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Abstract
The phonon spectral function of the one-dimensional Holstein model is obtained
within weak-coupling and strong-coupling approximations based on analytical
self-energy calculations. The characteristic excitations found in the limit
of small charge-carrier density are related to the known (electronic) spectral
properties of Holstein polarons such as the polaron band dispersion. Particular
emphasis is laid on the different physics occurring in the adiabatic and anti-
adiabatic regimes, respectively. Comparison is made with a cluster approach
exploiting exact numerical results on small systems to yield an approximation
for the thermodynamic limit. This method, similar to cluster perturbation
theory, confirms the analytical findings, and also yields accurate results in the
intermediate-coupling regime.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Intermediate or strong electron–phonon (EP) interaction gives rise to the existence of polaronic
carriers in a number of interesting materials (see, e.g., [1–3]). As a consequence, models
for such quasiparticles, for example, the Holstein model [4] considered here, have been
investigated intensively in the past decades in order to understand the process of polaron
formation. Whereas valuable insight into the latter may be gained by considering a single
charge carrier (i.e., the Holstein polaron problem), real materials are usually characterized by
finite carrier densities, motivating studies of many-polaron models [5–8].

Over the last decade, a large number of theoretical studies, the most reliable of which
are based on unbiased numerical methods, have led to a fairly complete understanding of
the Holstein polaron concerning both ground-state and spectral properties. Calculations of
the latter, for example, the one-electron Green function, are particularly rewarding as they
provide detailed insight into the non-linear process of an electron becoming self-trapped in the
surrounding lattice distortion. For reviews of the Holstein polaron problem see [9, 10].
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In this paper, we contribute to a completion of the knowledge of the single-polaron problem
by investigating the phonon spectral function, an important observable rarely considered in
previous work. In contrast, it has been studied quite intensively for the spinless Holstein model
and the Holstein–Hubbard model, both at half-filling, for which phonon softening at the zone
boundary has been found to occur at the Peierls transition in one dimension [11–16]. Note that
the assumption of a local self-energy frequently used in combination with dynamical mean field
theory—as appropriate for infinite dimensions—leads to an unrealistic wavevector-independent
softening of all phonon excitations [17, 18]. The renormalization of the phonon modes in
small clusters with one electron, especially their softening at the critical EP coupling, has been
investigated numerically in [19], and results for the coherent phonon spectrum of the infinite
system have been reported in [20]. Furthermore, analytical approximations for the phonon self-
energy and the frequencies of the vibration modes in the coupled EP system have been obtained
in [5, 21, 22].

Here we present analytical calculations valid at weak and strong EP coupling, respectively,
as well as a cluster approach, similar to cluster perturbation theory [23–25], which yields
accurate results in all relevant parameter regimes. Both approaches are capable of describing
the momentum dependence of the phonon spectral functions, and we find a very good
agreement between analytical and numerical results.

Despite the formal restriction to the one-electron case, the numerical results will
correspond to finite electron densities due to the finite underlying clusters. The analytical
calculations presented here are based on the electron (polaron) spectral functions previously
deduced in [26] for the weak-coupling (W-C) and strong-coupling (S-C) cases and for charge-
carrier concentrations n < 0.5. These spectral functions depend on n and their calculation
requires a self-consistent determination of the chemical potential µ. To avoid this difficult
task, we shall consider the analytical formulae in the mathematical limit of µ approaching the
bottom of the electron (polaron) band. The resulting limiting shape of the spectral functions will
provide us with a picture of the phonon spectrum for small carrier concentrations. In particular,
as demonstrated below, the positions of the low-energy excitations will be found to be in a very
good agreement with numerical results. Moreover, the general analytical treatment will enable
us to discuss to some extent the features which occur for non-negligible carrier concentrations.

The paper is organized as follows. In section 2, we introduce the Holstein model. Section 3
is devoted to the derivation of the analytical results and a discussion of our cluster approach,
whereas section 4 contains the results and a discussion. Finally, we summarize in section 5.

