Continuous-Time Quantum Monte Carlo

Martin Hohenadler

Institut für Theoretische Physik und Astrophysik Universität Würzburg

Fall School on Advanced Algorithms for Correlated Quantum Matter Würzburg, October 1, 2013

Outline

- 1. Overview of continuous-time quantum Monte Carlo methods
- 2. CT-INT for the Hubbard Hamiltonian *Derivation of the algorithm.*
- 3. Numerical implementation *Updates, warmup, etc.*
- 4. CT-INT for more general models *Models defined by an action.*
- 5. Application to electron-phonon models Fermionic model with retarded interaction.
- 6. Application to topological insulators *Effective model of edge states.*

Overview of continuous-time QMC methods

Continuous vs. discrete imaginary time

■ D dimensional quantum systems live in D + 1 dimensions. The additional dimension is the imaginary time axis $\tau = it \in [0, \frac{1}{k_B T}]$.

 \blacksquare Discretizing $\tau=l\Delta\tau~(\Delta\tau=\frac{\beta}{L})$ permits the Suzuki-Trotter decomposition

$$e^{-\Delta\tau(\hat{H}_0+\hat{H}_1)}=e^{-\Delta\tau\hat{H}_0}\,e^{-\Delta\tau\hat{H}_1}+\mathfrak{O}(\Delta\tau^2)$$

useful to calculate expectation values of the form

$$\int dx \, \langle x | \, e^{-\beta \, \hat{H}} \, | x \rangle \, \approx \prod_{l=1}^L \int dx_l \! \int \! dy_l \, \langle x_l | \, e^{-\Delta \tau \, \hat{H}_0} | y_l \rangle \, \langle y_l | e^{-\Delta \tau \, \hat{H}_1} \, | x_l \rangle$$

Examples: path integral (limit $\Delta \tau \to 0$), auxiliary-field QMC (finite $\Delta \tau$)

■ Error: ignore if smaller than statistical errors, or extrapolate to $\Delta \tau = 0$.

Some milestones for continuous-time QMC methods

• Stochastic Series Expansion: Taylor expansion of $e^{-\beta \hat{H}}$ Spins and bosons.

Gull et al., Rev. Mod. Phys. 2011

Handscomb, Sandvik et al.

 \implies M. Troyer

■ Diagrammatic Monte Carlo for bosons.

■ Diagrammatic Monte Carlo in the thermodynamic limit.

Prokof'ev, Svistunov, et al.

Prokof'ev, Troyer, et al.

 \Longrightarrow L. Pollet

Continuous-time methods for fermions:

Rombouts

- Interaction expansion (CT-INT)
- Interaction expansion (CT-INT)
- Hybridization expansion (CT-HYB)
- Interaction expansion with auxiliary fields (CT-AUX)

Rubtsov et al.

Rubtsov et al

Werner et al.

Gull et al.

Discrete-time auxiliary-field QMC is central for lattice fermion models.
 Scales linearly with inverse temperature.

Blankenbecler et al.

⇒ F. Assaad

talk: CT-INT, for CT-HYB and CT-AUX see Gull et al., RMP 2011

References

Key papers for the CT-INT method

- Rubtsov, Savkin, Lichtenstein, Phys. Rev. B 72, 035122 (2005)
- Assaad & Lang, Phys. Rev. B 76, 035116 (2007)

Review article

 Gull, Millis, Lichtenstein, Rubtsov, Troyer, Werner Rev. Mod. Phys. 83, 349 (2011)

CT-INT for the Hubbard model

Starting point: partition function

We consider a system with Hamiltonian

$$\hat{H} = \underbrace{\hat{H}_0}_{\text{hopping}} + \underbrace{\hat{H}_1}_{\text{interaction}}$$

The grand-canonical partition function is given by $(\hat{H}_0 \text{ includes } -\mu \hat{N})$

$$Z = \text{Tr}\left[e^{-\beta \hat{H}}\right]$$
 , $\beta = \frac{1}{k_B T}$

A series expansion gives

$$\frac{Z}{Z_0} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_0^{\beta} d\tau_1 \dots \int_0^{\beta} d\tau_n \, \left\langle T_{\tau} \, \hat{H}_1(\tau_1) \dots \hat{H}_1(\tau_n) \right\rangle_0$$

The time-dependent interaction operators are defined as

$$\hat{H}_{1}^{(D)}(\tau) = e^{\tau \hat{H}_{0}} \, \hat{H}_{1} \, e^{-\tau \hat{H}_{0}} \equiv \hat{H}_{1}(\tau)$$

