Formelsammlung Physik E2 – Stand 01.08.2011

Kinematik: Ortsvektor $\vec{r}(t)$ -> Geschwindigkeit $\vec{v}(t) = \frac{d\vec{r}}{dt} = \dot{\vec{r}}$ -> Beschleunigung $\vec{a}(t) = \frac{d\vec{v}}{dt} = \dot{\vec{v}} = \ddot{\vec{r}}$

Kreisbewegung: Winkel $\varphi = \frac{b}{r}$ (*b* Bogenlänge; *r* Radius)

-> Winkelgeschwindigkeit $\vec{\omega}(t) = \frac{d\vec{\phi}}{dt} = \dot{\vec{\phi}}$ -> Bahngeschwindigkeit $\vec{v} = \vec{\omega} \times \vec{r}$

Kraft und Impuls: Impuls $\vec{p} = m \cdot \vec{v}$ -> Grundgesetz der Mechanik - Kraft $\vec{F} = \frac{d\vec{p}}{dt} = \dot{\vec{p}} = m \cdot \dot{\vec{v}} + \dot{m} \cdot \vec{v}$

Arbeit, Energie, Leistung: Kinetische Energie $E_{kin} = \frac{1}{2}mv^2$

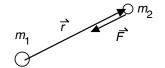
Arbeit $W = \int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \cdot d\vec{r}$ mit $\vec{F} \cdot d\vec{r} = F \cdot \cos \alpha \cdot ds$ (α Winkel zwischen \vec{F} und $d\vec{r}$)

Pot. Energie
$$E_{\text{pot}}\left(\vec{r}\right) = E_{\text{pot}}\left(\vec{r}\right) - E_{\text{pot}}\left(\vec{r}_{0}\right) = -\int_{\vec{r}_{0}}^{\vec{r}} \vec{F}\left(\vec{r}\right) \cdot d\vec{r}$$
 mit $E_{\text{pot}}\left(\vec{r}_{0}\right) = 0$

Leistung $P = \frac{dW}{dt} = \frac{\vec{F} \cdot d\vec{r}}{dt} = \vec{F} \cdot \vec{v} = F \cdot \cos \alpha \cdot v \quad (\alpha \text{ Winkel zwischen } \vec{F} \text{ und } \vec{v})$

Gravitationsfeld, Kraft, Feldstärke, Potenzial:

Gravitationskraft $\vec{F} = -G \cdot \frac{m_1 \cdot m_2}{r^2} \cdot \vec{e}_r$ (immer anziehend!)



Feldstärke $\vec{g} = \frac{\vec{F}}{m_2} = -G \cdot \frac{m_1}{r^2} \cdot \vec{e}_r$ (m_2 ist "kleine" Probemasse im Feld von m_1)

Pot. Energie
$$E_{\text{pot}}\left(\vec{r}\right) = -\int\limits_{-\infty}^{\vec{r}} \vec{F}\left(\vec{r}\right) \cdot d\vec{r} = -G \cdot \frac{m_1 \cdot m_2}{r}$$
 mit $E_{\text{pot}}\left(\infty\right) = 0$ und $\vec{F} = -grad \ E_{\text{pot}}\left(\infty\right) = 0$

Potenzial
$$\varphi_{\text{pot}}(\vec{r}) = \frac{E_{\text{pot}}(\vec{r})}{m_2} = -\int_{-\infty}^{\vec{r}} \vec{g}(\vec{r}) \cdot d\vec{r} = -G \cdot \frac{m_1}{r} \text{ mit } \varphi_{\text{pot}}(\infty) = 0 \text{ und } \vec{g} = -grad \varphi$$

Drehbewegung, Rotation starrer Körper: Drehmoment $\vec{M} = \vec{r} \times \vec{F}$

Drehimpuls $\vec{L} = \vec{r} \times \vec{p} = m \cdot (\vec{r} \times \vec{v})$ -> Grundgesetz der Drehbewegung $\vec{M} = \frac{d\vec{L}}{dt}$

Trägheitsmoment Punktmasse $J = mr^2$ -> ausgedehnter Körper $J = \int \overline{r^2 dm}$ mit $dm = \rho dV$

Feste Achse A -> $\vec{L} = J_{_A} \cdot \vec{\omega}_{_A}$ und $\vec{M} = J_{_A} \cdot \dot{\vec{\omega}}_{_A}$

Rotationsenergie $E_{\text{rot}} = \frac{1}{2}J\omega^2$

Arbeit $W = \int \vec{M} \cdot d\vec{\varphi} \text{ mit } \vec{M} \cdot d\vec{\varphi} = M \cdot \cos \alpha \cdot d\varphi \quad (\alpha \text{ Winkel zwischen } \vec{M} \text{ und } d\vec{\varphi})$