2. Model

In view of the SC approximation presented below, it is convenient to write the Hamiltonian of
the one-dimensional (1D) spinless Holstein model as

H = −µ
∑

j

n̂ j + ω0

∑

j

b†
j b j −

∑

j j ′
C j ′ j c

†
j ′c j , (1)

where

C j j = gω0(b
†
j + b j), C〈 j ′ j〉 = t . (2)

In equation (1), c†
i (b†

i ) creates a spinless fermion (a phonon of energy ω0) at site i , and
n̂i = c†

i ci with ni = 0, 1. The first term contains the chemical potential µ and determines
the carrier density n, whereas the second term accounts for the elastic and kinetic energy of the
lattice. Finally, the last term describes the local coupling between the lattice displacement
xi = b†

i + bi and the electron density n̂i with the coupling parameter g (for j = j ′,
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see equation (2)), as well as electron hopping processes between neighbouring lattice sites
〈 j ′ j〉 with hopping amplitude t (for j = j ′ ± 1). We take t as the unit of energy, and set the
lattice constant to unity.

From numerous previous investigations [10] of this model in the one-electron case
considered here the following picture emerges. At WC, the ground state consists of a large
polaron, corresponding to a self-trapped electron with a lattice distortion extending over many
lattice sites. As the EP coupling is increased, a cross-over takes place to a small-polaron state,
in which the lattice distortion is essentially localized at the site of the electron, leading to a
substantial increase of the quasiparticle’s effective mass in the intermediate-coupling (I-C) and
S-C regime. Depending on the value of the adiabaticity ratio α = ω0/t , the small-polaron
cross-over occurs at a critical value of the EP coupling determined by the more restrictive of
the two conditions λ = Ep/2t � 1 (relevant for α � 1) or g2 = Ep/ω0 � 1 (for α � 1). Here
Ep = g2ω0 is the polaron binding energy in the atomic limit defined by t = 0.

3. Methods

3.1. Analytical approach

The aim of the present treatment is to deduce and to interpret the essential features of the
numerically calculated phonon spectral functions (see section 4). In the following calculations,
we shall deal with coupled equations of motion of the Matsubara Green functions for the lattice-
oscillator coordinates on the one hand, and for the spinless charge carriers on the other hand.
It will be shown that the general features of the spectral functions may be understood on the
basis of the results obtained for the W-C and S-C cases, where an approximate treatment is well
justified [7, 26].

3.1.1. Weak-coupling approximation. The Matsubara Green function for phonons, defined as

D(m1τ1; m2τ2) = −〈Tτ xm1(τ1)xm2(τ2)〉, (3)

fulfils the equation of motion

1

2ω0

(
∂2

∂τ 2
1

− ω2
0

)
D(m1τ1; m2τ2) = δm1m2δ(τ1 − τ2)− gω0〈Tτcm1

(τ1)c
†
m1
(τ1)xm2(τ2)〉, (4)

assuming 〈xm2〉 = 0 in the WC regime. The mixed Green function on the right-hand side (rhs)
of equation (4) will be expressed by means of the generalized fermionic Green function [27, 28]

G(n1τ1; n2τ2; U) = − 1

〈S〉 〈Tτcn1
(τ1)c

†
n2
(τ2)S〉 ≡ G(1; 2; U) (5)

and

S = Tτ exp

(
−

∫ β

0
dτ

∑

nn′
Unn′(τ )Cnn′(τ )

)
, (6)

where the classical variables Unn′(τ ) were introduced as a purely formal device. Consequently,
the relation between the mixed Green function and the fermionic Green function reads

〈Tτ cn1
(τ1)c

†
n′

1
(τ ′

1)Cm2m2(τ2)〉 =
[

δ

δUm2m2 (τ2)
G(n1τ1; n′

1τ
′
1; U)

]

U=0

. (7)
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Here δ/δU denotes the functional derivative. Defining the inverse Green function G−1(1; 2; U)
to G(1; 2; U) according to [27] we obtain

〈Tτ cm1
(τ1)c

†
m1
(τ1)Cm2m2 (τ2)〉 (8)

=
∫ β

0
dτ ′′ ∑

m′′
G(m1τ1; m ′′τ ′′)

×
∫ β

0
dτ ′ ∑

m′

[
δ

δUm2m2 (τ2)
G−1(m ′′τ ′′; m ′τ ′; U)

]

U=0

G(m ′τ ′; m1τ1)

for the interaction term in the equation of motion (4). The resulting equation for the phonon
Green function is quite general, as no approximations have been made up to now.