Starting point for CT-INT

Assuming a Hubbard interaction

For simplicity, we assume an Hubbard interaction

$$\hat{H}_1(\tau) = U \sum_{\mathbf{i}} \widehat{n}_{\mathbf{i}\uparrow} \, \widehat{n}_{\mathbf{i}\downarrow}$$

To avoid a (trivial) sign problem, we rewrite \hat{H}_1 as

$$\hat{H}_1 = w \sum_{i} \sum_{\substack{s=\pm 1 \\ \text{lsing spins}}} \left[\widehat{n}_{i\uparrow} - \alpha_{\uparrow}(s) \right] \left[\widehat{n}_{i\downarrow} - \alpha_{\downarrow}(s) \right] \text{,} \quad w = \frac{U}{2}$$

The dynamical Ising spins s are used to preserve the SU(2) spin symmetry. Static values α_{σ} are also possible. Rubtsov et al., PRB 2005

Short-hand notation

To lighten the notation, we introduce

$$v = \{x, y; s\}, \quad w(v) = U/2$$

For the Hubbard model

$$x = \{i, \tau, \uparrow\}, \quad y = \{i, \tau, \downarrow\}, \quad w = U/2$$
onsite, equal times, opposite spin independent of v

With

$$\hat{h}_1(v) = [\widehat{n}_{i\uparrow} - \alpha_{\uparrow}(s)] [\widehat{n}_{i\downarrow} - \alpha_{\downarrow}(s)]$$

we can write the interaction as

$$\int_0^\beta d\tau\, \hat{H}_1(\tau) = \int_0^\beta d\tau\, \sum_i \sum_{s=\pm 1} w\, \hat{h}_1(\nu) = \underbrace{w}_{\text{vertex weight}} \, \sum_{\nu} \, \hat{h}_1(\nu)$$

Diagrammatic expansion of the partition function

Inserting the above form for the interaction, we have

$$\begin{split} \frac{Z}{Z_0} &= \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_0^{\beta} d\tau_1 \dots \int_0^{\beta} d\tau_n \, \left\langle T_{\tau} \, \hat{H}_1(\tau_1) \dots \hat{H}_1(\tau_n) \right\rangle_0 \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} w^n \sum_{\nu_1} \dots \sum_{\nu_n} \left\langle T_{\tau} \, \hat{h}_1(\nu_1) \dots \hat{h}_1(\nu_n) \right\rangle_0 \end{split}$$

Each operator $\hat{h}_1(\nu)$ corresponds to a vertex, and we have to sum over all expansion orders n, and over the internal variables $\nu = \{x, y; s\}$ of the vertices.

Idea of CT-INT:

Stochastic summation of series by sampling vertex configurations.

Partition function as a sum over vertex configurations

We can write the diagrammatic expansion

$$\frac{Z}{Z_0} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} w^n \sum_{\nu_1} \cdots \sum_{\nu_n} \left\langle T_{\tau} \ \hat{h}_1(\nu_1) \cdots \hat{h}_1(\nu_n) \right\rangle_0$$

as a sum over unordered vertex configurations C_n .

With the notation

$$\sum_{n} \sum_{\nu_{1}} \cdots \sum_{\nu_{n}} \equiv \sum_{C_{n}}$$

we obtain

$$\frac{Z}{Z_0} = \sum_{C_n} \left(-w \right)^n \left\langle T_\tau \, \hat{h}_1(\nu_1) \cdots \hat{h}_1(\nu_n) \right\rangle_{\underline{0}} = \sum_{C_n} W(C_n)$$

A configuration C_n is specified by the variables of all n vertices:

$$\{v_1,\ldots,v_n\}$$

Configuration weight as a determinant

Wick's Theorem:

$$\left\langle T_\tau \, \hat{h}_1(\nu_1) \cdots \hat{h}_1(\nu_n) \right\rangle_0 \, = \text{det} \, M(C_n)$$

can be expressed in terms of contractions $\langle c_x^{\dagger} c_u \rangle_0$. with the $2n \times 2n$ matrix

$$\begin{aligned} &\alpha(\nu) = \alpha_{\uparrow}(s), \, \alpha_{\downarrow}(s) \\ &\cdots & G^{0}(x_{1}, y_{\pi}) \\ &\cdots & G^{0}(y_{1}, y_{\pi}) \end{aligned}$$

