

New Era of Photoelectron Spectroscopy: Spin-Resolved and Full-2D-Momentum-Resolved Photoelectron Spectroscopy

Shigemasa SUGA

¹ Forschungszentrum Jülich, Peter Grünberg Institut, PGI-6,
Elektronische Eigenschaften, D-52425 Jülich Germany

² Institute of Scientific & Industrial Research, Osaka University, Osaka Japan
(³former address: Max-Planck-Institute of Microstructure Physics, Halle, Germany)

High resolution spin- and angle-resolved photoelectron spectroscopy (SP-ARPES) has been desired over decades to clarify surface and bulk electronic structures of various solids.

The development of a spin-momentum microscope (SP-M.M.) composed of a PEEM type input lens, an aberration suppressed energy filter composed of tandem double hemispherical deflection analyzers (HDAs) in the S-shape configuration, and a 2D imaging spin filter has opened a breakthrough very recently. A very wide \mathbf{k} space can be covered with high energy and momentum resolutions as 12 meV and 0.005 Å⁻¹.

Spin dependent 2D (k_x, k_y) images measured at two different electron incidence energies onto a Au/Ir(001) (or a W(001)) target can easily provide accurate spin polarization, $P_s(E_B(k_x, k_y))$.

The 2D multi-channel figure of merit F_{2D} of Au/Ir(001) spin detection is $\sim 10^6$ times higher than the single-channel figure of merit f_0 of a Mott detector and a W spin-LEED detector and $\sim 10^4$ times higher than that of the most advanced Fe-O VLEED spin detector.

Examples of SP-ARPES of surface Rashba states on Au(111) and Dirac cone states of topological insulators, Bi₂Se₃ & Bi₂Te₃, are presented. Even μm and sub μm region is easily probed owing to the PEEM type input lens.

References:

1. S.Suga and C.Tusche, Photoelectron spectroscopy in a wide $h\nu$ region from 6 eV to 8 keV with full momentum and spin resolution, J.Electron Spectrosc. Rel. Phenom. (2015), vol.200, in press.
2. S.Suga and A.Sekiyama, Photoelectron Spectroscopy: Bulk and Surface Electronic Structures, Springer Series in Optical Sciences **176** (2014).