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Phases of correlated spinless fermions on the honeycomb lattice

Maria Daghofer1 and Martin Hohenadler2

1Institut für Theoretische Festkörperphysik, IFW Dresden, 01171 Dresden, Germany
2Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany

(Received 17 September 2013; published 6 January 2014)

We use exact diagonalization and cluster perturbation theory to address the role of strong interactions and
quantum fluctuations for spinless fermions on the honeycomb lattice. We find quantum fluctuations to be very
pronounced both at weak and strong interactions. A weak second-neighbor Coulomb repulsion V2 induces a
tendency toward an interaction-generated quantum anomalous Hall phase, as borne out in mean-field theory.
However, quantum fluctuations prevent the formation of a stable quantum Hall phase before the onset of the
charge-modulated phase predicted at large V2 by mean-field theory. Consequently, the system undergoes a direct
transition from the semimetal to the charge-modulated phase. For the latter, charge fluctuations also play a key
role. While the phase, which is related to pinball liquids, is stabilized by the repulsion V2, the energy of its
low-lying charge excitations scales with the electronic hopping t , as in a band insulator.
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I. INTRODUCTION

Interest in topological states of matter has been boosted by
the discovery of topological insulators and superconductors.1,2

The quantum spin Hall insulator, a novel topological state
of matter with a Z2 topological invariant and helical edge
states,3,4 has been observed experimentally in HgTe quantum
well structures.5,6 Since then, research has broadened substan-
tially, and now includes three-dimensional topological insula-
tors and superconductors,2 fractional Chern insulators,7,8 and
symmetry-protected topological phases.9–14

Topological insulators and Chern insulators typically arise
from complex hopping terms related to spin-orbit coupling3,4

or to a periodic vector potential.15 By now, several nonin-
teracting models are known that support quantum Hall and
quantum spin Hall phases.16 In such settings, electron-electron
interactions play a minor role as a result of the bulk band gap,
and the states closely resemble band insulators. Sufficiently
strong interactions can drive transitions to nontopological
phases with magnetic17–19 or charge-density-wave order.20–22

An interesting interaction-driven transition from a quantum
spin Hall (QSH) phase to a phase with fractional excitations
and topological order is the so-called QSH* phase found in a
mean-field treatment of a model for Na2IrO3.23 The interplay
of topological band structures and electronic interactions has
been studied extensively (see Ref. 16 for a review).

Conversely, electronic correlations can also give rise
to topological states. Topological Mott insulators,24 or
interaction-generated topological insulators, are a particularly
interesting concept. Raghu et al.24 presented a scenario
where quantum (spin) Hall states arise purely from electronic
interactions that give rise to spontaneously generated, complex
bond-order parameters.24,25 Such a correlation-driven route to
topological states would abandon the requirement of strong
intrinsic spin-orbit coupling and could thus significantly
extend the class of topologically nontrivial materials. In
a more general context, correlations have been shown to
stabilize topologically nontrivial bands in double-exchange
models on the kagome and triangular lattices,26,27 where
the topological character is supported by the coupling to

localized spins. In particular, it has been shown that Haldane’s
scenario of a transition from bands featuring Dirac cones to
bands with a topologically nontrivial gap can be observed in
the Kondo-lattice model on the checkerboard lattice.28 The
ordering of complex orbitals can also lead to topological
insulators.29–32

For the spinless model considered in Ref. 24, the existence
of a topological phase, namely a quantum anomalous Hall
(QAH) state, has been confirmed by more elaborate mean-field
approximations.33,34 More generally, again using mean-field
and renormalization group methods, interaction-generated
topological states have been shown to arise in kagome,
checkerboard, or decorated honeycomb lattices,35–37 in a
π -flux square-lattice model,33 as well as in three dimensions.38

In contrast to checkerboard and kagome lattices, the Dirac
points in the π -flux and honeycomb models are associated with
a vanishing density of states at the Fermi level. Consequently,
transitions to symmetry-broken phases may not be correctly
captured by a weak-coupling approach. The variety and
fascinating properties of these novel phases make it desirable to
go beyond a weak-coupling description. Indeed, recent exact
diagonalization results39 for the π -flux square-lattice model
have not confirmed mean-field predictions of an interaction-
generated QAH phase.33