$$M(C_n) = \left[\begin{array}{cccc} G^0(x_1,x_1) - \alpha(\nu_1) & G^0(x_1,y_1) & \cdots & G^0(x_1,y_n) \\ G^0(y_1,x_1) & G^0(y_1,y_1) - \alpha(\nu_1) & \cdots & G^0(y_1,y_n) \\ \vdots & \vdots & \ddots & \vdots \\ G^0(x_n,x_1) & G^0(x_n,y_1) & \cdots & G^0(x_n,y_n) \\ G^0(y_n,x_1) & G^0(y_n,y_1) & \cdots & G^0(y_n,y_n) - \alpha(\nu_n) \end{array} \right]$$

containing the non-interacting Green function $G^0(x, y) = \langle c_x^{\dagger} c_y \rangle_0$.

The Hubbard model conserves spin, $\langle c_{\uparrow}^{\dagger} c_{\downarrow} \rangle_0 = \langle c_{\downarrow}^{\dagger} c_{\uparrow} \rangle_0 = 0$, so that

$$M(C_n) = \begin{bmatrix} M_\uparrow(C_n) & 0 \\ 0 & M_\downarrow(C_n) \end{bmatrix}$$

Therefore, $\det M(C_n) = \det M_{\uparrow}(C_n) \det M_{\downarrow}(C_n)$.

Determinants correspond to the sum over all Feynman diagrams

For the Hubbard model, the partition function can hence be written as

$$\frac{Z}{Z_0} = \sum_{C_{\mathfrak{n}}} \left(-\frac{U}{2} \right)^{\mathfrak{n}} \det M_{\uparrow}(C_{\mathfrak{n}}) \det M_{\downarrow}(C_{\mathfrak{n}})$$

■ The determinants correspond to a summation of all Feynman diagrams (connected and disconnected) for a given vertex configuration.

$$n = 1$$
:

$$\text{det}\, M_\uparrow(C_1)\text{det}\, M_\downarrow(C_1) = G^0(x_1,x_1)G^0(y_1,y_1)$$

n = 2:

$$\det M_{\uparrow}(C_2) \det M_{\downarrow}(C_2) = [G^0(x_1,x_1)G^0(x_2,x_2) - G^0(x_1,x_2)G^0(x_2,x_1)] \, [(\, x \mapsto y \,)]$$

- The expansion converges for finite fermionic systems at T > 0.
- Although based on a weak-coupling expansion, the method is exact.

Stochastic summation using a Markov process

The sum over configurations can be carried out stochastically. In this way, we take into account configurations according to their statistical weight.

The variables appearing in

$$\sum_{C_n} \equiv \sum_{n} \sum_{\nu_1} \cdots \sum_{\nu_n} = \sum_{n} \sum_{x_1, y_1, s_1} \cdots \sum_{x_n, y_n, s_n}$$

can be carried out by adding/removing single vertices.

Monte Carlo updates:

- \blacksquare add a vertex $(n \mapsto n+1)$
- \blacksquare remove a vertex $(n \mapsto n-1)$

Optional:

- Move vertices in space and/or time.
- Flip Ising spins.
- Add/remove multiple vertices.

Configurations can be sampled using the Metropolis-Hastings algorithm

Partition function:

$$\frac{Z}{Z_0} = \sum_{C_n} \underbrace{W(C_n)}_{\text{configuration weight}}$$

Given a configuration C, we propose a new configuration C'.

In the Metropolis-Hastings algorithm, the acceptance probability is

$$P(C \mapsto C') = \min \left[1, \frac{W(C')}{W(C)}\right]$$

$$P(C \mapsto C') = \min \left[1, \frac{W(C')}{W(C)} \frac{T(C' \mapsto C)}{T(C \mapsto C)} \right]$$

- If W(C') > W(C), the move is always accepted. If W(C') < W(C), it is accepted with probability P = W(C')/W(C).
- We also have to account for the proposal probabilities.

