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Overview of continuous-time QMC methods



Continuous vs. discrete imaginary time

D dimensional quantum systems live in D+ 1 dimensions.
The additional dimension is the imaginary time axis τ = it ∈ [0, 1

kBT
].

Discretizing τ = l∆τ (∆τ = β
L

) permits the Suzuki-Trotter decomposition

e−∆τ(Ĥ0+Ĥ1) = e−∆τĤ0 e−∆τĤ1 + O(∆τ2)

useful to calculate expectation values of the form∫
dx 〈x| e−βĤ |x〉 ≈

L∏
l=1

∫
dxl

∫
dyl 〈xl| e−∆τĤ0 |yl〉 〈yl|e−∆τĤ1 |xl〉

Examples: path integral (limit ∆τ→ 0), auxiliary-field QMC (finite ∆τ)

Error: ignore if smaller than statistical errors, or extrapolate to ∆τ = 0.

Desirable to use continuous time.
Overview of continuous-time QMC methods
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Some milestones for continuous-time QMC methods

Gull et al., Rev. Mod. Phys. 2011

Stochastic Series Expansion: Taylor expansion of e−βĤ Handscomb, Sandvik et al.

Spins and bosons. =⇒ M. Troyer

Diagrammatic Monte Carlo for bosons. Prokof’ev, Svistunov, et al.

Diagrammatic Monte Carlo in the thermodynamic limit. Prokof’ev, Troyer, et al.

=⇒ L. Pollet

Continuous-time methods for fermions: Rombouts

– Interaction expansion (CT-INT) Rubtsov et al.

– Interaction expansion (CT-INT) Rubtsov et al.

– Hybridization expansion (CT-HYB) Werner et al.

– Interaction expansion with auxiliary fields (CT-AUX) Gull et al.

Discrete-time auxiliary-field QMC is central for lattice fermion models.
Scales linearly with inverse temperature. Blankenbecler et al.

=⇒ F. Assaad

This talk: CT-INT, for CT-HYB and CT-AUX see Gull et al., RMP 2011
Overview of continuous-time QMC methods
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CT-INT for the Hubbard model



Starting point: partition function

We consider a system with Hamiltonian

Ĥ = Ĥ0

hopping

+ Ĥ1

interaction

The grand-canonical partition function is given by (Ĥ0 includes −µN̂)

Z = Tr
[
e−βĤ

]
, β =

1

kBT

A series expansion gives

Z

Z0
=

∞∑
n=0

(−1)n

n!

∫β
0

dτ1 . . .

∫β
0

dτn

〈
Tτ Ĥ1(τ1) · · · Ĥ1(τn)

〉
0

The time-dependent interaction operators are defined as

Ĥ
(D)
1 (τ) = eτĤ0 Ĥ1 e

−τĤ0 ≡ Ĥ1(τ)

Starting point for CT-INT

CT-INT for the Hubbard model
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Assuming a Hubbard interaction

For simplicity, we assume an Hubbard interaction

Ĥ1(τ) = U
∑
i

n̂i↑ n̂i↓

To avoid a (trivial) sign problem, we rewrite Ĥ1 as

Ĥ1 = w
∑
i

∑
s=±1

Ising spins

[n̂i↑ − α↑(s)] [n̂i↓ − α↓(s)] , w =
U

2

The dynamical Ising spins s are used to preserve the SU(2) spin symmetry.
Static values ασ are also possible. Rubtsov et al., PRB 2005

CT-INT for the Hubbard model
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Short-hand notation
To lighten the notation, we introduce

v = {x,y; s} , w(v) = U/2

For the Hubbard model

x = {i, τ, ↑}, y = {i, τ, ↓}
onsite, equal times, opposite spin

, w = U/2

independent ofv

With
ĥ1(v) = [n̂i↑ − α↑(s)] [n̂i↓ − α↓(s)]

we can write the interaction as∫β
0

dτ Ĥ1(τ) =

∫β
0

dτ
∑
i

∑
s=±1

wĥ1(v) = w
vertex weight

∑
v

ĥ1(v)

CT-INT for the Hubbard model
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Diagrammatic expansion of the partition function

Inserting the above form for the interaction, we have

Z

Z0
=

∞∑
n=0

(−1)n

n!

