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Overview of continuous-time QMC methods



Continuous vs. discrete imaginary time

m D dimensional quantum systems live in D + 1 dimensions.
The additional dimension is the imaginary time axis T =it € [0 L]

" kgT
r

]

I —

B

T

m Discretizing T = 1At (At = %) permits the Suzuki-Trotter decomposition

e AT(Fo+H) _ o—ATHy o—ATHy O(AT?)

useful to calculate expectation values of the form
L

de (x]e PHx) ~ HJdX“J dyy (xi e 2THoy ) (e ATH [xy)
1=1

Examples: path integral (limit At — 0), auxiliary-field QMC (finite At)
m Error: ignore if smaller than statistical errors, or extrapolate to At = 0.

Desirable to use continuous time.
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Some milestones for continuous-time QMC methods

Gull et al., Rev. Mod. Phys. 2011

m Stochastic Series Expansion: Taylor expansion of e PH Handscomb, Sandvik et al.

Spins and bosons. = M. Troyer
m Diagrammatic Monte Carlo for bosons. Prokof'ev, Svistunov, et al
m Diagrammatic Monte Carlo in the thermodynamic limit. Prokof'ev, Troyer, et al

— L. Pollet

m Continuous-time methods for fermions: Rombouts
— Interaction expansion (CT-INT) Rubtsov et al
— Interaction expansion (CT-INT) Rubtsov et al.
— Hybridization expansion (CT-HYB) Werner et al.
— Interaction expansion with auxiliary fields (CT-AUX) Gull et al.

m Discrete-time auxiliary-field QMC is central for lattice fermion models.
Scales linearly with inverse temperature. Blankenbecler et al.
— F. Assaad

@lg&alk: CT-INT, for CT-HYB and CT-AUX see Gull et al., RMP 2011
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CT-INT for the Hubbard model



Starting point: partition function

We consider a system with Hamiltonian

A=

[

o + 1
[
hopping interaction
The grand-canonical partition function is given by (l:lo includes fuN)

1

Z=Tr [e*fﬂ BT

A series expansion gives

ZEO - i (=1)" JB dry .. .JB dtn <TT Mi(t) - "Hl(Tn)>0

n! 0 0

n=0

The time-dependent interaction operators are defined as

T

]:ll(T)

iD)(T) — e’rﬂo ]’_‘[1 e*’[’}_’\lg

Starting point for CT-INT
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Assuming a Hubbard interaction

For simplicity, we assume an Hubbard interaction

]A‘ll(’f) = uZﬁiTﬁu
i

To avoid a (trivial) sign problem, we rewrite H; as

" ~ ~ u
Hy =w E E M — o (s)] My — oy (s)], w= 5
i s==+1
| M|
Ising spins

The dynamical Ising spins s are used to preserve the SU(2) spin symmetry.
Static values o are also possible. Rubtsov et al., PRB 2005
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Short-hand notation
To lighten the notation, we introduce

v={xvy;s}, w)=U/2
For the Hubbard model

x={i,t1, y={irl}, w=1U/2

onsite, equal times, opposite spin independentof v

oz ={i,7,7T}
o y=1{i,7,1}
With .
hi(v) = [TAHT - (XT(S)] [ﬁu - tXi(S)]
we can write the interaction as

J d’cHl( J Z ZWh1 w

i s==1 vertex weight

Evea’g{m
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Diagrammatic expansion of the partition function

Inserting the above form for the interaction, we have

A

Lﬁ dty .. .J: dt, <TT Ai(ty) - - Hl(Tn)>

(—nl!)nwnz Y <TT Ry (v1)- ..ﬁl(\,n)>0

z
Zy

(="
n!

I
K

0

n=0

I
K

Il
o

n

Each operator hy(v) corresponds to a vertex, and we have to sum over all

expansion orders n, and over the internal variables v = {x, y; s} of the vertices.

Idea of CT-INT:

Stochastic summation of series by sampling vertex configurations.