Update probabilities for the Hubbard model

Ratio of weights:

$$\begin{split} \frac{W(C_{n+1})}{W(C_n)} &= \frac{\left(-\frac{U}{2}\right)^{n+1}}{\left(-\frac{U}{2}\right)^n} \prod_{\sigma} \frac{\det M_{\sigma}(C_{n+1})}{\det M_{\sigma}(C_n)} = -\frac{U}{2} \prod_{\sigma} \frac{\det M_{\sigma}(C_{n+1})}{\det M_{\sigma}(C_n)} \\ \frac{W(C_{n-1})}{W(C_n)} &= \frac{\left(-\frac{U}{2}\right)^{n-1}}{\left(-\frac{U}{2}\right)^n} \prod_{\sigma} \frac{\det M_{\sigma}(C_{n-1})}{\det M_{\sigma}(C_n)} = -\frac{2}{U} \prod_{\sigma} \frac{\det M_{\sigma}(C_{n-1})}{\det M_{\sigma}(C_n)} \end{split}$$

Proposal probabilities:

$$T(C_{n} \mapsto C_{n+1}) = \frac{1}{L} \frac{1}{\beta} \frac{1}{2} \qquad T(C_{n+1} \mapsto C_{n}) = \frac{1}{n+1}$$

$$T(C_{n-1} \mapsto C_{n}) = \frac{1}{L} \frac{1}{\beta} \frac{1}{2} \qquad T(C_{n} \mapsto C_{n-1}) = \frac{1}{n}$$

$$i_{4} \in [1, L], \quad \tau_{4} \in [0, \beta), \quad s_{4} = \pm 1$$

$$r \downarrow v_{1} \qquad v_{2} \qquad v_{3} \qquad v_{3} \qquad v_{3} \qquad v_{4} \qquad v_{4} \qquad v_{3} \qquad v_{4} \qquad$$

Measuring observables

Expectation value:

$$\begin{split} \langle \hat{O} \rangle &= \frac{1}{Z} \text{Tr} \, \left[e^{-\beta \hat{H}} \hat{O} \right] \\ &= \frac{Z_0}{Z} \sum_{C_n} (-w)^n \langle T_\tau \hat{h}_1(\nu_1) \cdots \hat{h}_1(\nu_n) \, \hat{O} \rangle_0 \\ &= \frac{Z_0}{Z} \sum_{C_n} (-w)^n \, \text{det} \, \widetilde{M}(C_n) \\ &= \frac{Z_0}{Z} \sum_{C_n} (-w)^n \, \text{det} \, M(C_n) \underbrace{\frac{\text{det} \, \widetilde{M}(C_n)}{\text{det} \, M(C_n)}}_{\langle \langle \hat{O} \rangle \rangle_{C_n}} \\ &= \frac{Z_0}{Z} \sum_{C_n} W(C_n) \langle \langle \hat{O} \rangle \rangle_{C_n} \\ &= \frac{\sum_{C_n} W(C_n) \langle \langle \hat{O} \rangle \rangle_{C_n}}{\sum_{C_n} W(C_n)} \end{split}$$

Observables can be measured exploiting Wick's Theorem

Single-particle Green function:

For each configuration C_n , Wick's Theorem holds:

Luitz & Assaad, PRB 2010

$$\langle\langle\widehat{n}_{i\uparrow}\widehat{n}_{i\downarrow}\rangle\rangle_{C_{\mathfrak{n}}} = \langle\langle c_{i\uparrow}^{\dagger}c_{i\uparrow}c_{i\uparrow}^{\dagger}c_{i\downarrow}\rangle\rangle_{C_{\mathfrak{n}}} = \langle\langle c_{i\uparrow}^{\dagger}c_{i\uparrow}\rangle\rangle\langle\langle c_{i\downarrow}^{\dagger}c_{i\downarrow}\rangle\rangle - \langle\langle c_{i\uparrow}^{\dagger}c_{i\downarrow}\rangle\rangle\langle\langle c_{i\downarrow}^{\dagger}c_{i\uparrow}\rangle\rangle$$

 \Rightarrow Higher Green functions can be obtained from $\langle\langle c_x^\dagger c_y^{}\rangle\rangle.$

Assaad & Lang, PRB 2007

■ At half filling, SU(2) spin symmetry + particle-hole symmetry ensure absence of a sign problem, because

$$\det M_{\uparrow}(C_n) = (-1)^n \det M_{\downarrow}(C_n)$$

so that

$$W(C_n) = \left(-\frac{\mathsf{U}}{2}\right)^n \det \mathsf{M}_\uparrow(C_n) \det \mathsf{M}_\downarrow(C_n) = \left(+\frac{\mathsf{U}}{2}\right)^n \left[\det \mathsf{M}_\downarrow(C_n)\right]^2$$

■ For general filling $\langle n \rangle$, a sign problem can be avoided by setting

$$\alpha_{\uparrow} = \frac{1}{2} \langle n \rangle + \delta s$$
 $\alpha_{\downarrow} = \frac{1}{2} \langle n \rangle - \delta s$

with $s = \pm 1$ and $\delta > 0$.