Here, we use exact diagonalization to study the spinless
model first considered in Ref. 24. Thereby, we fully take
into account quantum fluctuations which are expected to be
strong given the low coordination number of the honeycomb
lattice. Most importantly, our results imply that the interaction-
generated topological mean-field state is unstable with respect
to fluctuations, and that the gapped ground state is not
adiabatically connected to the QAH state of the Haldane
model. However, we demonstrate that for small V2, the model
has a tendency toward an interaction-generated QAH state.
In addition, we provide new insights into the charge-ordered
phase that exists for strong next-nearest-neighbor repulsion.34

The organization of this paper is as follows. In Sec. II, we
define the model considered. Our results are discussed in
Sec. III, and we conclude in Sec. IV.
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II. MODEL

Following Ref. 24, we consider a model of interacting,
spinless fermions described by the Hamiltonian

Ĥ1 = Ĥ0 + V1

∑
〈ij〉

n̂i n̂j + V2

∑
〈〈ij〉〉

n̂i n̂j . (1)

The first term Ĥ0 = −t
∑

〈ij〉(c
†
i cj + c

†
j ci ) describes nearest-

neighbor (NN) hopping on the honeycomb lattice. The second
term accounts for a repulsion between fermions on NN
sites, whereas the third term describes a repulsion between
next-nearest-neighbor (NNN) sites (i.e., sites on the same
sublattice). The indices i,j number lattice sites, and L denotes
the total number of sites. Throughout this paper, we consider
a half-filled band with one fermion per unit cell and 〈ni〉 = 1

2 .
Hamiltonian (1) was previously studied at the mean-field

level.24,33,34 These works reported a QAH state with chiral
edge states and a nonzero Chern index. This phase is character-
ized by a complex bond-order parameter24 χij = χ∗

ji = 〈c†i cj 〉
that mimics the complex hopping term of the Haldane model15

and breaks time-reversal symmetry. The QAH state is driven
by V2 and, according to mean-field theory, most stable for
V1 = 0.24,33,34 For V1 = 0, Refs. 24 and 33 found a semimetal
(SM) and a QAH phase. The SM is stable up to a finite critical
value of V2 because of the vanishing density of states at the
Fermi level. Using a more elaborate mean-field ansatz, Grushin
et al.34 obtained an additional, charge-modulated (CM) insu-
lating phase at large V2/t that restricts the QAH phase to a finite
region 1.5 � V2/t � 2.5. For V1 > 0, a charge-density-wave
phase with broken inversion symmetry24,33,34 (for V1 > V2),
as well as a Kekulé ordered phase with broken translational
invariance (for V1 ∼ V2), were found.33,34,40 The low-energy
field theory of interacting spinless fermions on the honeycomb
lattice is discussed in Ref. 41.

III. RESULTS

According to mean-field theory,24,33,34 the QAH phase is
stabilized by V2, and is therefore most extended in parameter
space for V1 = 0. Therefore, and to simplify the analysis, we
focus on the case V1 = 0, although some results for nonzero
V1 will also be presented.

The exact diagonalization results presented in the following
have been obtained on clusters with 18, 24, and 30 sites,
respectively. Since the Dirac points ±K define the low-energy
physics of the noninteracting system (V1 = V2 = 0), and also
correspond to the ordering wave vector of the charge order
driven by large values of V2 (see following), we have chosen
clusters for which q = ±K are allowed momenta. In the
notation of Ref. 20, the clusters used here correspond to 18A
and as well as 24A; results for a small number of parameter
sets were also obtained using 30A. We have verified that our
findings are unchanged when using clusters 24C and 24D.

A. Phase diagram for V1 = 0

The QAH state found in mean-field theory24,33,34 is iden-
tical to the QAH ground state of the noninteracting Haldane
model,15 and hence characterized by a Chern number C = ±1.
To prove the existence of this phase numerically, it is not

sufficient to simply calculate the Chern index for the model
(1). The reason is that there exist two possible bond-order
patterns which differ by an overall sign, and describe Chern
insulators with C = 1 and −1, respectively. When the ground
state of a finite cluster is determined by exact diagonalization,
it can be expected to be a linear combination of these two
states, and hence to have a vanishing Chern index. Finally,
the accessible system sizes are not sufficient to carry out a
finite-size extrapolation to the thermodynamic limit to reveal
a symmetry breaking. Given these complications, a different
route has to be chosen.