In what follows, the fermionic Green functions in equation (8) will be obtained using
the fermionic spectral functions A(k, ω) which have been calculated to second order in the
EP coupling constant in [26]. To the same order, the functional derivative of G−1 will be
determined using the relation between the inverse Green function and the self-energy �,
G−1(1; 2; U) = G−1

0 (1; 2)−�(1; 2; U), where the Green function of the zeroth order, G0, is
independent of U . Accordingly, the derivative of G−1 in equation (8) will be expressed as the
derivative of �, which gives to second order [26, 29, 30]
[

δ

δUm2m2(τ2)
�(m ′′τ ′′; m ′τ ′; U)

]

U=0

= 〈TτCm′′m′(τ ′′)Cm2m2(τ2)〉δm′′m′δ(τ ′′ − τ ′). (9)

Therefore, equation (4) acquires the following form:

1

2ω0

(
∂2

∂τ 2
1

− ω2
0

)
D(m1τ1; m2τ2) = δm1m2δ(τ1 − τ2)−

∫ β

0
dτ ′ ∑

m′
G(m1τ1; m ′τ ′)

× 〈TτCm′m′(τ ′)Cm2m2 (τ2)〉G(m ′τ ′; m1τ1). (10)

However,

〈TτCm′m′(τ ′)Cm2m2(τ2)〉 = g2ω2
0〈Tτ xm′(τ ′)xm2(τ2)〉 = −g2ω2

0 D(m ′τ ′; m2τ2). (11)

Substitution of equation (11) into equation (10) and subsequent multiplication on the rhs by
D−1 give

	(m1τ1; m2τ2) = g2ω2
0G(m1τ1; m2τ2)G(m2τ2; m1τ1) (12)

with 	 = D−1
0 − D−1, the self-energy of the phonons in the Matsubara framework.

Fourier transformation of equation (12) leads to

	(q, iωn) = g2ω2
0

1

N

∑

k

1

β

∑

ν

G(k, iων)G(k + q, i(ων + ωn)), (13)

where ων = (2ν + 1)π/β and ωn = 2nπ/β are Matsubara frequencies for fermions and
bosons, respectively.

The substitution of the spectral representation of the fermionic Green functions

G(k ′, iων) =
∫ ∞

−∞
dω′ A(k ′, ω′)

iων − ω′ (14)

into equation (13), the summation over the frequencies ων , the analytical continuation iωn �→
ω = ω + iδ and the subsequent limit δ → 0 lead to

	(q, ω + i0+) = g2ω2
0

1

N

∑

k

∫ ∞

−∞
dω′

∫ ∞

−∞
dε ′ A(k, ω′)

× A(k + q, ε ′)[ f (ω′)− f (ε ′)]ζ(ω + ω′ − ε ′) (15)
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with

f (x) = 1

eβx + 1
, ζ(x) = P

x
− iπδ(x). (16)

In the low-temperature limit the integrand of equation (15) may be non-zero only if

ω′ < 0 and ε ′ > 0 ⇔ f (ω′)− f (ε ′) = 1 or

ω′ > 0 and ε ′ < 0 ⇔ f (ω′)− f (ε ′) = −1.
(17)

Using the second-order result for the electron spectral function A(k ′, ω′) deduced in [26], the
calculation of the phonon self-energy (15), the corresponding retarded phonon Green function
DR(q, ω) and the phonon spectral function B(q, ω) would be straightforward [31]. However,
A(k ′, ω′) as derived in [26] depends on the charge-carrier concentration n and has to be
determined self-consistently with a condition for the chemical potential µ. The situation is
thus simplified if we restrict ourselves to the case of small carrier concentration, for which the
dependence on n is expected to be unimportant. To choose the dominant contributions to the
integral on the rhs of equation (15) for small n, the integration over ω′ and ε ′ will be divided
according to the character of the electronic spectral functions A(k, ω′) and A(k + q, ε ′).

The coherent part of the spectrum Ac(k, ω), non-zero for |ω| < ω0, consists of
quasiparticle peaks,

Ac(k, ω) = zkδ(ω − (Ek − µ)), (18)

whereas outside this frequency interval the incoherent spectral function Aic(k, ω) is formed
by peaks of finite width. In what follows, the integrals obtained in this way will be examined
with respect to the behaviour in the limit of small concentrations, i.e., for µ lying near E0, the
bottom of the band defined by equation (18).