Evéh\gﬁk{
WURZBURG CT-INT for the Hubbard model

9/37



Partition function as a sum over vertex configurations

We can write the diagrammatic expansion

o0

Z (_1)11 n R h

as a sum over unordered vertex configurations Cy,.

With the notation
22 = X
n o v Vn Cn
we obtain

== (W (Tehalvy) - fafvn)) =Y W(Cn)

CnL - ! Cn
configuration weight

A configuration C,, is specified by the variables of all n vertices:

i, vl

Evea’g{m
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Configuration weight as a determinant
Wick's Theorem:

(Tehaa)--Fa(vn)) = detM(Cp)

can be expressed in terms of contractions (clcy)o.
with the 2n x 2n matrix a(v) = aqp(s), oty (s)
GO(x1,x1) — () G°(x1,y1) G(x1,Yn)
G°(y1,x1) Gyr, Y1) —a(vi) - G°(Y1,yn)
M(C)= 5 5 5
G®(%n, x1) G°(xn, 1) G®(Xn,Yn)
GO(yn, x1) G°(Yn Y1) w GOYn,yn) — alva)

containing the non-interacting Green function G%(x,y) = <cicy>0.

The Hubbard model conserves spin, (clcwo = <Cic¢>0 =0, so that

. MT(Cn) 0
N 0 ML(CTL)

Therefore, det M(Cy,) = det M4(Cyy) det M (Cry).

nxn nxn
UNIVERSITAT 11 /37
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Determinants correspond to the sum over all Feynman diagrams

For the Hubbard model, the partition function can hence be written as

VA u\"
?0 = CZ (—E) detMT(Cn)detMi(Cn)

m The determinants correspond to a summation of all Feynman diagrams
(connected and disconnected) for a given vertex configuration.

n=1:

Qf 1
éyl

det MT(Cl)det Mi(Cl) = GO(Xl,Xl)GO(yl,yl)

n=2:

det M4 (Cy)det M (Cy) = [G®(x1,%1)G%(x2, %2) — G°(x1,%2) G®(x2, x1)] [(x =y )]

QP Q. Q Q9 =,
m The expansion converges for finite fermionic systems at T > 0.

m Although based on a weak-coupling expansion, the method is exact.
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Stochastic summation using a Markov process

The sum over configurations can be carried out stochastically. In this way, we take
into account configurations according to their statistical weight.

The variables appearing in

Yy =Yy y -yry ey

Cn now Vn n X1,Y1,51 Xn,Yn,Sn
can be carried out by adding/removing single vertices.

Monte Carlo updates:
m add a vertex (n— n+1)
m remove a vertex (n—n—1)

Optional:
m Move vertices in space and/or time.
m Flip Ising spins.

m Add/remove multiple vertices.
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Configurations can be sampled using the Metropolis-Hastings algorithm

Z
7= W

Cn configuration weight

Partition function:

Given a configuration C, we propose a new configuration C’.

In the Metropolis-Hastings algorithm, the acceptance probability is

P(C+ C’) = min {1, W(Cl)}

W(C)

P(Crs C) — {1 W(C’)T(C’HC)}

"W(C) T(C— C)

m If W(C’) > W(C), the move is always accepted.
If W(C') < W(C), it is accepted with probability P = W/(C’)/W(C).

m We also have to account for the proposal probabilities.
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Update probabilities for the Hubbard model
Ratio of weights:

W(Cui) (9" 17 detMo(Cnit) U pp detMo(Cut)
1

w(C.) (-4 det My (Cp) 2 1 det M (C)
W(Cni) _ %) H det Mo ) _ det My (Crn 1)
W(C,) % “ detM U det My (Cp)

Proposal probabilities:

111 1
T(Ch= Chy1) = 182 T(Crhi1—=Ch) = nrl

111 1
T(Cnfl — Cn) = EEE T(Cn = Cnfl) = E

iy € [1,L], T4 € [0, 3) sqg = =*1
2 "o,
0—1—{4—.
o2, — Qﬁ’i.