To identify a possible QAH state driven by the interaction
V2, we here study a superposition42 of the Hamiltonian of
interest, namely Eq. (1), and a Hamiltonian known to have
the QAH ground state predicted by mean-field theory. The
mean-field QAH state of Eq. (1), first reported in Ref. 24, is
identical to the QAH state of the Haldane Hamiltonian15

Ĥ2 = Ĥ0 −t2
∑
〈〈ij〉〉

(eiφij c
†
i cj + e−iφij c

†
j ci ) (2)

for the choice of phase φij = ±π/2; the sign depends on the
direction of the bond 〈〈ij 〉〉 and the sublattice. It arises from
periodic magnetic fluxes that sum to zero for each hexagon of
the honeycomb lattice.15 The hopping term Ĥ0 is identical to
Eq. (1). Hence, at the mean-field level, the Hamiltonian

H̃ (λ) = λH2 + (1 − λ)H1, λ ∈ [0,1] (3)

interpolates between the noninteracting QAH ground state of
the Haldane Hamiltonian Ĥ2 (i.e., t2 > 0, V2 = 0, λ = 1) and
the interaction-generated QAH ground state of Ĥ1 (λ = 0, and
suitable values of V2). As a function of λ, it is therefore possible
to adiabatically connect the ground states that exist for λ = 0
and 1. For 0 < λ < 1, H̃ (λ) describes interacting fermions on
the honeycomb lattice with additional Haldane hopping t2.

If the mean-field QAH state is stable, a similar adiabatic
connection between λ = 0 and 1 is expected to exist when
H̃ (λ) is solved using exact numerical methods. Starting with
λ = 0, we hence expect a continuous evolution with λ if
the ground state of Ĥ1 is indeed a QAH state. In particular,
switching on t2 should reinforce a potential QAH ground state
of Ĥ1. Conversely, a discontinuous evolution (e.g., a phase
transition) as a function of λ would imply that the state at
λ = 0 is not the QAH state predicted by mean-field theory.

Here, we calculate the quantum fidelity F =
〈φ0(V2 + δV2) | φ0(V2)〉, corresponding to the overlap of
the ground states of Hamiltonian (1) for V2 and V2 + δV2,
respectively, with all other parameters unchanged. The fidelity
permits us to detect transitions between different phases
without making assumptions regarding order parameters.43,44

Moreover, it is particularly suitable to detect transitions
between topologically trivial and nontrivial insulators45

because such transitions involve a level crossing even on
finite clusters.20,21 In contrast, continuous symmetry-breaking
transitions appear as gradual changes on finite clusters, and
are therefore often difficult to identify.

We take the mean-field phase diagram as a starting point,
and distinguish three regimes. For sufficiently large V2 (the
mean-field prediction is V2 � 2.5t), the gapped CM phase is
expected.34 For smaller V2 (1.5 � V2/t � 2.5, according to
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FIG. 1. (Color online) (a) The two lowest energy levels in the
ground-state momentum sector along the path from (t2 = 0.3,V2 = 0)
to (t2 = 0,V2 = 4), indicated by the solid line in (b). (b) Moving along
the parameter trajectories indicated by the small dots from the QAH
state of the Haldane model (2) at t2 = 0.3t,V2 = 0 (λ = 1) toward
the model (1) with t2 = 0 and different V2 (λ = 0), we find level
crossings at the points indicated by large circles. Large open (filled)
circles correspond to level crossings with (without) a change of the
ground-state momentum sector. Results in (a) and (b) are for V1 = 0.
(c) Phase diagram of Hamiltonian (1) with V1 = 0. The hatched region
reflects the uncertainty regarding the critical point due to finite-size
effects. All results were obtained from exact diagonalization of H̃

using a 24-site cluster.

Ref. 34), the QAH state exists, and for V2 � 1.5t , mean-field
theory finds the SM phase.

We first consider the CM region. In Fig. 1(a), we show
the evolution of the two lowest energy levels of H̃ (λ) along a
path from (t2,V2) = (0.3t,0) (λ = 1) to (t2,V2) = (0,4t) (λ =
0), as indicated by the solid line in Fig. 1(b). Whereas the
point λ = 1 lies in the well-established QAH phase of the
Haldane model, the point λ = 0 has a sufficiently large V2 to
fall into the CM phase.34 [The existence of charge order will be
demonstrated below; see Fig. 2(a).] Since λ = 1 corresponds
to the Haldane model, the initially lower-lying level (solid line)
in Fig. 1(a) can be identified with the QAH state with Chern
number C = 1. We find that switching on V2 in the Haldane
model does not immediately destroy the QAH state, as can
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FIG. 2. (Color online) (a) Charge structure factors S(K) and
S−(�) [see Eq. (4)] from exact diagonalization for two different
cluster sizes (L = 18 and 24). The open circles at V2 ≈ 2t and 2.5t

indicate the change of the ground-state momentum sector observed
for L = 24. (b) Density of states for different values of V2/t obtained
from exact diagonalization with twisted boundary conditions and
L = 24. All results are for V1 = 0.