The real and imaginary parts of	(q, ω) are obtained if the real and imaginary parts of the
ζ -function are substituted into equation (15). The behaviour of the resulting integrals for µ in
the neighbourhood of E0 is then analysed in the mathematical limit µ → E+

0 . We find that
the integration for Re	(q, ω) according to equation (15) gives zero in the limit of vanishing
carrier concentration. In contrast, the integration for Im	(q, ω) yields a non-zero result in
this limit, with the coherent parts of the spectra, Ac(k, ω′) and Ac(k + q, ε ′), being the only
non-vanishing contributions. Taking into account only the latter, we shall express Im	(q, ω)
as

Im	(q, ω) = − 1
2 g2ω2

0

∫ π

−π
dk zkzk+qδ(ω − (Ek+q − Ek))θ(µ− Ek)

×
∫ ω0

0
dε ′δ(ε ′ − (Ek+q − µ))

= −1

2
g2ω2

0

∫

|k|<kF

dk zk zk+qθ(µ− Ek)
δ(k − k0)

|E ′
k0

− E ′
k0+q |

×
∫ ω0

0
dε ′δ(ε ′ − (Ek+q − µ)), (19)

with Ek � µ < Ek+q < ω0. According to [26], the energies of the electronic band are given
by the equation

Ek = ξk + g2ω2
0

πW
P

∫ W

−W

dξ√
1 − (ξ/W )2

1

Ek − ω0 − ξ
, (20)

where ξk = −W cos k (W = 2t), and its derivative

E ′
k = W zk sin k, (21)
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with the spectral weight [26]

zk =
∣∣∣∣∣1 + g2ω2

0

πW
P

∫ W

−W

dξ√
1 − (ξ/W )2

1

(Ek − ω0 − ξ)2

∣∣∣∣∣

−1

. (22)

The wavevector k0 in equation (19) lies in the neighbourhood of k = 0 defined by θ(µ− Ek) =
1 and satisfies

ω − Ek+q + Ek = 0. (23)

Consequently, the value of k0 appears to be a function of ω at fixed wavevector q , fulfilling
Ek0 < µ.

To obtain a qualitative picture of the phonon spectral function, we explicitly take the limit
µ → E+

0 . Thereby, limµ→E+
0

Re	(q, ω) = 0 and the rhs of equation (19) is non-zero only on
the curve ω = ωq = Eq − E0 provided that 0 < ω < ω0. The values of Im	(q, ω) are given
as follows:

Im	(q, ω) = −1

2
g2ω2

0

z0

W | sin q|θ(ω0 − (Eq − E0))�(ω − (Eq − E0)), (24)

where the function �(x1 − x2) is the generalization of the Kronecker symbol being equal to
unity for x1 = x2 and zero otherwise. Consequently, in this limit, the narrow peaks of finite
width following from equation (19) are replaced by discrete lines given by equation (24). The
divergence of the imaginary part of the phonon self-energy at q = 0 and q = π is connected
with the 1D electron band dispersion. Our method of calculation only takes into account
contributions to the electronic spectral function up to second order, which is insufficient if
divergences occur.

On physical grounds, one expects no renormalization of the phonon excitations in the
zero-density limit, i.e., for one electron in an infinite lattice. The non-zero imaginary part of
the phonon self-energy even for n → 0 (equation (24)) does not contradict this expectation
since the integrated weight of the corresponding features is zero. As discussed in section 4,
these non-zero contributions to the zero-density limit of the phonon spectrum may be related to
results for small but finite carrier densities.

So far, we have restricted ourselves to ω > 0, but the case ω < 0 may be treated quite
analogously. The only non-zero contribution to Im	(q, ω) in the limitµ → E+

0 is obtained for
Ek+q < µ < Ek < ω0 in the frequency range −ω0 < ω < 0 on the curve ωq = −(Eq − E0),
with the result

Im	(q, ω) = −Im	(q, |ω|). (25)

The retarded Green function DR(q, ω + iδ) as the analytical continuation of

D(q, iωn) = 2ω0

(iωn)2 − ω2
0 − 2ω0	(q, iωn)

(26)

in the upper complex half-plane determines the phonon spectral function

B(q, ω) = − 1

π
Im DR(q, ω + i0+). (27)

Using equation (26) and the preceding analysis of 	(q, ω + i0+) in the limit µ → E+
0 , we

may conclude that for ω > 0

B(q, ω) = − 1

π

(2ω0)
2 Im	(q, ω)

(ω2 − ω2
0)

2 + [2ω0 Im	(q, ω)]2
(28)

if ω = Eq − E0 and 0 < ω < ω0, where Im	 is given by equation (24). Otherwise
Im	(q, ω > 0) = 0 and

B(q, ω) = δ(ω − ω0). (29)
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The result for ω < 0, analogous to equations (28), (29) fulfils the relation

B(q, ω) = −B(q,−ω), (30)

in agreement with the general requirement on the imaginary parts of retarded Green functions
of real dynamical variables [32].