∫β
0

dτ1 . . .

∫β
0

dτn

〈
Tτ Ĥ1(τ1) · · · Ĥ1(τn)

〉
0

=

∞∑
n=0

(−1)n

n!
wn

∑
v1

· · ·
∑
vn

〈
Tτ ĥ1(v1) · · · ĥ1(vn)

〉
0

Each operator ĥ1(v) corresponds to a vertex, and we have to sum over all
expansion orders n, and over the internal variables v = {x,y; s} of the vertices.

Idea of CT-INT:

Stochastic summation of series by sampling vertex configurations.

CT-INT for the Hubbard model
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Partition function as a sum over vertex configurations

We can write the diagrammatic expansion

Z

Z0
=

∞∑
n=0

(−1)n

n!
wn

∑
v1

· · ·
∑
vn

〈
Tτ ĥ1(v1) · · · ĥ1(vn)

〉
0

as a sum over unordered vertex configurations Cn.

With the notation ∑
n

∑
v1

· · ·
∑
vn

≡
∑
Cn

we obtain

Z

Z0
=

∑
Cn

(−w)n
〈
Tτ ĥ1(v1) · · · ĥ1(vn)

〉
0

configuration weight

=
∑
Cn

W(Cn)

A configuration Cn is specified by the variables of all n vertices:

{v1, . . . , vn}

CT-INT for the Hubbard model
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Configuration weight as a determinant

Wick’s Theorem: 〈
Tτ ĥ1(v1) · · · ĥ1(vn)

〉
0
= detM(Cn)

can be expressed in terms of contractions 〈c†xcy〉0.
with the 2n× 2n matrix α(v) = α↑(s),α↓(s)

M(Cn)=


G0(x1, x1) − α(v1) G0(x1,y1) · · · G0(x1,yn)

G0(y1, x1) G0(y1,y1) − α(v1) · · · G0(y1,yn)
...

...
. . .

...
G0(xn, x1) G0(xn,y1) · · · G0(xn,yn)
G0(yn, x1) G0(yn,y1) · · · G0(yn,yn) − α(vn)


containing the non-interacting Green function G0(x,y) = 〈c†xcy〉0.

The Hubbard model conserves spin, 〈c†↑c↓〉0 = 〈c†↓c↑〉0 = 0, so that

M(Cn) =

[
M↑(Cn) 0

0 M↓(Cn)

]
Therefore, detM(Cn) = detM↑(Cn)

n×n

detM↓(Cn)

n×n

.

CT-INT for the Hubbard model
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Determinants correspond to the sum over all Feynman diagrams

For the Hubbard model, the partition function can hence be written as

Z

Z0
=

∑
Cn

(
−
U

2

)n
detM↑(Cn) detM↓(Cn)

The determinants correspond to a summation of all Feynman diagrams
(connected and disconnected) for a given vertex configuration.

n = 1:

detM↑(C1)detM↓(C1) = G
0(x1, x1)G

0(y1,y1)

n = 2:

detM↑(C2)detM↓(C2) = [G0(x1, x1)G
0(x2, x2) −G

0(x1, x2)G
0(x2, x1)] [( x 7→ y )]

The expansion converges for finite fermionic systems at T > 0.

Although based on a weak-coupling expansion, the method is exact.

CT-INT for the Hubbard model
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Stochastic summation using a Markov process

The sum over configurations can be carried out stochastically. In this way, we take
into account configurations according to their statistical weight.

The variables appearing in∑
Cn

≡
∑
n

∑
v1

· · ·
∑
vn

=
∑
n

∑
x1,y1,s1

· · ·
∑

xn,yn,sn

can be carried out by adding/removing single vertices.

Monte Carlo updates:

add a vertex (n 7→ n+ 1)

remove a vertex (n 7→ n− 1)

Optional:

Move vertices in space and/or time.

Flip Ising spins.

Add/remove multiple vertices.

CT-INT for the Hubbard model
13 / 37



Configurations can be sampled using the Metropolis-Hastings algorithm

Partition function:
Z

Z0
=

∑
Cn

W(Cn)

configuration weight

Given a configuration C, we propose a new configuration C ′.