Leistung $P = \frac{dW}{dt} = \frac{\vec{M} \cdot d\vec{\phi}}{dt} = \vec{M} \cdot \vec{\omega} = M \cdot \cos \alpha \cdot \omega$ (α Winkel zwischen \vec{M} und $\vec{\omega}$)

Elektrisches Feld, Kraft, Feldstärke, Potenzial, Dipol:

Coulombkraft $\vec{F} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 \cdot q_2}{r^2} \cdot \vec{e}_r$ (gleichnamige Ladungen: Abstoßung, sonst Anziehung)

Feldstärke $\vec{E} = \frac{\vec{F}}{q_2} = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1}{r^2} \cdot \vec{e}_r$ $(q_2 > 0 \text{ ist ,,kleine" Probeladung im Feld von } q_1)$

Pot. Energie
$$E_{\text{pot}}(\vec{r}) = -\int_{-\infty}^{\vec{r}} \vec{F}(\vec{r}) \cdot d\vec{r} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 \cdot q_2}{r}$$
 mit $E_{\text{pot}}(\infty) = 0$ und $\vec{F} = -grad E_{\text{pot}}$

Potenzial
$$\varphi_{\text{pot}}(\vec{r}) = \frac{E_{\text{pot}}(\vec{r})}{q_2} = -\int_{-\infty}^{\vec{r}} \vec{E}(\vec{r}) \cdot d\vec{r} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1}{r} \text{ mit } \varphi_{\text{pot}}(\infty) = 0 \text{ und } \vec{E} = -grad \varphi$$

Elektrisches Dipolmoment $\vec{p}_e = q \cdot \vec{d}$ (von – nach + !!)

Dipol im homogenen E-Feld -> Drehmoment $\vec{M} = \vec{p}_e \times \vec{E}$ und Dipolenergie $E_{pot} = -\vec{p}_e \cdot \vec{E}$

Elektrischer Fluss, Satz von Gauß:

Fluss durch eine beliebige Fläche A $\phi_E = \int_A \vec{E} \cdot d\vec{A}$ mit $d\vec{A}$ Flächennormalenvektor

Satz von Gauß $\oint_A \vec{E} \cdot d\vec{A} = \frac{Q_{ein}}{\varepsilon}$ mit $\varepsilon = \varepsilon_r \cdot \varepsilon_0$ und A geschlossene Oberfläche

lineare Ladungsdichte $\lambda = \frac{dQ}{dl}$; Flächenladungsdichte $\sigma = \frac{dQ}{dA}$; Raumladungsdichte $\rho = \frac{dQ}{dV}$

Kondensator, Kapazität:

Kapazität $C = \frac{Q}{U}$ mit Spannung U (Potenzialdifferenz)

Plattenkondensator $C = \varepsilon_r \cdot \varepsilon_0 \cdot \frac{A}{d}$ homogenes Feld $E = \frac{U}{d}$

Parallelschaltung $C_{gesamt} = \sum C_i = C_1 + C_2 + \dots$ (folgt aus $U = U_1 = U_2 = \dots$)

Reihenschaltung $\frac{1}{C_{\text{constant}}} = \sum \frac{1}{C_1} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$ (folgt aus $Q = Q_1 = Q_2 = \dots$)

Potenzielle Feldenergie $W_e = \int dW_e = \int U \cdot dQ = \int U \cdot C \cdot dU = \frac{1}{2}CU^2 = \frac{1}{2}\frac{Q^2}{C}$

Energiedichte $w_e = \frac{dW_e}{dV} = \frac{1}{2}\vec{E}\cdot\vec{D} = \frac{1}{2}\vec{E}\cdot\varepsilon_r\cdot\varepsilon_0\cdot\vec{E} = \frac{1}{2}\varepsilon_r\cdot\varepsilon_0\cdot\vec{E}^2$

Felder mit Dielektrikum $\vec{D} = \varepsilon_r \cdot \varepsilon_0 \cdot \vec{E} = \varepsilon_0 \cdot \vec{E} + \vec{P}$ entsprechend $\left| \sigma_{frei} \right| = \left| \sigma_{netto} \right| + \left| \sigma_{polarisation} \right|$

Elektrischer Strom, Widerstand, Leistung, Stromkreis: Stromstärke $I = \frac{dQ}{dt} = \dot{Q}$

Stromdichte $|\vec{j}| = \frac{dI}{dA}$ und $I = \int \vec{j} \cdot d\vec{A}$ (Ladungsfluss! Flussintegral).