3.1.2. Strong-coupling approximation. The equation of motion (4) does not hold exactly in
the S-C regime, as the coordinate xm of the local oscillator at site m implies a shift due to
the local lattice deformation associated with on-site small-polaron formation. In fact, 〈xm〉 =
2g〈c†

mcm〉, which follows from the Lang–Firsov canonical displacement transformation [33].
However, dealing with the limit of negligible charge-carrier concentration, 〈xm〉 = 0 may
again be assumed. On the other hand, the charge-carrier number operator in the electron
picture is equal to the number operator in the small-polaron picture. Therefore, we interpret
the Fermi operators cm1

(τ1), c†
m1
(τ1) in equation (4) as annihilation and creation operators of

small polarons—the correct quasiparticles in the S-C limit. Accordingly, the mixed term on
the rhs of equation (4) will be expressed using the generalized small-polaron Green functions,
defined again by equations (5) and (6), where the operators Cnn(τ ) = gω0xn(τ ) as before, but
the C〈nn′〉 correspond to the nearest-neighbour hopping term in the S-C regime, i.e.,

C〈nn′〉 = t exp{−g(b†
n − bn − b†

n′ + bn′)}. (31)

The formalism of generalized Green functions of small polarons was introduced by
Schnakenberg [34] and applied to self-energy calculations in [29, 30, 35]. Apart from the
C〈nn′〉 given by equation (31), in contrast to previous work we also include Cnn = gω0xn in our
definition of the generalized Green function.

The presence of the coefficients Cnn in the time-ordered exponential in equation (6)
causes the polaronic operators not to commute with the exponent due to the oscillator shift
proportional to c†

ncn . Accordingly, the zeroth-order generalized small-polaron Green function
G0, corresponding to the atomic limit t = 0, is U -dependent because it fulfils the equation of
motion(

− ∂

∂τ1
− η − 2g2ω0Un1n1(τ1)

)
G0(n1τ1; n2τ2; U) = δn1n2δ(τ1 − τ2), (32)

where η = −µ− g2ω0. Using matrix notation [27],

G−1
0 (1; 1′; U) =

(
− ∂

∂τ1
− η − 2g2ω0Un1n1(τ1)

)
δn1n′

1
δ(τ1 − τ ′

1) (33)

represents the matrix inverse to G0.
To obtain a qualitative picture of the phonon spectral function at SC we consider the limit

g2 � 1. According to previous considerations [7, 26], the polaron spectral function in this limit
is dominated by the coherent part representing the polaron band of width 2We−g2

, showing that
small polarons are the correct quasiparticles and that multi-phonon processes in the self-energy
are negligible. Consequently, the Green functions in equation (8) will be expressed by means
of equation (14) using the coherent polaron spectral function

Ap(k, ω) = δ(ω − (ξk + η)), (34)

where ξk = −W̃ cos k with W̃ = 2te−g2
and

[
δ

δUm2m2 (τ2)
G−1(1; 1′; U)

]

U=0

=
[

δ

δUm2m2(τ2)
G−1

0 (1; 1′; U)

]

U=0

(35)

is assumed to be a good approximation.
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Using equation (35) and substituting equation (8) into equation (4),

1

2ω0

(
∂2

∂τ 2
1

− ω2
0

)
D(m1τ1; m2τ2) = δm1m2δ(τ1 − τ2)

− 2g2ω0G(m1τ1; m2τ2)G(m2τ2; m1τ1) (36)

is obtained. Fourier transformation of equation (36), use of the spectral representation of
the polaron Green function based on equations (14), (34), and summation over the fermionic
Matsubara frequencies result in

D(q, iωn) = 2ω0

(iωn)2 − ω2
0

− 2g2ω0
2ω0

(iωn)2 − ω2
0

I (q, iωn),

I (q, iωn) = 1

N

∑

k

∫ ∞

−∞
dω′

∫ ∞

−∞
dε ′ A(k, ω′)A(k + q, ε ′)

f (ω′)− f (ε ′)
ω′ − ε ′ + iωn

.