be expected for a gapped phase. However, at a critical value
V2 ≈ 2.9t (and t2 ≈ 0.08t), we observe a level crossing within
the same momentum sector, and a vanishing of the fidelity.
This level crossing, signaling a quantum phase transition to
a topologically distinct state, reveals that the QAH state at
t2 = 0.3t , V2 = 0 is different from the gapped ground state
at t2 = 0, V2 = 4t , in accordance with the mean-field theory
prediction of a CM phase for these parameters.

Figure 1(b) shows the level crossings found along similar
paths in the (t2,V2) plane, but with end points that have different
values of V2. For values as small as V2 = 2.5t , we find the same
type of level crossing as illustrated in Fig. 1(a). Moreover,
with decreasing V2/t , the level crossings move toward smaller
values of t2, in accordance with the decrease of the gap of the
CM state.

In the regime 2t � V2 � 2.5t , a level crossing occurs at
small but finite values of t2, but between different ground-state
momentum sectors (indicated by open circles). Moreover,
the ground state in this regime is doubly degenerate with
momenta ±K , as opposed to the nondegenerate ground state
with momentum � that exists for V2/t outside [2,2.5].46 This
behavior can be understood by considering the model with
t2 = 0 [see Fig. 2(a) and discussion below] for which we
observe two changes of the momentum sector as a function
V2 at V2 ≈ 2t (� → ±K) and V2 ≈ 2.5t (±K → �). We
attribute the existence of this intermediate regime and the
momentum changes to finite-size effects related to the close
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energetic proximity of excited states with momentum q = ±K

to the ground state in the SM and the CM phases. Indeed, the
momentum-changing level crossings are absent on L = 18 and
L = 30 clusters, and a similar cluster-dependent intermediate
region has been reported for the interacting Haldane model.21

More importantly, the fact that a level crossing occurs as
a function of λ implies that the ground state of Ĥ1 is not
adiabatically connected to the QAH state of the Haldane model
down to V2 ≈ 2t .

Finally, for interactions V2 � 2t , the fidelity F =
〈φ0(V2,t2) | φ0(V2,t2 + δt2)〉 with δt2 > 0, which is very close
to 1 for t2 > 0, decreases to 0.7 (or 1/

√
2) for t2 = 0; the

corresponding parameters are indicated by the crosses in
Fig. 1(b). The fact that any finite t2 significantly modifies
the ground state suggests that in this regime, we have the SM
phase which is unstable toward the opening of a topological
mass gap by a finite t2. The same behavior can be observed
in the noninteracting Haldane model.15 We observe the same
fidelity over the range V2 ∈ [0,2t], which suggests that the SM
phase extends at least up to V2 = 2t . This value is comparable
to the mean-field estimates.24,33,34

The results of this section, in particular the fact that
the gapped parameter region of Hamiltonian (1) can not be
adiabatically connected to the QAH state of the Haldane model
(2), suggest that the mean-field prediction of a QAH phase is
not borne out. Instead, we propose the V1 = 0 phase diagram
shown in Fig. 1(c), with a direct transition from the SM to
the CM phase at a critical value V2 ≈ 2.5t . We will see in the
following that this scenario is consistent with the results for
charge structure factors [note the jump of S(K) in Fig. 2 near
V2 = 2.5t] and the density of states.

B. Charge order driven by V2

Given a two-site unit cell, two charge structure factors
S±(q) can be defined for each sublattice momentum q, which
differ by the relative phase between the contributions of the
two sublattices and can be written as

S±(q) = 1

L

∣∣∣∣∣∣
∑

j

eiq·rj

[(
n̂A

j − 1

2

)
±

(
n̂B

j − 1

2

)]
|φ0〉

∣∣∣∣∣∣
2

. (4)

Here, n̂α
j is the density operator for a site on sublattice

α in unit cell j , and |φ0〉 denotes the many-body ground
state. A Néel-type charge order corresponding to a sublattice
charge imbalance within the unit cell, as previously observed
for spinless fermions with interaction V1,24 is captured by
S−(�) with � = (0,0), whereas the charge order predicted by
mean-field theory34 for large V2 can be tracked by S(K) ≡
1
2 [S+(K) + S−(K)].