Mit Ladungsträgerdichte n, Einzelladung q, Raumladungsdichte ρ , Driftgeschwindigkeit \vec{v}_d -> Stromdichte $\vec{j} = n \cdot q \cdot \vec{v}_d = \rho \cdot \vec{v}_d$

Kontinuitätsgleichung (Ladungserhaltung) $\operatorname{div} \vec{j}(\vec{r},t) = -\frac{\partial}{\partial t} \rho(\vec{r},t)$

Ladungsträgerbeweglichkeit $\mu = \frac{v_d}{E}$

Widerstand $R = \frac{U}{I}$ und $R = \rho \cdot \frac{l}{A}$ mit spez. Widerstand ρ (nicht Ladungsdichte!!!)

spezifischer Widerstand / spezifische Leitfähigkeit $\rho = \frac{1}{\sigma}$ damit -> allgemeines ohmsches Gesetz $\vec{j} = \sigma \cdot \vec{E}$ oder $\vec{E} = \rho \cdot \vec{j}$

elektrische Leistung
$$P = \frac{dW}{dt} = \frac{U \cdot dQ}{dt} = U \cdot I$$
 im Widerstand $P_{Verlust} = RI^2 = \frac{U^2}{R}$

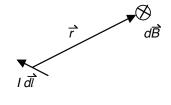
Maschenregel $\oint \vec{E} \cdot d\vec{s} = 0 = \sum U_i$ (Energieerhaltung) (E-Feld von Plus nach Minus)

Knotenregel $\oint \vec{j} \cdot d\vec{A} = 0 = \sum I_i$ (Ladungserhaltung)

Magnetfeld, Lorentzkraft:

Biot-Savart-Gesetz
$$d\vec{B} = \frac{\mu}{4\pi} \cdot \frac{I \cdot d\vec{l} \times \vec{e}_r}{r^2}$$
 mit $\mu = \mu_r \cdot \mu_0$

Amperesches Gesetz $\oint \vec{B} \cdot d\vec{s} = \mu \cdot \int \vec{j} \cdot d\vec{A} = \mu \cdot I_{umschlossen}$

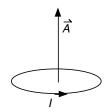


Magnetfeld des unendlich langen, geraden Leiters im Außenraum $B(r) = \frac{\mu_0 \cdot I}{2\pi r}$

Lorentzkraft auf eine bewegte Ladung $\vec{F}_L = q \cdot \vec{v} \times \vec{B}$

Lorentzkraft auf ein Strom durchflossenes Leiterstück der Länge L $\vec{F}_L = I \cdot \vec{L} \times \vec{B}$

Magnetisches Dipolmoment geschlossene Stromschleife mit Fläche A $\vec{p}_m = I \cdot \vec{A}$ Im homogenen B-Feld -> Drehmoment $\vec{M} = \vec{p}_m \times \vec{B}$ und Dipolenergie $E_{pot} = -\vec{p}_m \cdot \vec{B}$



Magnetischer Fluss, Induktion, Induktivität:

Fluss durch eine beliebige Fläche A $\phi_B = \int_A \vec{B} \cdot d\vec{A}$ mit $d\vec{A}$ Flächennormalenvektor

Induktionsspannung
$$|U_i| = N \cdot \left| \frac{d\phi_B}{dt} \right|$$
 oder $|U_i| = L \cdot \left| \frac{dI}{dt} \right|$ mit der

Induktivität
$$L = N \cdot \frac{d\phi_B}{dI}$$
 und für $L = \text{const.}$ $L = N \cdot \frac{\phi_B}{I}$

Energie des Magnetfeldes einer Induktivität $W_m = \frac{1}{2}LI^2$

Energiedichte des Magnetfeldes
$$W_m = \frac{dW_m}{dV} = \frac{1}{2}\vec{H} \cdot \vec{B} = \frac{1}{2}\mu_r \cdot \mu_0 \cdot \vec{H}^2 = \frac{\vec{B}^2}{2 \cdot \mu_r \cdot \mu_0}$$

$\label{lem:complexe} \textbf{Komplexe We chselst romwider st\"{a}nde:}$

$$Z = \frac{U}{I} \text{ mit } U = U_0 \cdot e^{i\omega t} \text{ und } I = I_0 \cdot e^{i(\omega t + \varphi)} \text{ sowie } |Z| = \left| \frac{U}{I} \right| = \frac{|U|}{|I|} = \frac{|U|}{I_0}$$

Z = R + iX mit Wirkwiderstand R, Blindwiderstand X und Scheinwiderstand $|Z| = \sqrt{R^2 + X^2}$

Kondensator
$$Z_C = \frac{1}{i\omega C} = -\frac{i}{\omega C} = i\frac{-1}{\omega C}$$
 und $X_C = \frac{-1}{\omega C}$ Strom eilt Spannung voraus Ideale Spule $Z_L = i\omega L$ und $X_L = \omega L$ reale Spule $Z_L = R_{Sp} + i\omega L$

RLC - Schwingkreis:

Ungedämpft – nur LC -> $E_{ges} = \frac{Q^2}{2C} + \frac{LI^2}{2} = const.$ -> Ableitung nach der Zeit liefert DGL

Alternative: Maschenregel anwenden.