(37)

The analytical continuation iωn �→ ω = ω + iδ into the upper complex half-plane gives the
retarded Green function DR(q, ω) and, according to the argument at the end of the preceding
section, only ω > 0 is to be considered. After the analytical continuation, the integral
I (q, ω + i0+) on the rhs of equation (37) is analogous to the integral in equation (15), but
the coherent spectrum (34) is limited to a frequency interval well below the value ω = ω0.
The equations determining Im I (q, ω) are simplified compared to equations (19)–(23) since,
according to the small-polaron spectral function (34) used, the spectral weight zk = 1 and the
band energy Ek = ξk − g2ω0. The limiting procedure described in section 3.1.1 gives again
Re I (q, ω) = 0 and

Im I (q, ω) = −�(ω − (ξq − ξ0))

2W̃ | sin q| . (38)

Consequently, the mathematical limit of Im DR(q, ω) for µ → ξ(0)− g2ω0 yields the limiting
shape of the S-C phonon spectral function as

B(q, ω) = δ(ω − ω0)+ 2g2ω2
0

ω2
0 − ω2

�(ω − W̃ (1 − cos q))

πW̃ | sin q| . (39)

The second term on the rhs of equation (39) reflects the energies of the small-polaron band
which in the S-C case lies entirely below the phonon frequency ω0. The divergences occurring
at q = 0, π are again related to the dispersion of the 1D band and result from the failure of the
approximation used at these wavevectors.

3.2. Numerical cluster approach

The numerical approach used here is similar to cluster perturbation theory [23–25] for the one-
electron Green function. For the case of the phonon Green function, it has first been proposed
in [10] and applied to the half-filled, spinless Holstein model in [14]. A previous numerical
cluster study of the renormalization of phonon excitations can be found in [19].

The phonon spectral function B(q, ω) is defined by means of the retarded phonon Green
function which determines the response of the lattice to the external perturbation linearly
coupled to the phonon variables [32]. The values of B(q, ω) may be shown to be proportional
to the transition probabilities per unit time (at T �= 0 averaged with respect to the canonical
distribution) for the transitions induced by the perturbation having frequency ω.
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In our case

B(q, ω) = − 1

π
Im DR(q, ω) (40)

will be calculated at zero temperature, so that the equality

DR(q, ω) = lim
η→0+〈ψ0|xq

1

ω + iη − H
x−q |ψ0〉 (41)

holds for ω > 0. Here |ψ0〉 denotes the ground state of the infinite system, and the
phonon coordinates are given by xq = 1√

N

∑
j x j e−iq j . For the Holstein model (1) we have

B(±q, ω) = B(q, ω).
The spectral function (40) fulfils a sum rule of the form

∫ ∞
0 dωB(q, ω) = 〈ψ0|xq x−q |ψ0〉,

which relates the integrated spectral weight to the lattice elongation in the ground state [31].
The numerical techniques employed in the next sections guarantee that this sum rule holds up
to machine precision. Note that the analytical results of section 3.1 fulfil the usual sum rule for
the phonon spectral function [31] for T → 0.

To proceed, as a first step, we divide the infinite lattice into identical clusters of Nc sites
each, and calculate the cluster Green function DR,(c)

i j (ω) of the Hamiltonian (1) with one
electron and µ = 0 for all non-equivalent pairs of sites i, j = 1, . . . , Nc. For this purpose,
we employ the kernel polynomial method (KPM). Details about the computation of the Green
function by the KPM and its advantages over the widely used Lanczos method can be found
in [36]. The phonon Hilbert space is truncated [36] such that the resulting error of the spectra
is negligible (<10−4), and we have used 1024 moments for the spectra shown below.

In cluster perturbation theory, an approximation for GR(k, ω) of the infinite system is
obtained by taking into account the first-order inter-cluster hopping processes, leading to a
simple Dyson equation [24]. However, in the case of the phonon Green function, it turns out
that the first-order term vanishes, since the electron number per cluster is conserved. As a
result, the cluster approach used here reduces to a Fourier transformation of the cluster Green
function,

DR(q, ω) = 1

Nc

Nc∑

i, j=1

DR,(c)
i j (ω)e−iq(i− j). (42)

Nevertheless, it represents a systematic approximation to the exact Green function, as results
improve with increasing cluster size Nc. Moreover, the method becomes exact both for a
non-interacting system (g = 0), and in the atomic or S-C limit t = 0. We shall see below
that, provided Nc is large enough to capture the physically relevant non-local correlations, the
method yields accurate results for all interesting parameters. Note that the defects mentioned
in [14] originating from the neglect of true long-range order at half-filling (above the Peierls
transition) are absent in the low-density limit considered here.