ote o2,

Ny
Sy
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Measuring observables

Expectation value:

() = %Tr [ 570
= % (_W)n<TTﬂl(V1) : "Fll(Vn) é>o
Cn
Zo —
=22Y (—w)™det M(Ch)
Z &
7 N det M(Cp,)
" 72 (=w)™ det M(Cn) o e
(0))cn
=20y Wic)(O)e,
Cn
Yo, WIC){(0))e,
B 2 c. W(Ch)

Eveag‘.‘m
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Observables can be measured exploiting Wick's Theorem

Single-particle Green function:

2c, Wn((G(x.y))c,

G(x,y) = (cle,) =
y ch Wn

G%(x1,y)

M(Cr) G%(y1,y)

det .
Cxx) Gy ... GOxy)
<<G(va)>>Cn = det M(Cn)
For each configuration C,,, Wick's Theorem holds: Luitz & Assaad, PRE 2010

(A e, = ((elhiegel e e, = (eliep el e ) = (elieg D) (el e

= Higher Green functions can be obtained from ((cicy».

I UNIVERSITAT
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Absence of a sign problem for the 1D Hubbard model

Assaad & Lang, PRB 2007

m At half filling, SU(2) spin symmetry + particle-hole symmetry
ensure absence of a sign problem, because

det M4 (Cp) = (—1)™ det M (Cy)

so that

n

W(Cp) = <—121>ndetMT(Cn)detM¢(Cn) - <+L21> [det M, (Cp,)]?

m For general filling (n), a sign problem can be avoided by setting
o = %(n) + &8s
x, = 3(n) —8s

with s = £1 and 6 > 0.
m A moderate sign problem can be handled by reweighting:

(O sgn(W))
(sgn(W))

I UNIVERSITAT 18 /37
WURZBURG CT-INT for the Hubbard model

W(Cn) = W(Cy)l, (O) =



Numerical implementation



Overview

Model: G°(x,y), vertex
m Use table of GY on a fine T grid.

m Exploit translational symmetry in space and time.

G(xy) =G°(i—jt—1)

Monte Carlo configuration: C,,

m List of vertices containing variables v and « for each vertex.

m Associated with C;, is the matrix M~(Cy),
required to calculate acceptance probabilities and G(x,y).

Updates: addition/removal of vertices

m Explicit Ising spin flips are inexpensive and useful.

Warmup:
m Start with no vertices.

m Add/remove until equilibrium is reached.

UNIVERSITAT
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Fast updates can be used to reduce numerical effort

Direct calculation of
det M’
detM

M Y(Cn), detM(Cy),
is numerically expensive, scaling with (dim M)3.

Adding/removing a single vertex is a small change.
M(C,) and M(Cp+1) only differ by one column and row.

The smallness of the changes can be exploited using so-called fast updates.
FU's are at the heart of auxiliary-field QMC. = F. Assaad, Thursday

FU's rely on formulas from matrix theory. Luitz, PhD Thesis, University of Wiirzburg

det{ NTl v ] =detMdet [z —v' M 'u] det{ M v ] = detMdet [z — V'
vz VT2

M:nxn, uyv:nxm, 2z mxm, m<n M:nxn,
Uv:nxl1l, z:1x1;

_Simplest case: m =1 (for example, in the Hubbard model).

UNIVERSITAT
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Adding a vertex

We have to calculate

P(Ch+— Chy1) =min |1, —

urLp H det M4 ( n+1)
n+1 det M4(Cp)

Hubbard model
The matrix My (Cy11) is given by

GO(x1, Xn+1)
G

Mo (Cn) O(X21Xn+1)

Mc(cn+1) =

Goxni1x1) G%(xni1,x2) oo GO(Xmy1,Xni1) — X(Viy1)
which matches the structure of

det [
Consequently, we have
det M (Cry1)
det My (Cp)

UNIVERSITAT
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Removing a vertex

. det My (Chriq)
P n n— = ].,
(Ch = Cpn1) =min UL[:’: H detM )