Figure 2 shows results for these structure factors for 24-
and 18-site clusters, obtained for the original model (1).
The Néel structure factor S−(�) is quickly suppressed from
its noninteracting value with increasing V2, while S(K) is
enhanced. The open circles in Fig. 2 indicate where the
ground state of the L = 24 cluster changes momentum (see
discussion above). Whereas S(K) continues to grow in this
regime, S−(�) is almost unchanged. This finding suggests
that this intermediate regime is not a different phase since
in that case we would expect the charge order [i.e., S(K)]

S
(q

)

lq

V1 = 0
V1 = 2t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10

Γ K −K

FIG. 3. (Color online) Charge structure factor S(q) for L =
24 sites, t2 = 0, V2 = 5t (deep in the CM phase), and two values
of the NN Coulomb repulsion V1. Here, lq indexes the wave vectors
q, with lq = 4, 9 corresponding to q = ±K and lq = 2 corresponding
to q = �. Since S+(�) = 0, S(�) is proportional to the Néel structure
factor S−(�).

to be suppressed. Other potential order parameters that we
considered (including bond order) are similarly unaffected in
this parameter region. Moreover, while a finite t2 is needed to
move from this regime to the QAH state, the very small critical
values (e.g., t2 = 0.003t for V2 = 2.3t) are a strong argument
against any gapped intermediate phase.

These results, together with the absence of an intermediate
region where the ground-state momentum changes on the L =
18 and 30 clusters, agree with our previous conclusion, namely,
a direct transition from the SM to the CM phase. Keeping in
mind that a finite-size scaling is not feasible with the accessible
cluster sizes, our estimate for the critical point is V2 ≈ 2.5t .
Figure 2(b) shows the density of states obtained for a 24-site
cluster. Our use of twisted boundary conditions reduces finite-
size effects by enhancing the resolution in momentum space,
but can induce small spurious gaps as a result of the breaking of
translational symmetry.47 Nevertheless, the results in Fig. 2(b)
suggest the existence of a single-particle gap for V2 � 2.5t , in
accordance with the phase diagram shown in Fig. 1(c).

An insulating, charge-ordered phase at large values of V2/t

(referred to as the CM phase) was first observed in Ref. 34,
and a related charge-ordered phase has been reported for
spinful fermions in honeycomb bilayers and trilayers.48,49 At
the mean-field level, the pattern of charge-density deviations
from half filling takes the form +δ, − δ, + δ, + 	, − 	, − δ

(with 	 > δ) for consecutive sites of the hexagonal unit
cell.34 Within each sublattice, charge is modulated with a
three-site unit cell, corresponding to an ordering wave vector
K , and charge is in general unequally distributed between the
sublattices (except for 	 = 2δ). The CM phase is different
from the charge-density-wave phase with a Néel-type charge
modulation which is driven by large values of V1.24,34

Our exact diagonalization results shown in Fig. 2 suggest
a transition from the SM to the CM phase at V2 � 2.5t . The
fact that the Néel structure factor S−(q) remains comparable
to S(q) at other momenta q �= ±K (see Fig. 3) provides an
argument against charge imbalance between the sublattices.
On the other hand, the Néel signal S−(�) is not suppressed
when we move deeper into the CM phase (larger V2 � 2t)
either [see Fig. 2(a)], as one would expect for the mean-field
phase with 	 = 2δ.
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FIG. 4. (Color online) (a) Atomic-limit charge distribution for
one of the two sublattices. Filled (empty) circles indicate occupied
(empty) lattice sites. Any distribution of the remaining fermions over
the ⊕ sites gives the same energy. (b) Density of states in the CM
phase from exact diagonalization with twisted boundary conditions
and L = 24.

A closer analysis reveals that the CM phase driven by V2

has an intrinsically fluctuating and partly disordered character,
which is due to geometric frustration and can not be fully
captured by simple mean-field approaches.50 The origin of
these fluctuations becomes apparent by considering the atomic
limit t = 0, in which the honeycomb lattice decouples into two
triangular lattices, on each of which fermions experience the
frustrated repulsion V2. Figure 4(a) illustrates the charge dis-
tribution on one sublattice. Filled (empty) circles correspond
to occupied (empty) sites, contributing 1