A moderate sign problem can be handled by reweighting:

$$W(C_n) \mapsto |W(C_n)|, \quad \langle \hat{O} \rangle = \frac{\langle \hat{O} \operatorname{sgn}(W) \rangle}{\langle \operatorname{sgn}(W) \rangle}$$

Numerical implementation

Overview

Model: $G^0(x, y)$, vertex

- Use table of G^0 on a fine τ grid.
- Exploit translational symmetry in space and time.

$$G^{0}(x,y) = G^{0}(i-j, \tau - \tau')$$

Monte Carlo configuration: C_n

- **List of vertices** containing variables ν and α for each vertex.
- Associated with C_n is the matrix $M^{-1}(C_n)$, required to calculate acceptance probabilities and G(x, y).

Updates: addition/removal of vertices

Explicit Ising spin flips are inexpensive and useful.

Warmup:

- Start with no vertices.
- Add/remove until equilibrium is reached.

Fast updates can be used to reduce numerical effort

Direct calculation of

$$M^{-1}(C_{\mathfrak{n}})\,,\quad \det M(C_{\mathfrak{n}})\,,\quad \frac{\det M'}{\det M}$$

is numerically expensive, scaling with $(\dim M)^3$.

- Adding/removing a single vertex is a small change. $M(C_n)$ and $M(C_{n+1})$ only differ by one column and row.
- The smallness of the changes can be exploited using so-called fast updates.
 FU's are at the heart of auxiliary-field QMC.
 F. Assaad, Thursday
- FU's rely on formulas from matrix theory.

 $\vec{\mathbf{u}}, \vec{\mathbf{v}}: \mathbf{n} \times \mathbf{1}, \quad z: \ \mathbf{1} \times \mathbf{1};$

Luitz, PhD Thesis, University of Würzburg

$$\det \begin{bmatrix} M & \mathbf{u} \\ \mathbf{v}^{\mathsf{T}} & z \end{bmatrix} = \det \mathbf{M} \det \begin{bmatrix} z - \mathbf{v}^{\mathsf{T}} \mathbf{M}^{-1} \mathbf{u} \end{bmatrix} \det \begin{bmatrix} M & \vec{\mathbf{u}} \\ \vec{\mathbf{v}}^{\mathsf{T}} & z \end{bmatrix} = \det \mathbf{M} \det \begin{bmatrix} z - \vec{\mathbf{v}}^{\mathsf{T}} \\ \mathbf{M} : \mathbf{n} \times \mathbf{n}, \quad \mathbf{u}, \mathbf{v} : \mathbf{n} \times \mathbf{m}, \quad z : \mathbf{m} \times \mathbf{m}; \quad \mathbf{m} \ll \mathbf{n} \quad \mathbf{M} : \mathbf{n} \times \mathbf{n},$$

Simplest case: m = 1 (for example, in the Hubbard model).

Adding a vertex

We have to calculate

$$P(C_n \mapsto C_{n+1}) = \min \left[1, -\frac{\mathsf{UL\beta}}{n+1} \underbrace{\prod_{\sigma} \frac{\mathsf{det}\, M_{\sigma}(C_{n+1})}{\mathsf{det}\, M_{\sigma}(C_n)}}_{\mathsf{Hubbard\ model}} \right]$$

The matrix $M_{\sigma}(C_{n+1})$ is given by

$$M_{\sigma}(C_{n+1}) = \begin{bmatrix} & G^0(x_1, x_{n+1}) \\ & M_{\sigma}(C_n) & G^0(x_2, x_{n+1}) \\ & & \vdots \\ & G^0(x_{n+1}, x_1) & G^0(x_{n+1}, x_2) & \dots & G^0(x_{n+1}, x_{n+1}) - \alpha(\nu_{n+1}) \end{bmatrix}$$

which matches the structure of

$$\det \left[\begin{array}{cc} M & \vec{\mathbf{u}} \\ \vec{\mathbf{v}}^\mathsf{T} & z \end{array} \right]$$

Consequently, we have

$$\frac{\det M_{\sigma}(C_{n+1})}{\det M_{\sigma}(C_n)} = \det \left[z - \vec{\mathbf{v}}^{\mathsf{T}} M_{\sigma}^{-1}(C_n) \vec{\mathbf{u}} \right]$$

