296 (2008)

Fe-layered structure and elementary unit cell

Phase diagram: n-doped (La³⁺[O²⁻_{1-x}F¹⁻_x]) +(Fe²⁺As³⁻)

Y. Kamihara et al., J. Am. Chem. Soc. 130, 3296 (2008)

Similar phase diagrams in other $ReFeAs(O_{1-x}F_x)$

Phase diagram: two phase transitions at x=0

Ø

Magnetic structure below T_N

Neutron scattering: C. de la Cruz et al., Nature 453, 899 (2008) μ SR: H.-H. Klauss et al., arXiv:0805.0264

1) SDW order with $\mathbf{Q}=(\pi,\pi)$ for $\sqrt{2a} \times \sqrt{2a}$ or $\mathbf{Q}'=(\pi,0)$ for a x a 2) magnetic moments ~ 0.3 μ_B

 $CeFeAs(O_{1-x}F_x) \Rightarrow 0.8\mu_B$ Neutron scattering: J. Zhao et al., arXiv:0806.2528 Quantum many-body phenomena in the solid state, Würzburg 15 July

Magnetism as a function of doping

$CeFeAs(O_{1-x}F_x)$

J. Zhao et al., arXiv:0806.2528

S. Margadonna et al., arXiv:0806.3962 Results for LaFeAs($O_{1-x}F_x$);

- 1) Magnetism and structural transition are closely bound together
- 2) Antiferromagnetism and superconductivity do not coexist

Magnetism as a function of doping

$CeFeAs(O_{1-x}F_x)$

J. Zhao et al., arXiv:0806.2528

S. Margadonna et al., arXiv:0806.3962 Results for LaFeAs($O_{1-x}F_x$);

- 1) Magnetism and structural transition are closely bound together
- 2) Antiferromagnetism and superconductivity do not coexist

Phase diagram: h-doped K_{1-x}A_xFe₂As₂ with A = Sr,Ba (Sr_{1-x}²⁺K⁺_x) +(Fe²⁺As³⁻)₂

M. Rotter et al., arXiv:0805.4630 (2008); G.F. Chen et al., arXiv:0806.1209 (2008); K. Sasmal et al., arXiv:0806.1301 (2008); G. Wu et al., arXiv:0806.1459 (2008).

Electronic structure: LAPW LDA

Electronic Structure: Bands close to Fermi Level

L. Boeri, O.V. Dolgov, and A.A. Golubov, PRL 101, 026403 (2008) *Quantum many-body phenomena in the solid state, Würzburg 15 July*

Electronic Structure: FS folding

Effective low-energy model

1) based on the two (xz,yz) orbitals plus hybridiztion between them S. Raghu et al., arXiv:0804.1113 (PRB 77 (R), (2008))

2) 5-bands tight-binding: K. Kuroki et al., arxiv:0803.3325

3) matrix elements equal unity: four-bands model

Magnetic excitations: nearly perfect nesting at x=0

1) nearly perfect nesting, agrees with LDA [J. Dong et al., EPL 83, 27006 (2008).]

M. Korshunov and I. Eremin arXiv:0804.1793

Itinerant magnetism at AFM wave vector: RPA

 $\hat{\chi}_{RPA}(\mathbf{q}, \mathrm{i}\omega_m) = \left[\mathbf{I} - \mathbf{\Gamma}\hat{\chi}_0(\mathbf{q}, \mathrm{i}\omega_m)\right]^{-1}\hat{\chi}_0(\mathbf{q}, \mathrm{i}\omega_m)$

$$\Gamma = \begin{bmatrix} U & J/2 & J/2 & J/2 \\ J/2 & U & J/2 & J/2 \\ J/2 & J/2 & U & J/2 \\ J/2 & J/2 & J/2 & U \end{bmatrix}$$

H.-H. Klauss et al., arXiv:0805.0264

Itinerant magnetism: doping dependence

Instead of nesting \rightarrow 'hot' spots

magnetic instability decreases

M. Korshunov and I. Eremin, Europhys. Lett.,

Both electron and hole pockets do exist

There is a Fermi surface even at zero doping

Non-phononic mechanism of superconductivity

interband AFM fluctuations enhancing interband Cooper-pair scattering: extended s-wave

I.I. Mazin et al., arXiv:0803.2740;K. Kuroki et al., arXiv:0803.3325;M. Korshunov and I. Eremin, arXiv:0804.1793

isotropic gap in thermodynamics (no nodes at the Fermi surface - at least in simple picture)
 no Hebel-Slichter peak in 1/T₁, resonance peak in INS
 Quantum many-body phenomena in the solid state, Würzburg 15 July

Symmetry of the superconducting gap

Exp. situation: NMR data

gap), multiple gaps **further studies are necessary** (conflict with pen. depth, tunneling and μSR - isotropic gap**)**

Exp. situation: NMR data

Spin lattice relaxation in the normal state:

- Korringa behavior: $K_{ab}^2/\alpha\kappa$, κ = Korringa constant typical for metals
- no signatures of spin fluctuations (in the <u>As</u> <u>NMR!!!)</u>, Pseudogap

H. Grafe et al., cond-mat/0805.2595

Possible effect of frustrations

Q. Si and E. Abrahams, arXiv:08.04.2480v1; C. Fang et al., arXiv: 0804.3843v1; T. Yildirim arXiv:0804.2252; F. Ma, arXiv:0804.3370v3

Electronic correlation effects

1) correlations are moderate \Rightarrow no Mott transition U~1eV 2) situation changes for significant J_{H} ~ 0.7 eV \Rightarrow orbital selective Mott transition

K. Haule, J.H. Shim, and G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008);
K. Haule, G. Kotliar, arXiv:0805.0722 Quantum many-body phenomena in the solid state, Würzburg 15 July

Effect of the magnetic rare-earth substitution

B. Buechner et al., unpublished

ReFeAs($O_{1-x}F_x$) and $K_{1-x}A_xFe_2As_2$ superconductors: present questions

1) Origin of the structural transition

- 2) Interrelation of structural transition and magnetism
- 3) frustrations effects?
- 4) orbital effects
- 5) symmetry of superconducting gap (extended s-wave)
- 6) relevance of spin fluctuations above T_c
- 7) influence of the magnetic rareearth elements
- 8) effect of electronic correlations

9).

Standard electron-phonon interaction

El-ph interaction enhanced due to nesting

H. Eschrig, arXiv:0804.0186v2

phonon mode displacement