6 ( 1
3 when we consider

both sublattices) to the total band filling of 1
2 . The remaining

fermions can be distributed over the ⊕ sites at an energy cost of
3V2 each. Since all possible configurations have the same clas-
sical energy, a highly degenerate ground state with only partial
charge order results. An analogous situation was analyzed for
the Ising model on the triangular lattice by Wannier.51 Inter-
estingly, the energy is also independent of the relative number
of occupied ⊕ sites on the two sublattices. Consequently,
the repulsion V2 is equally satisfied by configurations with
fermions evenly distributed among the two sublattices, and
configurations with ratios 1:2 or 2:1, or anything in-between.
In fact, even a nonzero NN repulsion V1 leaves the degeneracy
largely intact (the energy cost for fermions on ⊕ sites becomes
3V2 + V1) and does in particular not favor charge imbalance
between the sublattices, as shown in Fig. 3. The degeneracy
can hence only be lifted by the hopping t .

For spinless fermions on the triangular lattice, it has been
shown52 that the partial charge order persists also for a nonzero
hopping t �= 0. The extensive degeneracy due to disorder is
there reduced to the threefold degeneracy of the charge-order
pattern because the additional fermions form a metal. This
metallic yet partially charge-ordered phase was dubbed a
pinball liquid.52 Depending on the Hamiltonian, the electrons
not involved in charge order can show superconductivity53

or topological order.54 In the present model, the hopping
t connects the two sublattices, and can provide the largest
kinetic energy gain when the densities in the two sublattices are
equal. It will consequently tend to lift the degeneracy between
different sublattice occupations in favor of equal occupancy.
Indeed, the charge structure factor S(q) shown in Fig. 3 does
not indicate a charge imbalance between the sublattices: While
S(q) is clearly peaked at the ordering momenta ±K , the Néel
signal (corresponding to lq = 2, see caption of Fig. 3) is not
enhanced. Its weight and that for other momenta q �= ±K

approach a nonzero value for large V2. In contrast, the structure
factor is suppressed to zero for momenta q �= � deep in the
charge-density-wave phase. These nonzero values of S(q) for
q �= ±K in the CM phase support the picture that not all
fermions participate in the K-modulated charge order. Figure 3
also reveals that a finite (but moderate) V1 = 2t does not
increase the Néel signal, or indeed induce any significant
changes, similar to the situation on decoupled sublattices.

In contrast to the metallic pinball liquid found in decoupled
sublattices,52 the density of states in Fig. 4(b) shows a gap
for the CM phase at V2 = 3t . By comparing results for
different values of V2, we find that, after initially increasing
with V2, the gap saturates deep in the CM phase. [There are
additional high-energy excitations on the scale of V2 outside
the energy range show in Fig. 4(b).] For large V2, where the
picture of two coupled pinball liquids is most applicable,
the gap becomes independent of V2 and instead scales with
the hopping t . The analog of the metallic pinball liquid
in the model (1) is therefore the insulating CM phase with
interaction-independent low-energy excitations at |ω| ∼ t .

C. Phases at nonzero V1

To establish the robustness of our findings at V1 = 0, we
briefly consider a nonzero V1. Figure 5(a) shows results similar
to Fig. 1(b), obtained for H̃ by varying the parameters t2, V2,
and V1 along paths that connect the Hamiltonians Ĥ1 and Ĥ2.
The starting point in the lower right corner corresponds to
the QAH phase of the Haldane model Ĥ2 with t2 = 0.3 and
V1 = V2 = 0. On the left vertical axis, t2 = 0, V1 = t , and V2

takes on the values indicated in the plot. (Starting from λ = 0
and while switching off t2, we switch on V1 and V2 at the same
rate.) In addition, we have performed horizontal scans at fixed
V1 and V2 starting from t2 = 0.

For paths with V2 � 2.5t at λ = 0, we find level crossings
in the same ground-state momentum sector at finite critical
values of t2 (filled circles). As for Fig. 1(b), we interpret
these crossings as quantum phase transitions and hence as the
absence of an adiabatic connection between the ground state
of Ĥ1 and the QAH phase of the Haldane model. Instead, the
results for the charge structure factors in Fig. 5(b) suggest that
the gapped phase at large V2 is again the CM phase. As already
seen in Fig. 3, the V2-driven charge modulation is hardly
affected by a small to moderate V1. At intermediate values
2.1 � V2/t � 2.5, the same cluster-related complications arise
as for Fig. 1(b), namely, a level crossing with a change
of the ground-state momentum sector. As for V1 = 0, see
Fig. 1(b), level crossings take place at finite but very small t2 ≈
0.003t . The V2-driven charge modulations grow throughout
this regime [see Fig. 5(b)], and as argued in Sec. III B, we
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FIG. 5. (Color online) (a) As in Fig. 1(b), but for nonzero V1 = t .
V1 is switched on at the same rate as V2, with V1 = t along the left
vertical axis. All results were obtained from exact diagonalization
of H̃ using a 24-site cluster. (b) Charge structure factors S(K) and
S−(�) [see Eq. (4)] from exact diagonalization with L = 24.