Removing a vertex

$$P(C_n \mapsto C_{n-1}) = \min \left[1, -\frac{n}{UL\beta} \prod_{\sigma} \frac{\det M_{\sigma}(C_{n-1})}{\det M_{\sigma}(C_n)} \right]$$

We consider removing the last vertex, and write

$$M_{\sigma}(C_n) = \begin{bmatrix} & G^0(x_1, x_n) \\ & M_{\sigma}(C_{n-1}) & G^0(x_2, x_n) \\ & \vdots & \\ G^0(x_n, x_1) & G^0(x_n, x_2) & \dots & G^0(x_n, x_n) - \alpha(\nu_n) \end{bmatrix}$$

to obtain

$$\frac{\det \mathsf{M}_{\sigma}(\mathsf{C}_{\mathfrak{n}-1})}{\det \mathsf{M}_{\sigma}(\mathsf{C}_{\mathfrak{n}})} = \det \left[z - \vec{\mathsf{v}}^\mathsf{T} \, \mathsf{M}_{\sigma}^{-1}(\mathsf{C}_{\mathfrak{n}-1}) \, \vec{\mathsf{u}} \right] = [\mathsf{M}_{\sigma}^{-1}(\mathsf{C}_{\mathfrak{n}})]_{\mathfrak{n}\mathfrak{n}}$$

Upon acceptance, M^{-1} can be updated efficiently $[O(n^2)]$ using the Sherman-Morrison formula:

$$(M + \vec{u}\,\vec{v}^T)^{-1} = M^{-1} - \frac{M^{-1}\,\vec{u}\,\vec{v}^T\,M^{-1}}{1 + \vec{v}^T\,M^{-1}\,\vec{u}}$$

Single-particle Green function

Knowledge of $G_{\sigma}(x,y)$ allows to calculate other observables via Wick's Theorem.

$$\begin{split} \det \left[& M_{\sigma}(C_n) & G^0(x_1,y) \\ \langle \langle G_{\sigma}(x,y) \rangle \rangle &= \frac{ G^0(x,x_1) \quad G^0(x,x_2) \quad \dots \quad G^0(x,y) }{ \det M_{\sigma}(C_n) } \right] \\ &= \det \left[z - \vec{v}^T M^{-1} \vec{u} \right] \\ &= G^0(x,y) - \sum_{r=1}^n G^0(x,x_r) [M_{\sigma}^{-1}(C_n)]_{rs} G^0(x_s,y) \end{split}$$

A similar equation can be obtained for the Matsubara Green function $G(k, i\omega_m)$, and makes CT-INT an excellent choice for DMFT calculations.

Numerical effort

- Dominated by updates, which scale with $O(n^2)$; n: expansion order
- To obtain independent configurations typically requires n updates. ⇒ CPU time scales as $O(n^3)$.
- Average expansion order:

$$\langle n \rangle = \left\langle \sum_{\nu} w \hat{h}_1(\nu) \right\rangle = \int_0^\beta d\tau \langle \hat{H}_1(\tau) \rangle \sim \beta L U$$

$$\implies$$
 CPU time $\sim (\beta LU)^3$

- Auxiliary-field QMC scales linearly with β . \implies F. Assaad, Thursday
- Weak-coupling problems can be solved on large systems.
- As with other QMC methods, parallelization is straight forward.

CT-INT for more general models

Functional integral representation of the partition function

The partition function of a system with Hamiltonian \hat{H} can be written as

$$Z = \int \mathcal{D}(\bar{c}, c) e^{-S[\bar{c}, c]}$$

with the action

$$S[\bar{c}, c] = \int_{0}^{\beta} d\tau [\bar{c} \, \partial_{\tau} \, c + H(\bar{c}, c)]$$

Assuming a Hamiltonian of the form

$$\hat{H}(c^{\dagger},c) = \sum_{ij} (h_{ij} - \mu \delta_{ij}) c_{i}^{\dagger} c_{j}^{} + \sum_{ijkl} V_{ijkl} c_{i}^{\dagger} c_{j}^{} c_{k}^{} c_{l}^{}$$

we have

$$S[\bar{c},c] = \int_0^\beta d\tau \left| \sum_{ij} \bar{c}_i(\tau) [(\vartheta_\tau - \mu) \delta_{ij} + h_{ij}] c_j(\tau) + \sum_{ijkl} V_{ijkl} \bar{c}_i(\tau) \bar{c}_j(\tau) c_k(\tau) c_l(\tau) \right|$$

Hence, the interaction is nonlocal in space, but local in time.