We consider removing the last vertex, and write

GO(x1, xn)
Mg (Cr- G%(x2, Xn
Mg(cn) — ( 1) (X2 X )
G (xn,x1)  G”(xn,x2) GO (xn, Xn) — ct(v)
to obtain
detMy(Cr1) - ) o
GetLiC — det VMG (Cu) ] = MG (Callnn

Upon acceptance, M1 can be updated efficiently [O(n?)] using the
Sherman-Morrison formula:

M~ 1 —*—‘T Mfl
M H#T Mfl
(M+uvh)™ 1+VTM-tid

UNIVERSITAT
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Single-particle Green function

Knowledge of G(x,y) allows to calculate other observables via Wick's Theorem.

GO(Xl,y)
Mq(Cr) Go(x2,y)

det :
Gox,x1) G°%x,x2) ... GO(;c,y)

((Golx,y))) =

=det [z — V' M ]

det Mo (Cr)

= G%x,y) = D GO xr) MG (C)lrs GO lxs, y)

r,s=1

A similar equation can be obtained for the Matsubara Green function G(k, iwm),
and makes CT-INT an excellent choice for DMFT calculations.

UNIVERSITAT
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Numerical effort

m Dominated by updates, which scale with O(n?); n: expansion order

m To obtain independent configurations typically requires n updates.
= CPU time scales as O(n3).

m Average expansion order:

. B
(n) = <th1(v)> = L dt(Hy (1)) ~ BLU

— CPU time ~ (BLU)3

— Auxiliary-field QMC scales linearly with 3. — F. Assaad, Thursday
— Weak-coupling problems can be solved on large systems.

m As with other QMC methods, parallelization is straight forward.

UNIVERSITAT
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CT-INT for more general models



Functional integral representation of the partition function

The partition function of a system with Hamiltonian H can be written as
Z= JD(E, c)e Skl

with the action

B
S[c, c] = J dt[c 0. c+ H(c, )]
0

Assuming a Hamiltonian of the form

A(ch,c) = Z(h — uby)cl ic; + ZVUHC €y
ij ijkl

we have

S[C C J dt ch )61; +h1; C] +ZV‘LJK1C1 )Ck( )Cl(T)

ijkl

Hence, the interaction is nonlocal in space, but local in time.
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General fermionic model defined in terms of an action

Rubtsov et al., PRB 2005

Instead of starting from a Hamiltonian, we consider a completely general action:

= ” dxdy () [G%(x, y)] " cly)

So

+ JJJJ dxdx’dydy’ V(x,x",y,y’) c(x)e(x’) c(y)c(y’)

Sy

Most general case:
x={i10}, x'={i'70} y={§r0, y={.7.7}
Non-local interactions in space and time. In practice: T=1', T="T'.

Applications:
m Effective, retarded interactions (phonons, downfolding).
m Impurity problems, and dynamical mean-field theory (bath encoded in G°).
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CT-INT based on perturbation expansion

Given the form
S=S0+5:

we have
/ = JD(E’ C)e*SO[EYC]*SﬂE,C]
— Zo(e Sy, (K)o = o j D(E, c)e-Seleelx

A perturbation expansion gives

z . —1)" ) ,
7= (e7S1eclyy =) ( nl) ”” dxydx)dyidy/ ”” dxndx! dyndy’,

X V(x1,%X1,Y1,Y1) - V(Xn, Xpy, Yn, U )

x (€(x1)e(xg)e(y)e(ys) - - Tlxn)e(xp)e(yn)elyn))o
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CT-INT can in principle be applied to a general fermionic action

The partition function can be cast into the form

ZEO =Y (1MW) - wlva) () ha(vn))g
Cn
= Z (—=1)"™w(v1) - - - w(vn) det M(Cr)
Cn

A vertex is characterized by w(v) = V(x,x",y,y’), v={x,y,x’,y’; s}, and

h(v) = [e(x)e(x) — alx, ", s)][e(y)ely) — aly,y", s)]

m The Monte Carlo sampling is over all variables of the vertex, and n.
m Addition/removal of vertices is sufficient.