regard the level crossings as a finite-size effect rather than
indications of an intermediate phase. The fact that V1 has
a negligible impact in this parameter regime can be taken
as further evidence against potential intermediate phases that
would be either stabilized or destabilized by a nonzero V1.

For 1 � V2/t � 2.1, the fidelity jumps from F ≈ 1 to F ≈
0.7 ≈ √

2 when t2 becomes zero, indicating the existence of
a gapless SM phase that is unstable towards the opening of
a QAH gap via t2. The only difference to the case V1 = 0
shown in Fig. 1(b) is found at very small V2, where we again
see a level crossing with vanishing fidelity. In agreement with
mean-field and numerical results,34,55 these level crossings
indicate the transition from the QAH phase at V1 = 0 and
t2 > 0 to the gapped Néel charge-density-wave state found
at V1 = 1,t2 ≈ 0,V2 ≈ 0. The existence of the latter is also
supported by the peak in S−(�) visible in Fig. 5(b). Between
this regime with Néel order and the SM, we again observe a
transition regime involving level crossings between different
momentum sectors which we attribute to the cluster geometry.

Except for the vicinity of V2 = 0, the results for V1 = t

are hence very similar to those for V1 = 0. Consequently, our
conclusion regarding the absence of an intermediate phase and
a direct transition from the SM phase to the CM phase also
holds at nonzero V1 and is hence robust.

10
0
×
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/t
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FIG. 6. (Color online) Ground-state energy as a function of the
bond-order parameter χij = ±i|χ | from cluster perturbation theory
with different cluster sizes L. Here, V2 = 2t and V1 = 0. For L = 6,
the energy is minimal at |χ | = 0, corresponding to the absence of a
QAH phase.

D. Quantum fluctuation effects from
cluster perturbation theory

Our numerical results suggest a direct transition from the
Dirac SM to the CM phase, and hence the absence of an
intermediate QAH phase. A better understanding of this issue
can be obtained by systematically adding quantum fluctuations
to the mean-field ansatz using a variant of cluster perturbation
theory.56 Within this approach, we treat interactions and
hopping processes inside a finite cluster of L sites exactly.
Single-particle terms that connect different clusters, including
the mean-field decoupled interaction terms, are accounted for
in first-order perturbation theory.57

For the Hamiltonian (1), the mean-field decoupling
reads as n̂i n̂j �→ 〈ni〉n̂j + n̂i〈nj 〉 − 〈ni〉〈nj 〉 − 〈c†i cj 〉c†j ci −
〈c†j ci 〉c†i cj + |〈c†i cj 〉|2. The first three (Hartree) terms can give
rise to charge-density-wave order, whereas the last three (Fock)
terms can lead to bond-ordered phases. In particular, the QAH
state emerges from an imaginary bond-order parameter χij =
〈c†i cj 〉 = ±i|χ | with opposite sign on the two sublattices.58

To explore the most favorable setting for the QAH phase, we
set the charge-density-wave order parameters 〈nj 〉 to zero and
allow for purely imaginary χij only. For a two-site cluster (L =
2) and V1 = 0, cluster perturbation theory is equivalent to
mean-field theory since all V2 interaction terms are decoupled.
Increasing L allows for ordered patterns with a larger unit cell,
similar to mean-field theory,33,34 and additionally includes
short-range quantum fluctuations by treating more and more
bonds exactly.

The impact of quantum fluctuations is apparent from Fig. 6,
which shows the total energy as a function of |χ | for clusters
with L = 2,4, and 6 sites. Whereas the QAH state exists for
V2 = 2t in mean-field theory24,33,34 and for L = 2 in Fig. 6,
it is quickly suppressed with increasing L. Already for L = 6,
the energy is minimal for |χ | = 0, and a QAH phase is absent.