In the Metropolis-Hastings algorithm, the acceptance probability is

P(C 7→ C ′) = min

[
1,
W(C ′)

W(C)

]

P(C 7→ C ′) = min

[
1,
W(C ′)

W(C)

T(C ′ 7→ C)

T(C 7→ C)

]
If W(C ′) > W(C), the move is always accepted.
If W(C ′) < W(C), it is accepted with probability P =W(C ′)/W(C).

We also have to account for the proposal probabilities.

CT-INT for the Hubbard model
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Update probabilities for the Hubbard model

Ratio of weights:

W(Cn+1)

W(Cn)
=

(
−U2

)n+1(
−U2

)n ∏
σ

detMσ(Cn+1)

detMσ(Cn)
= −

U

2

∏
σ

detMσ(Cn+1)

detMσ(Cn)

W(Cn−1)

W(Cn)
=

(
−U2

)n−1(
−U2

)n ∏
σ

detMσ(Cn−1)

detMσ(Cn)
= −

2

U

∏
σ

detMσ(Cn−1)

detMσ(Cn)

Proposal probabilities:

T(Cn 7→ Cn+1) =
1

L

1

β

1

2
T(Cn+1 7→ Cn) =

1

n+ 1

T(Cn−1 7→ Cn) =
1

L

1

β

1

2
T(Cn 7→ Cn−1) =

1

n

Update probabilities:

P(C 7→ C ′) = min

[
1,
W(C ′)

W(C)

T(C ′ 7→ C)

T(C 7→ C)

]

P(Cn 7→ Cn+1) = min

[
1,−

ULβ

n+ 1

∏
σ

detMσ(Cn+1)

detMσ(Cn)

]

P(Cn 7→ Cn−1) = min

[
1,−

n

ULβ

∏
σ

detMσ(Cn−1)

detMσ(Cn)

]

CT-INT for the Hubbard model
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Measuring observables

Expectation value:

〈Ô〉 = 1

Z
Tr
[
e−βĤÔ

]
=
Z0

Z

∑
Cn

(−w)n〈Tτĥ1(v1) · · · ĥ1(vn) Ô〉0

=
Z0

Z

∑
Cn

(−w)n det M̃(Cn)

=
Z0

Z

∑
Cn

(−w)n detM(Cn)
det M̃(Cn)

detM(Cn)

〈〈Ô〉〉Cn

=
Z0

Z

∑
Cn

W(Cn)〈〈Ô〉〉Cn

=

∑
Cn
W(Cn)〈〈Ô〉〉Cn∑
Cn
W(Cn)

CT-INT for the Hubbard model
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Observables can be measured exploiting Wick’s Theorem

Single-particle Green function:

G(x,y) = 〈c†xcy〉 =
∑
Cn
Wn〈〈G(x,y)〉〉Cn∑

Cn
Wn

〈〈G(x,y)〉〉Cn =

det

 M(Cn)

G0(x, x1) G0(x,y1) . . .

G0(x1,y)
G0(y1,y)

...
G0(x,y)


detM(Cn)

For each configuration Cn, Wick’s Theorem holds: Luitz & Assaad, PRB 2010

〈〈n̂i↑n̂i↓〉〉Cn = 〈〈c†i↑ci↑c
†
i↓ci↓〉〉Cn = 〈〈c†i↑ci↑〉〉〈〈c

†
i↓ci↓〉〉− 〈〈c

†
i↑ci↓〉〉〈〈c

†
i↓ci↑〉〉

⇒ Higher Green functions can be obtained from 〈〈c†xcy〉〉.

CT-INT for the Hubbard model
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Absence of a sign problem for the 1D Hubbard model

Assaad & Lang, PRB 2007

At half filling, SU(2) spin symmetry + particle-hole symmetry
ensure absence of a sign problem, because

detM↑(Cn) = (−1)n detM↓(Cn)

so that

W(Cn) =

(
−
U

2

)n
detM↑(Cn) detM↓(Cn) =

(
+
U

2

)n
[detM↓(Cn)]

2

For general filling 〈n〉, a sign problem can be avoided by setting

α↑ =
1
2 〈n〉+ δs

α↓ =
1
2 〈n〉− δs

with s = ±1 and δ > 0.