4. Results

In contrast to previous considerations [5, 19–22] focusing on the renormalization of the
vibration modes and their softening in the I-C regime, the aim of this work is the calculation
of the q-dependent phonon spectral functions in the entire frequency range and all relevant
EP-coupling regimes. Particular attention is paid to the connection of the low-energy features
with the electron (polaron) spectra studied previously [25, 26]. In the analytical calculations of
section 3.1, the primary goal was the determination of the imaginary part of the phonon self-
energy together with an analysis of the coherent and incoherent parts of the electron (polaron)
spectral functions.
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Figure 1. Phonon spectral function B(q,ω) as
obtained by the cluster approach, for α = 0.4 and
different EP couplings λ and cluster sizes Nc. WC
(a) and SC ((b)–(d)) analytical results (- - - -, see
text) have been multiplied by a factor of 10. Also
shown are the bare phonon frequency ω0 (· · · · · ·),
and the polaron band dispersion Eq − E0 (— · —)
as calculated with the method of [37].

For a clearer representation, in the figures, we shall only show the non-trivial lower
excitations in the analytical results, i.e., B(q, ω < ω0) according to equation (28) for WC,
and only the second term on the rhs of equation (39) for SC, respectively. Furthermore, the
analytical data will be rescaled for better visibility (see captions of figures 1 and 2).
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Figure 2. As in figure 1, but for α = 4 and for
different couplings g2. WC (a) and SC ((b)–(d))
(- - - -, see text) analytical results are shown on a
logarithmic scale.

Weak coupling. If g = 0, only the resonance excitation of phonons having the
eigenfrequency ωq = ω0 (the Holstein model (1) neglects any dispersion of the phonon branch)
takes place, and the phonon spectral function is represented by the delta function (29). A non-
zero EP coupling connects the lattice variables to the charge-carrier ones, giving rise to the
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low-frequency (off-resonance) part of the spectral function, which reflects the transitions to the
excited polaronic states (of large or small polarons for WC or SC, respectively). According to
the WC analytical calculations of section 3.1.1, this part of B(q, ω) is given by equations (24),
(28), and reflects the coherent part of the electron spectral function lying in the frequency
range ω < ω0. All this is confirmed in figure 1(a) for α = 0.4, i.e. in the adiabatic regime,
which also shows the polaron band dispersion in the thermodynamic limit from variational
exact diagonalization as in [37].

Contrary to the adiabatic case shown in figure 1(a), in the W-C non-adiabatic case (α = 4)
reported in figure 2(a), the lower excitation in B(q, ω) remains separated from the phonon line
ω = ω0, and corresponds to the entire band of renormalized electron energies given—within
our analytical approach—in section 3.1.1 as the solution of equations (20)–(22).

Both in the adiabatic (figure 1(a)) and the non-adiabatic (figure 2(a)) W-C cases, we find a
very good agreement of the W-C approximation and the results from the cluster approach and
exact diagonalization, respectively, with only minor deviations at large q for α = 4. These
deviations, also affecting the q-dependence of the peak height in the analytical results, are a
result of the shortcomings of the method for q lying near 0 or π (see section 3.1).

An important point is that within the W-C approximation, B(q, ω) is strongly suppressed
for q = 0 and ω < ω0 due to the divergence of equation (24). Hence, the peak in
the numerical results is not reproduced. In contrast, the S-C approximation corresponds to
undamped quasiparticles (polarons) with a strong signal at q = 0 (cf equation (39)). Both these
anomalies, connected with the dispersion in the 1D electron (polaron) band, are a consequence
of the approximations used and have no physical relevance.

Intermediate coupling. The characteristic structure of B(q, ω) consisting of the phonon
line and the low-energy part continues to hold even at stronger EP coupling. Interestingly,
for α = 0.4 at IC (figure 1(b)), we observe level repulsion between the weakly renormalized
electron band and the bare phonon excitation at some wave number qY —determined by the
point in q-space where the curves ω = Eq − E0 and ω = ω0 would intersect—as in
the case of the electronic spectrum [25]. For λ = 1 (figure 1(c)), the critical coupling for
small-polaron formation, the low-energy feature has already separated from the phonon line,
the latter being overlaid by an excited ‘mirror band’ lying an energy ω0 above the polaron
band.

The small-polaron cross-over for α = 4 is determined by the ratio g2, and occurs at
g2 = 1. The phonon spectrum at this critical coupling is shown in figure 2(c). We detect a
clear signature of the small-polaron band with renormalized half-width of about 0.70t , in good
agreement with the S-C result W̃ ≈ 0.74t , but an order of magnitude larger than in the adiabatic
case of figure 1(c). In the latter, the S-C approach predicts W̃ ≈ 0.01t , which is significantly
smaller than the numerical result of about 0.09t . The fact that the analytical S-C results are
more accurate in the non-adiabatic than in the adiabatic I-C regime has been pointed out before
in [26].