Lösung: harmonische Schwingung $I(t) = I_0 \cdot \sin(\omega_0 t + \varphi)$ mit $\omega_0 = \frac{1}{\sqrt{IC}}$

Gedämpft – RLC -> $E_{ges}(t) = \frac{Q^2}{2C} + \frac{LI^2}{2} = E_0 - \int P_{Verlust} dt$ -> Ableitung nach der Zeit liefert DGL

Lösung: gedämpfte Schwingung $I(t) = I_0 \cdot e^{-\delta t} \cdot \sin(\omega t + \varphi)$ mit $\delta = \frac{R}{2L}$ und $\omega = \sqrt{\omega_0^2 - \delta^2}$

Maxwell-Gleichungen, elektromagnetische Wellen: (hier für $\varepsilon_r = \mu_r = 1$)

Bezeichnung	Integralform	Differenzielle Form
Gaußscher Satz E-Feld	$\oint\limits_{A}\vec{E}\cdot d\vec{A} = \frac{Q_{ein}}{\varepsilon_{0}}$	$\operatorname{div} \vec{E} = \frac{\rho}{\varepsilon_0}$
Gaußscher Satz B-Feld	$\oint_A \vec{B} \cdot d\vec{A} = 0$	$\operatorname{div} \vec{B} = 0$
Faradaysches Induktionsgesetz	$\oint \vec{E} \cdot d\vec{s} = -\frac{\partial}{\partial t} \int \vec{B} \cdot d\vec{A}$	$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
Amperesches Durchflutungsgesetz	$\oint \vec{B} \cdot d\vec{s} = \mu_0 I + \mu_0 \varepsilon_0 \frac{\partial}{\partial t} \int \vec{E} \cdot d\vec{A}$	$\operatorname{rot} \vec{B} = \mu_0 \vec{j} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$

Verschiebungsstromdichte $\vec{j}_V = \varepsilon_0 \cdot \frac{\partial \vec{E}}{\partial t} = \frac{\partial \vec{D}}{\partial t}$

Wellengleichung im Vakuum (1-dim.) $\frac{\partial^2 \vec{E}}{\partial x^2} = \frac{1}{c^2} \cdot \frac{\partial^2 \vec{E}}{\partial t^2}$ entsprechend für das Magnetfeld

Elektromagnetische Wellen im Vakuum sind Transversalwellen mit $\vec{B} = \frac{1}{\omega} \cdot (\vec{k} \times \vec{E})$

Ausbreitungsgeschwindigkeit (Phasengeschwindigkeit) $c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$

Wellenwiderstand des Vakuums $Z = \frac{E}{H} = \mu_0 \cdot \frac{E}{B} = \sqrt{\frac{\mu_0}{\varepsilon_0}}$

Poynting-Vektor (Energiestromdichte = Leistung pro Fläche) $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$

Optik:

Brechzahl
$$n = \frac{c}{c_n} = \sqrt{\varepsilon_r}$$
 Brechungsgesetz $n_1 \cdot \sin \alpha_1 = n_2 \cdot \sin \alpha_2$ Winkel zum Lot!

Linsengleichung (Abbildungsgleichung) $\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$ Vergrößerung $V = \frac{B}{G} = \left(-\right)\frac{b}{g}$

Linsenschleifergleichung $\frac{1}{f} = (n-1) \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$ Linsenkombination $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 \cdot f_2}$

Vergrößerung durch Änderung des Sehwinkels (z.B. Fernrohr) $V = \frac{(\tan)\varepsilon_2}{(\tan)\varepsilon_1}$

Gangunterschied $\Delta s_{ges} = (\Delta s_{Phasensprung}) + n\Delta L$ mit der optischen Weglänge $n\Delta L$

Phasensprung bei Reflexion am optisch dichteren Medium $\Delta \phi_{\scriptscriptstyle Phasensprung} = \pi$

Zusammenhang Gangunterschied - Phasendifferenz $\frac{\Delta \varphi}{2\pi} = \frac{\Delta s}{\lambda}$

Interferenz durch Gangunterschied: Maximum für $\Delta s_{ges} = k\lambda$, Minimum für $\Delta s_{ges} = (k+0,5)\lambda$ Beugungsmaxima an Doppelspalt und Gitter (senkrechter Einfall) $d \cdot \sin \alpha = k \cdot \lambda$