A moderate sign problem can be handled by reweighting:

W(Cn) 7→ |W(Cn)| , 〈Ô〉 = 〈Ô sgn(W)〉
〈sgn(W)〉

CT-INT for the Hubbard model
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Numerical implementation



Overview

Model: G0(x,y), vertex

Use table of G0 on a fine τ grid.

Exploit translational symmetry in space and time.

G0(x,y) = G0(i− j, τ− τ ′)

Monte Carlo configuration: Cn

List of vertices containing variables v and α for each vertex.

Associated with Cn is the matrix M−1(Cn),
required to calculate acceptance probabilities and G(x,y).

Updates: addition/removal of vertices

Explicit Ising spin flips are inexpensive and useful.

Warmup:

Start with no vertices.

Add/remove until equilibrium is reached.

Numerical implementation
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Fast updates can be used to reduce numerical effort

Direct calculation of

M−1(Cn) , detM(Cn) ,
detM ′

detM

is numerically expensive, scaling with (dimM)3.

Adding/removing a single vertex is a small change.
M(Cn) and M(Cn±1) only differ by one column and row.

The smallness of the changes can be exploited using so-called fast updates.
FU’s are at the heart of auxiliary-field QMC. =⇒ F. Assaad, Thursday

FU’s rely on formulas from matrix theory. Luitz, PhD Thesis, University of Würzburg

det

[
M u

vT z

]
= detM det

[
z− vTM−1u

]
det

[
M ~u
~vT z

]
= detM det

[
z−~vTM−1~u

]
M: n× n , u, v : n×m , z: m×m; m� n M: n× n ,
~u,~v : n× 1 , z: 1× 1;

Simplest case: m = 1 (for example, in the Hubbard model).

Numerical implementation
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Adding a vertex

We have to calculate

P(Cn 7→ Cn+1) = min

[
1,−

ULβ

n+ 1

∏
σ

detMσ(Cn+1)

detMσ(Cn)

Hubbard model

]

The matrix Mσ(Cn+1) is given by

Mσ(Cn+1) =

 Mσ(Cn)

G0(xn+1, x1) G0(xn+1, x2) . . .

G0(x1, xn+1)
G0(x2, xn+1)

...
G0(xn+1, xn+1) − α(vn+1)


which matches the structure of

det

[
M ~u
~vT z

]
Consequently, we have

detMσ(Cn+1)

detMσ(Cn)
= det

[
z−~vTM−1

σ (Cn) ~u
]

Numerical implementation
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Removing a vertex

P(Cn 7→ Cn−1) = min

[
1,−

n

ULβ

∏
σ

detMσ(Cn−1)

detMσ(Cn)

]
We consider removing the last vertex, and write

Mσ(Cn) =

 Mσ(Cn−1)

G0(xn, x1) G0(xn, x2) . . .

G0(x1, xn)
G0(x2, xn)

...
G0(xn, xn) − α(vn)


to obtain

detMσ(Cn−1)

detMσ(Cn)
= det

[
z−~vTM−1

σ (Cn−1) ~u
]
= [M−1

σ (Cn)]nn

Upon acceptance, M−1 can be updated efficiently [O(n2)] using the
Sherman-Morrison formula:

(M+ ~u~vT )−1 =M−1 −
M−1 ~u~vTM−1

1 +~vTM−1 ~u

Numerical implementation
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Single-particle Green function

Knowledge of Gσ(x,y) allows to calculate other observables via Wick’s Theorem.

〈〈Gσ(x,y)〉〉 =

det

 Mσ(Cn)

G0(x, x1) G0(x, x2) . . .

G0(x1,y)
G0(x2,y)

...
G0(x,y)


detMσ(Cn)

= det
[
z−~vTM−1~u

]
= G0(x,y) −

n∑
r,s=1

G0(x, xr)[M
−1
σ (Cn)]rsG

0(xs,y)

A similar equation can be obtained for the Matsubara Green function G(k, iωm),
and makes CT-INT an excellent choice for DMFT calculations.

Numerical implementation
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Numerical effort

Dominated by updates, which scale with O(n2); n: expansion order

To obtain independent configurations typically requires n updates.
=⇒ CPU time scales as O(n3).