General fermionic model defined in terms of an action

Rubtsov et al., PRB 2005

Instead of starting from a Hamiltonian, we consider a completely general action:

$$\begin{split} S = & \underbrace{\iint \mathsf{d}x \mathsf{d}y \, \overline{c}(x) \, [G^0(x,y)]^{-1} \, c(y)}_{S_0} \\ & + \underbrace{\iiint \mathsf{d}x \mathsf{d}x' \mathsf{d}y \mathsf{d}y' \, V(x,x',y,y') \, \overline{c}(x) c(x') \, \overline{c}(y) c(y')}_{S_1} \end{split}$$

Most general case:

$$x=\{i,\tau,\sigma\}\,,\quad x'=\{i',\tau',\sigma'\}\,,\quad y=\{j,\overline{\tau},\overline{\sigma}\}\,,\quad y'=\{j',\overline{\tau}',\overline{\sigma}'\}$$

Non-local interactions in space and time. In practice: $\tau = \tau'$, $\bar{\tau} = \bar{\tau}'$.

Applications:

- Effective, retarded interactions (phonons, downfolding).
- Impurity problems, and dynamical mean-field theory (bath encoded in G⁰).

CT-INT based on perturbation expansion

Given the form

$$S = S_0 + S_1$$

we have

$$\begin{split} Z &= \int \mathcal{D}(\bar{c}, c) e^{-S_0[\bar{c}, c] - S_1[\bar{c}, c]} \\ &= Z_0 \langle e^{-S_1[\bar{c}, c]} \rangle_0 , \quad \langle X \rangle_0 = \frac{1}{Z_0} \int \mathcal{D}(\bar{c}, c) e^{-S_0[\bar{c}, c]} X \end{split}$$

A perturbation expansion gives

$$\begin{split} \frac{Z}{Z_0} &= \langle e^{-S_1[\overline{c},c]} \rangle_0 = \sum_n \frac{(-1)^n}{n!} \iiint \mathsf{d} x_1 \mathsf{d} x_1' \mathsf{d} y_1 \mathsf{d} y_1' \cdots \iiint \mathsf{d} x_n \mathsf{d} x_n' \mathsf{d} y_n \mathsf{d} y_n' \\ & \times V(x_1,x_1',y_1,y_1') \cdots V(x_n,x_n',y_n,y_n') \\ & \times \langle \overline{c}(x_1) c(x_1') \overline{c}(y_1) c(y_1') \cdots \overline{c}(x_n) c(x_n') \overline{c}(y_n) c(y_n') \rangle_0 \end{split}$$

CT-INT can in principle be applied to a general fermionic action

The partition function can be cast into the form

$$\frac{Z}{Z_0} = \sum_{C_n} (-1)^n w(\nu_1) \cdots w(\nu_n) \langle h_1(\nu_1) \cdots h_1(\nu_n) \rangle_0$$

$$= \sum_{C_n} (-1)^n w(\nu_1) \cdots w(\nu_n) \det M(C_n)$$

A vertex is characterized by $w(v) = V(x, x', y, y'), v = \{x, y, x', y'; s\}$, and

$$h(\nu) = [\overline{c}(x)c(x') - \alpha(x,x',s)][\overline{c}(y)c(y') - \alpha(y,y',s)]$$

- The Monte Carlo sampling is over all variables of the vertex, and n.
- Addition/removal of vertices is sufficient.
- Updates and measurements (almost) independent of model.

Application to electron-phonon models

Example for a problem with a retarded interaction

The Holstein model describes the coupling of electrons to harmonic oscillators:

$$\mathsf{H} = -t \sum_{\langle ij \rangle \sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma}^{} + \mathsf{H.c.} \right) + \sum_{i} \left(\frac{1}{2M} \hat{\mathsf{P}}_{i}^{2} + \frac{\mathsf{K}}{2} \hat{\mathsf{Q}}_{i}^{2} \right) - g \sum_{i} \hat{\mathsf{Q}}_{i} \left(\widehat{\mathsf{n}}_{i} - 1 \right)$$

Phonon frequency: $\omega_0 = \sqrt{\frac{\kappa}{M}}$.