E. Tendency toward a QAH state at small V2

Further insight into the tendency toward an interaction-
induced QAH phase can be gained from Fig. 7. It shows the
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FIG. 7. (Color online) Susceptibility T2 defined in Eq. (5) as a
function of V2. Results were obtained from exact diagonalization of
a 24-site cluster.

susceptibility

T2 = 1

L2

〈[ ∑
〈〈ij〉〉

(eiφij c
†
i cj + e−iφij c

†
j ci )

]2
〉
, (5)

related to the Haldane hopping term [see Eq. (2)], as a function
of V2, as obtained from exact diagonalization. The phase has
been chosen as φij = ±π/2.

We first discuss the case of t2 = 0.01t , a small symmetry-
breaking field that establishes a topological QAH state at V2 =
0. Upon switching on the interaction V2, the susceptibility T2

initially increases. At larger values of V2, the susceptibility
decreases with increasing V2, shows a pronounced drop at
around V2 = 2.5t , and saturates for V2 � 2.5t . Essentially
the same overall behavior is observed in the absence of a
symmetry-breaking field, i.e., for t2 = 0. In contrast to t2 =
0.01t , the ground state for t2 = 0 and V2 = 0 is a semimetal,
and T2 is much smaller. Around V2 = 2.5t , we see nongeneric
signatures related to the cluster considered, as previously
discussed for Fig. 2, which are absent on other clusters and for
t2 = 0.01t .

The initial increase of T2 with increasing V2 may be
interpreted as a signature of a tendency toward an interaction-
driven QAH phase, in agreement with the fact that a low-energy
theory of the model (1) yields an instability of the SM toward
the opening of a topological gap via a staggered t2 hopping
term.24 Moreover, this increase at weak V2 is likely to cause the
corresponding coupling to increase under a renormalization
group flow. Hence, a weak-coupling stability analysis, similar
to the one carried out for the interaction-generated quantum
spin Hall phase in Ref. 24, would likely indicate ordering
tendencies toward this phase. However, the results in Fig. 7
reveal a decrease at larger values of V2, in accordance with
the absence of a QAH phase at t2 = 0. The absence of
such a phase in the model (1), despite the weak-coupling
instability, can be attributed to the vanishing of the density
of states at the Fermi level in the SM phase, which renders
the tendency toward symmetry breaking and spontaneous
bond order too weak for a stable phase to exist. However,
the enhancement of Haldane-type bond-order correlations for

small values of V2 suggests that the balance can be tipped in
favor of a QAH phase, so that the latter may be stabilized in
modified or extended models. Weak-coupling instabilities can
occur if the density of states at the Fermi level is finite, for
example, on other two-dimensional lattices35–37 or in bilayer
systems.49,59,60

IV. CONCLUSIONS

We have revisited the problem of spinless fermions on
the honeycomb lattice with repulsive, nonlocal interactions.
Using exact diagonalization, we found no evidence for the
interaction-generated quantum Hall state observed in previous
mean-field treatments of the same model.24,33,34 Instead, for
V1 = 0, our data suggest a direct transition from a correlated
semimetal to a gapped, charge-modulated phase at V2 ≈ 2.5t .

The conclusion regarding the quantum Hall phase is based
on the absence of an adiabatic connection to the ground
state of the Haldane model throughout the gapped parameter
region. The instability of the mean-field quantum Hall state
can also be illustrated by including fluctuations around the
mean-field solution in the framework of cluster perturbation
theory. At smaller V2, we found indications for a tendency
toward a QAH state that is enhanced by increasing V2, but
the vanishing density of states at the Fermi level limits the
potential energy gain and thereby prevents the formation of
a stable QAH phase. However, the phase may well exist in
models with weak-coupling instabilities related to quadratic
band crossing points,35–37 where the density of states is finite.
A weak-coupling quantum Hall phase has also been found
at the mean-field level in a model of strained graphene.61 To
identify the modifications of the model which are necessary
for the QAH phase to exist represents a fascinating topic for
future work.

The charge-modulated phase at large V2 turns out to be
rather unconventional and was found to have close relations to
frustrated spin systems and pinball liquids. It is gapped, but the
energy of the lowest-lying excitations becomes independent
of the interaction in the strong-coupling regime and is instead
determined by the hopping integral t . Hence, while the phase
clearly emerges from a large V2, and therefore is in some sense
a Mott insulator, its band gap is set by the hopping integral t ,
a property typical of band insulators.

Note added. During the preparation of this paper, we learned
about the results of Ref. 55, in which the model (1) was studied
using exact diagonalization. Both works agree on the absence
of an interaction-generated QAH phase.
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