Average expansion order:

〈n〉 =
〈∑

v

wĥ1(v)

〉
=

∫β
0

dτ〈Ĥ1(τ)〉 ∼ βLU

=⇒ CPU time ∼ (βLU)3

– Auxiliary-field QMC scales linearly with β. =⇒ F. Assaad, Thursday
– Weak-coupling problems can be solved on large systems.

As with other QMC methods, parallelization is straight forward.

Numerical implementation
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CT-INT for more general models



Functional integral representation of the partition function

The partition function of a system with Hamiltonian Ĥ can be written as

Z =

∫
D(c̄, c)e−S[c̄,c]

with the action

S[c̄, c] =

∫β
0

dτ[c̄ ∂τ c+H(c̄, c)]

Assuming a Hamiltonian of the form

Ĥ(c†, c) =
∑
ij

(hij − µδij)c
†
icj +

∑
ijkl

Vijklc
†
ic
†
jckcl

we have

S[c̄, c] =

∫β
0

dτ

∑
ij

c̄i(τ)[(∂τ − µ)δij + hij]cj(τ) +
∑
ijkl

Vijklc̄i(τ)c̄j(τ)ck(τ)cl(τ)


Hence, the interaction is nonlocal in space, but local in time.

CT-INT for more general models
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General fermionic model defined in terms of an action

Rubtsov et al., PRB 2005

Instead of starting from a Hamiltonian, we consider a completely general action:

S =

∫∫
dxdy c(x) [G0(x,y)]−1 c(y)

S0

+

∫∫∫∫
dxdx ′dydy ′ V(x, x ′,y,y ′) c(x)c(x ′) c(y)c(y ′)

S1

Most general case:

x = {i, τ,σ} , x ′ = {i ′, τ ′,σ ′} , y = {j, τ,σ} , y ′ = {j ′, τ ′,σ ′}

Non-local interactions in space and time. In practice: τ = τ ′, τ̄ = τ̄ ′.

Applications:

Effective, retarded interactions (phonons, downfolding).

Impurity problems, and dynamical mean-field theory (bath encoded in G0).

CT-INT for more general models
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CT-INT based on perturbation expansion

Given the form

S = S0 + S1

we have

Z =

∫
D(c̄, c)e−S0[c̄,c]−S1[c̄,c]

= Z0〈e−S1[c̄,c]〉0 , 〈X〉0 =
1

Z0

∫
D(c̄, c)e−S0[c̄,c]X

A perturbation expansion gives

Z

Z0
= 〈e−S1[c̄,c]〉0 =

∑
n

(−1)n

n!

∫∫∫∫
dx1dx ′1dy1dy ′1 · · ·

∫∫∫∫
dxndx ′ndyndy ′n

× V(x1, x ′1,y1,y ′1) · · ·V(xn, x ′n,yn,y ′n)

× 〈c(x1)c(x
′
1)c(y1)c(y

′
1) · · · c(xn)c(x ′n)c(yn)c(y ′n)〉0

CT-INT for more general models
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CT-INT can in principle be applied to a general fermionic action

The partition function can be cast into the form

Z

Z0
=

∑
Cn

(−1)nw(v1) · · ·w(vn) 〈h1(v1) · · ·h1(vn)〉0

=
∑
Cn

(−1)nw(v1) · · ·w(vn) detM(Cn)

A vertex is characterized by w(v) = V(x, x ′,y,y ′), v = {x,y, x ′,y ′; s}, and

h(v) = [c(x)c(x ′) − α(x, x ′, s)][c(y)c(y ′) − α(y,y ′, s)]

The Monte Carlo sampling is over all variables of the vertex, and n.

Addition/removal of vertices is sufficient.

Updates and measurements (almost) independent of model.

CT-INT for more general models
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Application to electron-phonon models



Example for a problem with a retarded interaction

The Holstein model describes the coupling of electrons to harmonic oscillators:

H = −t
∑
〈ij〉σ

(
c†iσcjσ + H.c.

)
free electrons

+
∑
i

(
1

2M
P̂2
i +

K

2
Q̂2
i

)
free oscillators

−g
∑
i

Q̂i (n̂i − 1)

Phonon frequency: ω0 =
√
K
M

.