Partition function as path-integral:

$$\begin{split} Z = & \underbrace{\int \mathcal{D}(\bar{c},c) e^{-S_0[\bar{c},c]} \int \mathcal{D}(q) e^{-S_{ep}[\bar{c},c,q]}}_{\text{electrons}} \\ & \underbrace{\int_0^\beta d\tau \sum_i \left[\frac{M}{2} \{ \partial_\tau q_i(\tau) \}^2 + \frac{K}{2} q_i^2(\tau) + g q_i(\tau) \{ n_i(\tau) - 1 \} \right]} \end{split}$$

More general fermion-boson models can also be considered.

Integration over phonon coordinates $q_i(\tau)$ gives the fermionic action

$$S_1(\bar{c},c) = -\int_0^\beta d\tau \int_0^\beta d\tau' \sum_i [n_i(\tau) - 1] D(\tau - \tau') [n_i(\tau') - 1]$$

corresponding to a retarded (non-local in time) electron-electron interaction

$$H_1(\tau) = -\frac{g^2}{4K} \int_0^\beta d\tau' \sum_i \sum_{\sigma\sigma'} \sum_s P(\tau - \tau') \left[n_{i\sigma}(\tau) - \alpha(s) \right] \left[n_{i\sigma'}(\tau') - \alpha(s) \right]$$

- \blacksquare interaction range: $\Delta \sim \frac{1}{\omega_0}$
- $\begin{tabular}{l} $\omega_0 \to \infty$: $P(\tau) \to \delta(\tau)$, \\ $\text{Hubbard interaction } $U = -\frac{g^2}{K}$. \end{tabular}$

Structure of the vertices

Vertex variables:

$$v = \{i, \tau, \tau', \sigma, \sigma'; s\}$$

Weight depends on v:

$$w(v) = -\frac{g^2}{4K}P(\tau - \tau')$$

 $\text{Sample } \tau - \tau' \text{ according to } P(\tau - \tau') \Longrightarrow \ T(C_n \mapsto C_{n+1}) \sim P(\tau - \tau').$

Vertices are non-local in time:

Peierls transition in the spinless Holstein model

Hohenadler, Fehske, Assaad, PRB 2011

Density-density correlations $\langle \widehat{n}_r \widehat{n}_0 \rangle$:

$$\lambda<\lambda_c:$$
 (metallic phase)
$$\langle n_r n_0\rangle = -\frac{K_\rho}{2\pi^2 r^2} + \frac{A}{r^{2K_\rho}}\cos(2k_F x)$$

 $\lambda > \lambda_c$: (Peierls phase)

Long-range charge order at T=0, $K_{\rho}=0$.

Application to topological insulators

Topological insulators in two dimensions

Hasan & Kane, RMP 2010

Spin-orbit coupling gives rise to topological insulators.

Kane and Mele, PRL 2005; Bernevig et al., PRL 2006

- Bulk band gap.
- $\sigma_{\mathsf{s}}^{\mathsf{x}\mathsf{y}} = \nu \tfrac{e^2}{2\pi}.$
- Helical edge states.

Protected/stable against disorder & weak interactions.

Experimental realisation:

Bernevig et al., PRL 2006; König et al., Science 2007

CT-INT study of correlated edge states

Hohenadler, Lang, Assaad, PRL 2011

Bulk is gapped; edge states determine low-energy physics ⇒ consider electronic interactions only at the edge.

Effective, 1D action can be simulated using CT-INT, $\langle n \rangle \sim (\beta LU)^3$.

$$\begin{split} S = & -\sum_{\mathbf{r}\mathbf{r'}\sigma} \iint_0^\beta d\tau d\tau' \, \bar{c}_{\mathbf{r}\sigma}(\tau) \left[G_\sigma^0(\mathbf{r}-\mathbf{r'},\tau-\tau') \right]^{-1} c_{\mathbf{r'}\sigma}(\tau') \\ & + U \sum_{\mathbf{r}} \int_0^\beta \left[n_{\mathbf{r}\uparrow}(\tau) - \frac{1}{2} \right] \left[n_{\mathbf{r}\downarrow}(\tau) - \frac{1}{2} \right] \end{split}$$

Correlation effects on helical edge states

Hohenadler & Assaad, PRB 2012

Transverse spin correlations strongly enhanced, but no long-range order.

Edge states remain metallic, but there is a pronounced transfer of spectral weight.

Summary

- CT-INT is based on a series expansion in the interaction H_1 . Series convergent for finite systems at T > 0.
- Action-based formalism permits application to a variety of models.
- Configuration space consists of vertices. Updates: addition/removal.
- Method scales as $(\beta LV)^3$.
- Sign problem depends on the model.

Thank you for your attention.