m Updates and measurements (almost) independent of model.
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Application to electron-phonon models



Example for a problem with a retarded interaction

The Holstein model describes the coupling of electrons to harmonic oscillators:

——tZ(m+Hc)+Z(ZMP3 Q) -9 X Qi

(ij)o

free electrons free oscillators

Phonon frequency: wg = %

Partition function as path-integral:

/= J':D((—:' C)efSo[E,C] J:D(q)efsep[é,c,q]

L IL ]
electrons electron—phonon

Seplc, . J aTZ[{aTq (@IF + S g2 + gaimniln) -

More general fermion-boson models can also be considered.

UNIVERSITAT
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CT-INT for the Holstein model

Assaad & Lang, PRB 2007

Integration over phonon coordinates i (T) gives the fermionic action

B B
$1(€.c) = —J er dt’ ) Mni(t) — 1D(tr — t)ni(t') — 1]

0 0 :

corresponding to a retarded (non-local in time) electron-electron interaction

2 B
M) = =3 | a0 T3 3 Plr =) i) = )] i () = als)

i oo’ s

® interaction range: A ~ wio 05
04
m wg — oo: P(1) = d(1),
. . 2 0.3 +
Hubbard interaction U = —%-. ©
& 0.2
0.1
0.0
-B/2 0 B/2
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Structure of the vertices

Vertex variables:
v={i,1,1,0,0;s}

Weight depends on v:
2
wv) = —%(P(T—T')
Sample T — 1’ according to P(t—1') = T(C,, = Cny1) ~P(r—1').

Vertices are non-local in time:

TA

Ny

UNIVERSITAT
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Peierls transition in the spinless Holstein model
Hohenadler, Fehske, Assaad, PRB 2011

Density-density correlations (1, Tg):

0.3 T
0.2
—~ 0.1 —
=) =)
< <
T T
< 4o S
—0.1
—0.2 L L L L L L L L —0.2
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
T T

A < Ac: (metallic phase)
Ko

A
_W + = COS(2kFX)

<nrn0> = T-2K .

A > Ac: (Peierls phase)
Long-range charge order at T =0, K, = 0.
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Application to topological insulators



Spin-orbit coupling gives rise to topological insulators.

Topological insulators in two dimensions

Ep

Hasan & Kane, RMP 2010

Kane and Mele, PRL 2005; Bernevig et al., PRL 2006

m Bulk band gap.

2
moY=vs_.

m Helical edge states.

Protected/stable against disorder & weak interactions.

Experimental realisation:

UNIVI
WUI

IRZBURG

CdTe

HgTe

CdTe

Bernevig et al., PRL 2006; Kénig et al., Science 2007

l T Normal Inverted

7

T /.\63nm/.\

4I—>d
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CT-INT study of correlated edge states

Hohenadler, Lang, Assaad, PRL 2011
Bulk is gapped; edge states determine low-energy physics
= consider electronic interactions only at the edge.

L

Effective, 1D action can be simulated using CT-INT, (n) ~ (BLU)3.

e [ e

Sy
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Correlation effects on helical edge states

Hohenadler & Assaad, PRB 2012

1.00
Q
3
SOl T pa— 1
X UA=20 -t
® U=40 o

0.01 . L . L

1 2 4 8 16 32 . .

o5 L Transverse spin correlations strongly
- enhanced, but no long-range order.
~N
3
1]
<
3
(%

Edge states remain metallic, but there is
a pronounced transfer of spectral weight.
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Summary

m CT-INT is based on a series expansion in the interaction Hj.
Series convergent for finite systems at T > 0.

m Action-based formalism permits application to a variety of models.
m Configuration space consists of vertices. Updates: addition/removal.
m Method scales as (BLV)3.

m Sign problem depends on the model.

UNIVERSITAT
WURZBURG 36 /37



Thank you for your attention.
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