Partition function as path-integral:

Z =

∫
D(c̄, c)e−S0[c̄,c]

electrons

∫
D(q)e−Sep[c̄,c,q]

electron−phonon

Sep[c̄, c,q] =

∫β
0

dτ
∑
i

[
M

2
{∂τqi(τ)}

2 +
K

2
q2
i(τ) + gqi(τ){ni(τ) − 1}

]

More general fermion-boson models can also be considered.

Application to electron-phonon models
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CT-INT for the Holstein model
Assaad & Lang, PRB 2007

Integration over phonon coordinates qi(τ) gives the fermionic action

S1(c̄, c) = −

∫β
0

dτ

∫β
0

dτ ′
∑
i

[ni(τ) − 1]D(τ− τ ′)[ni(τ
′) − 1]

corresponding to a retarded (non-local in time) electron-electron interaction

H1(τ) = −
g2

4K

∫β
0

dτ ′
∑
i

∑
σσ′

∑
s

P(τ− τ ′) [niσ(τ) − α(s)] [niσ′(τ ′) − α(s)]

interaction range: ∆ ∼ 1
ω0

ω0 →∞: P(τ)→ δ(τ),

Hubbard interaction U = −g
2

K
.

0.0

0.1

0.2

0.3

0.4

0.5

-β/2 0 β/2

P
(τ
)

τ

ω0 = 0.1t
ω0 = 1.0t

Application to electron-phonon models
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Structure of the vertices

Vertex variables:
v = {i, τ, τ ′,σ,σ ′; s}

Weight depends on v:

w(v) = −
g2

4K
P(τ− τ ′)

Sample τ− τ ′ according to P(τ− τ ′) =⇒ T(Cn 7→ Cn+1) ∼ P(τ− τ
′).

Vertices are non-local in time:

Application to electron-phonon models
31 / 37



Peierls transition in the spinless Holstein model

Hohenadler, Fehske, Assaad, PRB 2011

Density-density correlations 〈n̂rn̂0〉:

−0.2

−0.1

0.0

0.1

0.2

0.3

0 2 4 6 8 10 12 14 16

〈n̂
r
n̂
0
〉

r

λ = 0.5
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0.0

0.1

0.2

0.3

0 2 4 6 8 10 12 14 16

〈n̂
r
n̂
0
〉

r

λ = 0.5

λ = 1.0

λ < λc: (metallic phase)

〈nrn0〉 = −
Kρ

2π2r2
+

A

r2Kρ
cos(2kFx)

λ > λc: (Peierls phase)

Long-range charge order at T = 0, Kρ = 0.

Application to electron-phonon models
32 / 37



Application to topological insulators



Topological insulators in two dimensions
Hasan & Kane, RMP 2010

Spin-orbit coupling gives rise to topological insulators.
Kane and Mele, PRL 2005; Bernevig et al., PRL 2006

Bulk band gap.

σxys = ν e
2

2π .

Helical edge states.

Protected/stable against disorder & weak interactions.

Experimental realisation: Bernevig et al., PRL 2006; König et al., Science 2007
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CT-INT study of correlated edge states
Hohenadler, Lang, Assaad, PRL 2011

Bulk is gapped; edge states determine low-energy physics
=⇒ consider electronic interactions only at the edge.

Effective, 1D action can be simulated using CT-INT, 〈n〉 ∼ (βLU)3.

S =−
∑
rr′σ

∫∫β
0

dτdτ ′ c̄rσ(τ)
[
G0
σ(r− r

′, τ− τ ′)
]−1

cr′σ(τ
′)

S0

+U
∑
r

∫β
0

[
nr↑(τ) −

1
2

] [
nr↓(τ) −

1
2

]
S1
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Correlation effects on helical edge states

Hohenadler & Assaad, PRB 2012
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Summary

CT-INT is based on a series expansion in the interaction H1.
Series convergent for finite systems at T > 0.

Action-based formalism permits application to a variety of models.

Configuration space consists of vertices. Updates: addition/removal.

Method scales as (βLV)3.

Sign problem depends on the model.
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Thank you for your attention.
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