Similar to figure 1(c), figure 2(c) features a mirror image of the lowest polaron band—
shifted by ω0—with extremely small spectral weight, which is barely visible for the number of
Chebyshev moments—determining the energy resolution—used here.

In the non-adiabatic case, small polarons exist even at intermediate EP coupling (see [7]
and references therein). Therefore, as underlined by the above comparison of the bandwidths,
the S-C approximation agrees well with the exact results even for g < gc (figure 2(b)) and more
than ever for g = gc (figure 2(c)).

By contrast, for α = 0.4, a large-polaron state exists for λ ≈ λc, and both the W-C
(not shown) and the S-C approximation fail to reproduce the characteristic I-C features of
figures 1(b) and (c).
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Strong coupling. In the S-C limit, the low-energy part is separated from the phonon line
for both the adiabatic and the anti-adiabatic case (figures 1(d) and 2(d)), and the full spectral
function has the form given by equation (39). Moreover, the effect of the polaron band-
narrowing is more pronounced for the adiabatic case, as the small-polaron band at fixed λ
has the half-width W̃ = We−2λt/ω0 . In fact, there is no visible dispersion in the lower or upper
band in figure 1(d). As expected, for these parameters, the S-C approximation fits the numerical
results well.

Another general feature related to the ω0-dependence of the spectral function becomes
apparent if we compare the heights of peaks in figures 1 and 2 (the ordinate scale in figure 1
is about a factor of five larger than that in figure 2). This dependence reflects the fact that the
transition probability at low temperatures is proportional to the density of polaron states in the
coherent band. The latter quantity increases with decreasing bandwidth, and the pronounced
difference between adiabatic and non-adiabatic spectral functions in the S-C limit is evident
from equation (39), where the height of the peaks is dominated by the factor 1/W̃ ∝ e2λt/ω0 .

We conclude that the W-C approximation based on the second-order electron spectral
function and the Hartree approximation for the S-C small-polaron limit are able to grasp the
main qualitative features of the phonon spectral function across the range of model parameters.
However, as discussed in section 1, the numerical calculations do not exactly represent the
limit of negligible charge-carrier concentration, owing to the restricted cluster volume. A
direct comparison with results obtained by carrying out the limiting procedure for the analytical
formulae in section 3.1 would be possible only for N → ∞.

On the other hand, no restrictions concerning the charge-carrier concentration were
imposed in deducing equation (15) in section 3.1.1 and equation (37) in section 3.1.2.
Consequently, the analysis of the latter equations outlined in section 3.1 permits us to discuss
the additional features of spectra for non-negligible carrier concentrations revealed by the
numerical results. First, the discussion in section 3.1.1 strongly suggests that the low-energy
peaks of finite width correspond to the solutions of equations (19)–(23) at fixed wavevector q
if µ lies above the bottom of the electron (polaron) band. Second, at finite concentrations,
the contributions of the incoherent part Aic of the electron (polaron) spectral function to
Im	(q, ω) are not negligible and, in this way, additional maxima above ω = ω0 occurring in
the numerical results may be understood as originating from phonon-assisted processes implied
in Aic. Finally, the non-zero Re	(q, ω) in general causes a shift of the bare phonon line away
from ω = ω0 but, according to numerical results, the latter is not very pronounced in the W-C
and S-C cases.

5. Summary

We have presented results for the phonon spectral function of the Holstein polaron in all
relevant parameter regimes obtained by a reliable and systematic cluster approach similar to
cluster perturbation theory. The characteristic features of the spectra have been discussed and
successfully related to analytical self-energy calculations valid at weak and strong coupling,
respectively. As far as a direct comparison is possible, our findings are in agreement with
previous work on the phonon dynamics.

In particular, we have pointed out the important differences between weak, intermediate
and strong coupling, on the one hand, and between the adiabatic and the non-adiabatic regime,
on the other hand. As revealed by the analytical results, the phonon spectra of the Holstein
polaron are dominated by the bare, unrenormalized phonon line and the renormalized polaron
band dispersion. At intermediate coupling, additional features such as level repulsion and
mirror images of the polaron band have been observed. Together with previous studies of
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the electron spectral function and the renormalization of phonon energies, this work provides
a fairly complete picture of the spectral properties of the one-dimensional Holstein polaron,
which has been in the focus of intensive investigations over several decades due to the wide-
spread relevance of polaron physics.
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